mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
update
This commit is contained in:
@@ -1,222 +0,0 @@
|
||||
from contextlib import nullcontext
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
|
||||
from ..utils import (
|
||||
is_accelerate_available,
|
||||
is_transformers_available,
|
||||
logging,
|
||||
)
|
||||
from ..utils.import_utils import BACKENDS_MAPPING
|
||||
|
||||
|
||||
if is_transformers_available():
|
||||
pass
|
||||
|
||||
if is_accelerate_available():
|
||||
from accelerate import init_empty_weights
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class FromOriginalVAEMixin:
|
||||
"""
|
||||
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into an [`AutoencoderKL`].
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
||||
r"""
|
||||
Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or
|
||||
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
|
||||
|
||||
Parameters:
|
||||
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
|
||||
Can be either:
|
||||
- A link to the `.ckpt` file (for example
|
||||
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
|
||||
- A path to a *file* containing all pipeline weights.
|
||||
torch_dtype (`str` or `torch.dtype`, *optional*):
|
||||
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
||||
dtype is automatically derived from the model's weights.
|
||||
force_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
||||
cached versions if they exist.
|
||||
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
||||
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
||||
is not used.
|
||||
resume_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
||||
incompletely downloaded files are deleted.
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to True, the model
|
||||
won't be downloaded from the Hub.
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
||||
allowed by Git.
|
||||
image_size (`int`, *optional*, defaults to 512):
|
||||
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
|
||||
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
|
||||
use_safetensors (`bool`, *optional*, defaults to `None`):
|
||||
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
|
||||
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
|
||||
weights. If set to `False`, safetensors weights are not loaded.
|
||||
upcast_attention (`bool`, *optional*, defaults to `None`):
|
||||
Whether the attention computation should always be upcasted.
|
||||
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
||||
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
||||
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
||||
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
||||
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
|
||||
= 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
|
||||
Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
||||
kwargs (remaining dictionary of keyword arguments, *optional*):
|
||||
Can be used to overwrite load and saveable variables (for example the pipeline components of the
|
||||
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
|
||||
method. See example below for more information.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you're loading
|
||||
a VAE from SDXL or a Stable Diffusion v2 model or higher.
|
||||
|
||||
</Tip>
|
||||
|
||||
Examples:
|
||||
|
||||
```py
|
||||
from diffusers import AutoencoderKL
|
||||
|
||||
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
|
||||
model = AutoencoderKL.from_single_file(url)
|
||||
```
|
||||
"""
|
||||
if not is_omegaconf_available():
|
||||
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from ..models import AutoencoderKL
|
||||
|
||||
# import here to avoid circular dependency
|
||||
from ..pipelines.stable_diffusion.convert_from_ckpt import (
|
||||
convert_ldm_vae_checkpoint,
|
||||
create_vae_diffusers_config,
|
||||
)
|
||||
|
||||
config_file = kwargs.pop("config_file", None)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
image_size = kwargs.pop("image_size", None)
|
||||
scaling_factor = kwargs.pop("scaling_factor", None)
|
||||
kwargs.pop("upcast_attention", None)
|
||||
|
||||
torch_dtype = kwargs.pop("torch_dtype", None)
|
||||
|
||||
use_safetensors = kwargs.pop("use_safetensors", None)
|
||||
|
||||
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
|
||||
from_safetensors = file_extension == "safetensors"
|
||||
|
||||
if from_safetensors and use_safetensors is False:
|
||||
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
|
||||
|
||||
# remove huggingface url
|
||||
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
|
||||
if pretrained_model_link_or_path.startswith(prefix):
|
||||
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
|
||||
|
||||
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
|
||||
ckpt_path = Path(pretrained_model_link_or_path)
|
||||
if not ckpt_path.is_file():
|
||||
# get repo_id and (potentially nested) file path of ckpt in repo
|
||||
repo_id = "/".join(ckpt_path.parts[:2])
|
||||
file_path = "/".join(ckpt_path.parts[2:])
|
||||
|
||||
if file_path.startswith("blob/"):
|
||||
file_path = file_path[len("blob/") :]
|
||||
|
||||
if file_path.startswith("main/"):
|
||||
file_path = file_path[len("main/") :]
|
||||
|
||||
pretrained_model_link_or_path = hf_hub_download(
|
||||
repo_id,
|
||||
filename=file_path,
|
||||
cache_dir=cache_dir,
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
token=token,
|
||||
revision=revision,
|
||||
force_download=force_download,
|
||||
)
|
||||
|
||||
if from_safetensors:
|
||||
from safetensors import safe_open
|
||||
|
||||
checkpoint = {}
|
||||
with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
|
||||
for key in f.keys():
|
||||
checkpoint[key] = f.get_tensor(key)
|
||||
else:
|
||||
checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")
|
||||
|
||||
if "state_dict" in checkpoint:
|
||||
checkpoint = checkpoint["state_dict"]
|
||||
|
||||
if config_file is None:
|
||||
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
|
||||
config_file = BytesIO(requests.get(config_url).content)
|
||||
|
||||
original_config = OmegaConf.load(config_file)
|
||||
|
||||
# default to sd-v1-5
|
||||
image_size = image_size or 512
|
||||
|
||||
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
|
||||
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
||||
|
||||
if scaling_factor is None:
|
||||
if (
|
||||
"model" in original_config
|
||||
and "params" in original_config.model
|
||||
and "scale_factor" in original_config.model.params
|
||||
):
|
||||
vae_scaling_factor = original_config.model.params.scale_factor
|
||||
else:
|
||||
vae_scaling_factor = 0.18215 # default SD scaling factor
|
||||
|
||||
vae_config["scaling_factor"] = vae_scaling_factor
|
||||
|
||||
ctx = init_empty_weights if is_accelerate_available() else nullcontext
|
||||
with ctx():
|
||||
vae = AutoencoderKL(**vae_config)
|
||||
|
||||
if is_accelerate_available():
|
||||
from ..models.modeling_utils import load_model_dict_into_meta
|
||||
|
||||
load_model_dict_into_meta(vae, converted_vae_checkpoint, device="cpu")
|
||||
else:
|
||||
vae.load_state_dict(converted_vae_checkpoint)
|
||||
|
||||
if torch_dtype is not None:
|
||||
vae.to(dtype=torch_dtype)
|
||||
|
||||
return vae
|
||||
@@ -1,167 +0,0 @@
|
||||
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
from huggingface_hub import hf_hub_download
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
|
||||
|
||||
class FromOriginalControlnetMixin:
|
||||
"""
|
||||
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`].
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
||||
r"""
|
||||
Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or
|
||||
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
|
||||
|
||||
Parameters:
|
||||
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
|
||||
Can be either:
|
||||
- A link to the `.ckpt` file (for example
|
||||
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
|
||||
- A path to a *file* containing all pipeline weights.
|
||||
torch_dtype (`str` or `torch.dtype`, *optional*):
|
||||
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
||||
dtype is automatically derived from the model's weights.
|
||||
force_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
||||
cached versions if they exist.
|
||||
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
||||
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
||||
is not used.
|
||||
resume_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
||||
incompletely downloaded files are deleted.
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to True, the model
|
||||
won't be downloaded from the Hub.
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
||||
allowed by Git.
|
||||
use_safetensors (`bool`, *optional*, defaults to `None`):
|
||||
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
|
||||
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
|
||||
weights. If set to `False`, safetensors weights are not loaded.
|
||||
image_size (`int`, *optional*, defaults to 512):
|
||||
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
|
||||
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
|
||||
upcast_attention (`bool`, *optional*, defaults to `None`):
|
||||
Whether the attention computation should always be upcasted.
|
||||
kwargs (remaining dictionary of keyword arguments, *optional*):
|
||||
Can be used to overwrite load and saveable variables (for example the pipeline components of the
|
||||
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
|
||||
method. See example below for more information.
|
||||
|
||||
Examples:
|
||||
|
||||
```py
|
||||
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
||||
|
||||
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
|
||||
model = ControlNetModel.from_single_file(url)
|
||||
|
||||
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
|
||||
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
|
||||
```
|
||||
"""
|
||||
# import here to avoid circular dependency
|
||||
from ..pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
|
||||
|
||||
config_file = kwargs.pop("config_file", None)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
num_in_channels = kwargs.pop("num_in_channels", None)
|
||||
use_linear_projection = kwargs.pop("use_linear_projection", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
extract_ema = kwargs.pop("extract_ema", False)
|
||||
image_size = kwargs.pop("image_size", None)
|
||||
upcast_attention = kwargs.pop("upcast_attention", None)
|
||||
|
||||
torch_dtype = kwargs.pop("torch_dtype", None)
|
||||
|
||||
use_safetensors = kwargs.pop("use_safetensors", None)
|
||||
|
||||
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
|
||||
from_safetensors = file_extension == "safetensors"
|
||||
|
||||
if from_safetensors and use_safetensors is False:
|
||||
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
|
||||
|
||||
# remove huggingface url
|
||||
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
|
||||
if pretrained_model_link_or_path.startswith(prefix):
|
||||
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
|
||||
|
||||
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
|
||||
ckpt_path = Path(pretrained_model_link_or_path)
|
||||
if not ckpt_path.is_file():
|
||||
# get repo_id and (potentially nested) file path of ckpt in repo
|
||||
repo_id = "/".join(ckpt_path.parts[:2])
|
||||
file_path = "/".join(ckpt_path.parts[2:])
|
||||
|
||||
if file_path.startswith("blob/"):
|
||||
file_path = file_path[len("blob/") :]
|
||||
|
||||
if file_path.startswith("main/"):
|
||||
file_path = file_path[len("main/") :]
|
||||
|
||||
pretrained_model_link_or_path = hf_hub_download(
|
||||
repo_id,
|
||||
filename=file_path,
|
||||
cache_dir=cache_dir,
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
token=token,
|
||||
revision=revision,
|
||||
force_download=force_download,
|
||||
)
|
||||
|
||||
if config_file is None:
|
||||
config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
|
||||
config_file = BytesIO(requests.get(config_url).content)
|
||||
|
||||
image_size = image_size or 512
|
||||
|
||||
controlnet = download_controlnet_from_original_ckpt(
|
||||
pretrained_model_link_or_path,
|
||||
original_config_file=config_file,
|
||||
image_size=image_size,
|
||||
extract_ema=extract_ema,
|
||||
num_in_channels=num_in_channels,
|
||||
upcast_attention=upcast_attention,
|
||||
from_safetensors=from_safetensors,
|
||||
use_linear_projection=use_linear_projection,
|
||||
)
|
||||
|
||||
if torch_dtype is not None:
|
||||
controlnet.to(dtype=torch_dtype)
|
||||
|
||||
return controlnet
|
||||
@@ -231,7 +231,6 @@ class FromSingleFileMixin:
|
||||
```
|
||||
"""
|
||||
original_config_file = kwargs.pop("original_config_file", None)
|
||||
config_files = kwargs.pop("config_files", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
@@ -270,7 +269,7 @@ class FromSingleFileMixin:
|
||||
while "state_dict" in checkpoint:
|
||||
checkpoint = checkpoint["state_dict"]
|
||||
|
||||
original_config = fetch_original_config(class_name, checkpoint, original_config_file, config_files)
|
||||
original_config = fetch_original_config(class_name, checkpoint, original_config_file)
|
||||
|
||||
if class_name == "AutoencoderKL":
|
||||
image_size = kwargs.pop("image_size", None)
|
||||
|
||||
@@ -14,6 +14,8 @@
|
||||
# limitations under the License.
|
||||
""" Conversion script for the Stable Diffusion checkpoints."""
|
||||
|
||||
import os
|
||||
import re
|
||||
from contextlib import nullcontext
|
||||
from io import BytesIO
|
||||
|
||||
@@ -188,7 +190,7 @@ SD_2_TEXT_ENCODER_KEYS_TO_IGNORE = [
|
||||
]
|
||||
|
||||
|
||||
def fetch_original_config_file_from_url(class_name, checkpoint):
|
||||
def infer_original_config_file(class_name, checkpoint):
|
||||
if CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024:
|
||||
config_url = CONFIG_URLS["v2"]
|
||||
|
||||
@@ -212,30 +214,20 @@ def fetch_original_config_file_from_url(class_name, checkpoint):
|
||||
return original_config_file
|
||||
|
||||
|
||||
def fetch_original_config_file_from_file(config_files: list):
|
||||
if "v2" in config_files:
|
||||
return config_files["v2"]
|
||||
def fetch_original_config(pipeline_class_name, checkpoint, original_config_file=None):
|
||||
|
||||
elif "xl" in config_files:
|
||||
return config_files["xl"]
|
||||
def is_valid_url(url):
|
||||
pattern = r'^(http|https):\/\/([\w.-]+)(\.[\w.-]+)+([\/\w\.-]*)*\/?$'
|
||||
return bool(re.match(pattern, url))
|
||||
|
||||
elif "xl_refiner" in config_files:
|
||||
return config_files["xl_refiner"]
|
||||
if os.path.isfile(original_config_file):
|
||||
with open(original_config_file, "r") as fp:
|
||||
original_config_file = fp.read()
|
||||
|
||||
elif is_valid_url(original_config_file):
|
||||
original_config_file = BytesIO(requests.get(original_config_file).content)
|
||||
else:
|
||||
return config_files["v1"]
|
||||
|
||||
|
||||
def fetch_original_config(pipeline_class_name, checkpoint, original_config_file=None, config_files=None):
|
||||
if original_config_file:
|
||||
original_config = yaml.safe_load(original_config_file)
|
||||
return original_config
|
||||
|
||||
elif config_files:
|
||||
original_config_file = fetch_original_config_file_from_file(config_files)
|
||||
|
||||
else:
|
||||
original_config_file = fetch_original_config_file_from_url(pipeline_class_name, checkpoint)
|
||||
original_config_file = infer_original_config_file(pipeline_class_name, checkpoint)
|
||||
|
||||
original_config = yaml.safe_load(original_config_file)
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...loaders import FromOriginalVAEMixin
|
||||
from ...loaders import FromSingleFileMixin
|
||||
from ...utils.accelerate_utils import apply_forward_hook
|
||||
from ..attention_processor import (
|
||||
ADDED_KV_ATTENTION_PROCESSORS,
|
||||
@@ -32,7 +32,7 @@ from ..modeling_utils import ModelMixin
|
||||
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
|
||||
|
||||
|
||||
class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
|
||||
class AutoencoderKL(ModelMixin, ConfigMixin, FromSingleFileMixin):
|
||||
r"""
|
||||
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user