1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
This commit is contained in:
Dhruv Nair
2024-01-19 07:24:19 +00:00
parent aee8b5f5d5
commit 2fb9baf934
5 changed files with 16 additions and 414 deletions

View File

@@ -1,222 +0,0 @@
from contextlib import nullcontext
from io import BytesIO
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import validate_hf_hub_args
from ..utils import (
is_accelerate_available,
is_transformers_available,
logging,
)
from ..utils.import_utils import BACKENDS_MAPPING
if is_transformers_available():
pass
if is_accelerate_available():
from accelerate import init_empty_weights
logger = logging.get_logger(__name__)
class FromOriginalVAEMixin:
"""
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into an [`AutoencoderKL`].
"""
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to True, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
image_size (`int`, *optional*, defaults to 512):
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
upcast_attention (`bool`, *optional*, defaults to `None`):
Whether the attention computation should always be upcasted.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
= 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
<Tip warning={true}>
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you're loading
a VAE from SDXL or a Stable Diffusion v2 model or higher.
</Tip>
Examples:
```py
from diffusers import AutoencoderKL
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
model = AutoencoderKL.from_single_file(url)
```
"""
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
from ..models import AutoencoderKL
# import here to avoid circular dependency
from ..pipelines.stable_diffusion.convert_from_ckpt import (
convert_ldm_vae_checkpoint,
create_vae_diffusers_config,
)
config_file = kwargs.pop("config_file", None)
cache_dir = kwargs.pop("cache_dir", None)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
image_size = kwargs.pop("image_size", None)
scaling_factor = kwargs.pop("scaling_factor", None)
kwargs.pop("upcast_attention", None)
torch_dtype = kwargs.pop("torch_dtype", None)
use_safetensors = kwargs.pop("use_safetensors", None)
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
from_safetensors = file_extension == "safetensors"
if from_safetensors and use_safetensors is False:
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
# remove huggingface url
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
if pretrained_model_link_or_path.startswith(prefix):
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
ckpt_path = Path(pretrained_model_link_or_path)
if not ckpt_path.is_file():
# get repo_id and (potentially nested) file path of ckpt in repo
repo_id = "/".join(ckpt_path.parts[:2])
file_path = "/".join(ckpt_path.parts[2:])
if file_path.startswith("blob/"):
file_path = file_path[len("blob/") :]
if file_path.startswith("main/"):
file_path = file_path[len("main/") :]
pretrained_model_link_or_path = hf_hub_download(
repo_id,
filename=file_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
force_download=force_download,
)
if from_safetensors:
from safetensors import safe_open
checkpoint = {}
with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
for key in f.keys():
checkpoint[key] = f.get_tensor(key)
else:
checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
if config_file is None:
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
config_file = BytesIO(requests.get(config_url).content)
original_config = OmegaConf.load(config_file)
# default to sd-v1-5
image_size = image_size or 512
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
if scaling_factor is None:
if (
"model" in original_config
and "params" in original_config.model
and "scale_factor" in original_config.model.params
):
vae_scaling_factor = original_config.model.params.scale_factor
else:
vae_scaling_factor = 0.18215 # default SD scaling factor
vae_config["scaling_factor"] = vae_scaling_factor
ctx = init_empty_weights if is_accelerate_available() else nullcontext
with ctx():
vae = AutoencoderKL(**vae_config)
if is_accelerate_available():
from ..models.modeling_utils import load_model_dict_into_meta
load_model_dict_into_meta(vae, converted_vae_checkpoint, device="cpu")
else:
vae.load_state_dict(converted_vae_checkpoint)
if torch_dtype is not None:
vae.to(dtype=torch_dtype)
return vae

View File

@@ -1,167 +0,0 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from io import BytesIO
from pathlib import Path
import requests
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import validate_hf_hub_args
class FromOriginalControlnetMixin:
"""
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`].
"""
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
incompletely downloaded files are deleted.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to True, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
image_size (`int`, *optional*, defaults to 512):
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
upcast_attention (`bool`, *optional*, defaults to `None`):
Whether the attention computation should always be upcasted.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
Examples:
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
model = ControlNetModel.from_single_file(url)
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
```
"""
# import here to avoid circular dependency
from ..pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
config_file = kwargs.pop("config_file", None)
cache_dir = kwargs.pop("cache_dir", None)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
num_in_channels = kwargs.pop("num_in_channels", None)
use_linear_projection = kwargs.pop("use_linear_projection", None)
revision = kwargs.pop("revision", None)
extract_ema = kwargs.pop("extract_ema", False)
image_size = kwargs.pop("image_size", None)
upcast_attention = kwargs.pop("upcast_attention", None)
torch_dtype = kwargs.pop("torch_dtype", None)
use_safetensors = kwargs.pop("use_safetensors", None)
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
from_safetensors = file_extension == "safetensors"
if from_safetensors and use_safetensors is False:
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
# remove huggingface url
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
if pretrained_model_link_or_path.startswith(prefix):
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
ckpt_path = Path(pretrained_model_link_or_path)
if not ckpt_path.is_file():
# get repo_id and (potentially nested) file path of ckpt in repo
repo_id = "/".join(ckpt_path.parts[:2])
file_path = "/".join(ckpt_path.parts[2:])
if file_path.startswith("blob/"):
file_path = file_path[len("blob/") :]
if file_path.startswith("main/"):
file_path = file_path[len("main/") :]
pretrained_model_link_or_path = hf_hub_download(
repo_id,
filename=file_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
force_download=force_download,
)
if config_file is None:
config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
config_file = BytesIO(requests.get(config_url).content)
image_size = image_size or 512
controlnet = download_controlnet_from_original_ckpt(
pretrained_model_link_or_path,
original_config_file=config_file,
image_size=image_size,
extract_ema=extract_ema,
num_in_channels=num_in_channels,
upcast_attention=upcast_attention,
from_safetensors=from_safetensors,
use_linear_projection=use_linear_projection,
)
if torch_dtype is not None:
controlnet.to(dtype=torch_dtype)
return controlnet

View File

@@ -231,7 +231,6 @@ class FromSingleFileMixin:
```
"""
original_config_file = kwargs.pop("original_config_file", None)
config_files = kwargs.pop("config_files", None)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
@@ -270,7 +269,7 @@ class FromSingleFileMixin:
while "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
original_config = fetch_original_config(class_name, checkpoint, original_config_file, config_files)
original_config = fetch_original_config(class_name, checkpoint, original_config_file)
if class_name == "AutoencoderKL":
image_size = kwargs.pop("image_size", None)

View File

@@ -14,6 +14,8 @@
# limitations under the License.
""" Conversion script for the Stable Diffusion checkpoints."""
import os
import re
from contextlib import nullcontext
from io import BytesIO
@@ -188,7 +190,7 @@ SD_2_TEXT_ENCODER_KEYS_TO_IGNORE = [
]
def fetch_original_config_file_from_url(class_name, checkpoint):
def infer_original_config_file(class_name, checkpoint):
if CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024:
config_url = CONFIG_URLS["v2"]
@@ -212,30 +214,20 @@ def fetch_original_config_file_from_url(class_name, checkpoint):
return original_config_file
def fetch_original_config_file_from_file(config_files: list):
if "v2" in config_files:
return config_files["v2"]
def fetch_original_config(pipeline_class_name, checkpoint, original_config_file=None):
elif "xl" in config_files:
return config_files["xl"]
def is_valid_url(url):
pattern = r'^(http|https):\/\/([\w.-]+)(\.[\w.-]+)+([\/\w\.-]*)*\/?$'
return bool(re.match(pattern, url))
elif "xl_refiner" in config_files:
return config_files["xl_refiner"]
if os.path.isfile(original_config_file):
with open(original_config_file, "r") as fp:
original_config_file = fp.read()
elif is_valid_url(original_config_file):
original_config_file = BytesIO(requests.get(original_config_file).content)
else:
return config_files["v1"]
def fetch_original_config(pipeline_class_name, checkpoint, original_config_file=None, config_files=None):
if original_config_file:
original_config = yaml.safe_load(original_config_file)
return original_config
elif config_files:
original_config_file = fetch_original_config_file_from_file(config_files)
else:
original_config_file = fetch_original_config_file_from_url(pipeline_class_name, checkpoint)
original_config_file = infer_original_config_file(pipeline_class_name, checkpoint)
original_config = yaml.safe_load(original_config_file)

View File

@@ -17,7 +17,7 @@ import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalVAEMixin
from ...loaders import FromSingleFileMixin
from ...utils.accelerate_utils import apply_forward_hook
from ..attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
@@ -32,7 +32,7 @@ from ..modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
class AutoencoderKL(ModelMixin, ConfigMixin, FromSingleFileMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.