mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
Apply suggestions from code review
This commit is contained in:
@@ -359,7 +359,7 @@ def main():
|
||||
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
|
||||
):
|
||||
with torch.no_grad():
|
||||
images = sd_model(example["prompt"], height=512, width=512, num_inference_steps=50)["sample"]
|
||||
images = sd_model(example["prompt"], height=512, width=512, num_inference_steps=50).images
|
||||
|
||||
for image, index in zip(images, example["index"]):
|
||||
image.save(class_images_dir / f"{index + cur_class_images}.jpg")
|
||||
@@ -450,9 +450,6 @@ def main():
|
||||
text_encoder.to(accelerator.device)
|
||||
vae.to(accelerator.device)
|
||||
|
||||
# Keep text_encoder and vae in eval model as we don't train it
|
||||
text_encoder.eval()
|
||||
vae.eval()
|
||||
|
||||
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
|
||||
Reference in New Issue
Block a user