1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Attend and excite 2 (#2369)

* attend and excite pipeline

* update

update docstring example

remove visualization

remove the base class attention control

remove dependency on stable diffusion pipeline

always apply gaussian filter with default setting

remove run_standard_sd argument

hardcode attention_res and scale_range (related to step size)

Update docs/source/en/api/pipelines/stable_diffusion/attend_and_excite.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update tests/pipelines/stable_diffusion_2/test_stable_diffusion_attend_and_excite.py

Co-authored-by: Will Berman <wlbberman@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Will Berman <wlbberman@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Will Berman <wlbberman@gmail.com>

revert test_float16_inference

revert change to the batch related tests

fix test_float16_inference

handle batch

remove the deprecation message

remove None check, step_size

remove debugging logging

add slow test

indices_to_alter -> indices

add check_input

* skip mps

* style

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* indices -> token_indices
---------

Co-authored-by: evin <evinpinarornek@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
This commit is contained in:
YiYi Xu
2023-02-16 11:15:54 -10:00
committed by GitHub
parent f243282e3e
commit 2e7a28652a
11 changed files with 1290 additions and 2 deletions

View File

@@ -151,6 +151,8 @@
title: Stable-Diffusion-Latent-Upscaler
- local: api/pipelines/stable_diffusion/pix2pix
title: InstructPix2Pix
- local: api/pipelines/stable_diffusion/attend_and_excite
title: Attend and Excite
- local: api/pipelines/stable_diffusion/pix2pix_zero
title: Pix2Pix Zero
- local: api/pipelines/stable_diffusion/self_attention_guidance

View File

@@ -0,0 +1,75 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Attend and Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models
## Overview
Attend and Excite for Stable Diffusion was proposed in [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://attendandexcite.github.io/Attend-and-Excite/) and provides textual attention control over the image generation.
The abstract of the paper is the following:
*Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the user's intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGA's effectiveness on a variety of tasks and provide evidence for its versatility and flexibility.*
Resources
* [Project Page](https://attendandexcite.github.io/Attend-and-Excite/)
* [Paper](https://arxiv.org/abs/2301.13826)
* [Original Code](https://github.com/AttendAndExcite/Attend-and-Excite)
* [Demo](https://huggingface.co/spaces/AttendAndExcite/Attend-and-Excite)
## Available Pipelines:
| Pipeline | Tasks | Colab | Demo
|---|---|:---:|:---:|
| [pipeline_semantic_stable_diffusion_attend_and_excite.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_semantic_stable_diffusion_attend_and_excite) | *Text-to-Image Generation* | - | -
### Usage example
```python
import torch
from diffusers import StableDiffusionAttendAndExcitePipeline
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe = pipe.to("cuda")
prompt = "a cat and a frog"
# use get_indices function to find out indices of the tokens you want to alter
pipe.get_indices(prompt)
token_indices = [2, 5]
seed = 6141
generator = torch.Generator("cuda").manual_seed(seed)
images = pipe(
prompt=prompt,
token_indices=token_indices,
guidance_scale=7.5,
generator=generator,
num_inference_steps=50,
max_iter_to_alter=25,
).images
image = images[0]
image.save(f"../images/{prompt}_{seed}.png")
```
## StableDiffusionAttendAndExcitePipeline
[[autodoc]] StableDiffusionAttendAndExcitePipeline
- all
- __call__

View File

@@ -33,6 +33,7 @@ For more details about how Stable Diffusion works and how it differs from the ba
| [StableDiffusionUpscalePipeline](./upscale) | **Experimental** *Text-Guided Image Super-Resolution * | | Coming soon
| [StableDiffusionLatentUpscalePipeline](./latent_upscale) | **Experimental** *Text-Guided Image Super-Resolution * | | Coming soon
| [StableDiffusionInstructPix2PixPipeline](./pix2pix) | **Experimental** *Text-Based Image Editing * | | [InstructPix2Pix: Learning to Follow Image Editing Instructions](https://huggingface.co/spaces/timbrooks/instruct-pix2pix)
| [StableDiffusionAttendAndExcitePipeline](./attend_and_excite) | **Experimental** *Text-to-Image Generation * | | [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://huggingface.co/spaces/AttendAndExcite/Attend-and-Excite)
| [StableDiffusionPix2PixZeroPipeline](./pix2pix_zero) | **Experimental** *Text-Based Image Editing * | | [Zero-shot Image-to-Image Translation](https://arxiv.org/abs/2302.03027)

View File

@@ -50,7 +50,7 @@ available a colab notebook to directly try them out.
| [stable_diffusion](./api/pipelines/stable_diffusion/text2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [stable_diffusion](./api/pipelines/stable_diffusion/img2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
| [stable_diffusion](./api/pipelines/stable_diffusion/inpaint) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb)

View File

@@ -110,6 +110,7 @@ else:
CycleDiffusionPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionDepth2ImgPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImg2ImgPipeline,

View File

@@ -46,6 +46,7 @@ else:
from .paint_by_example import PaintByExamplePipeline
from .stable_diffusion import (
CycleDiffusionPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionDepth2ImgPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImg2ImgPipeline,

View File

@@ -44,6 +44,7 @@ except OptionalDependencyNotAvailable:
else:
from .pipeline_cycle_diffusion import CycleDiffusionPipeline
from .pipeline_stable_diffusion import StableDiffusionPipeline
from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline
from .pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline
from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy

View File

@@ -77,6 +77,21 @@ class PaintByExamplePipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusionAttendAndExcitePipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusionDepth2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -0,0 +1,173 @@
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNet2DConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ...test_pipelines_common import PipelineTesterMixin
@skip_mps
class StableDiffusionAttendAndExcitePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionAttendAndExcitePipeline
test_attention_slicing = False
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = inputs = {
"prompt": "a cat and a frog",
"token_indices": [2, 5],
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
"max_iter_to_alter": 2,
"thresholds": {0: 0.7},
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 64, 64, 3))
expected_slice = np.array(
[0.5644937, 0.60543084, 0.48239064, 0.5206757, 0.55623394, 0.46045133, 0.5100435, 0.48919064, 0.4759359]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(relax_max_difference=False)
@require_torch_gpu
@slow
class StableDiffusionAttendAndExcitePipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_attend_and_excite_fp16(self):
generator = torch.manual_seed(51)
pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
)
pipe.to("cuda")
prompt = "a painting of an elephant with glasses"
token_indices = [5, 7]
image = pipe(
prompt=prompt,
token_indices=token_indices,
guidance_scale=7.5,
generator=generator,
num_inference_steps=50,
max_iter_to_alter=25,
).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy"
)
assert np.abs((expected_image - image).max()) < 5e-1

View File

@@ -35,7 +35,15 @@ class PipelineTesterMixin:
equivalence of dict and tuple outputs, etc.
"""
allowed_required_args = ["source_prompt", "prompt", "image", "mask_image", "example_image", "class_labels"]
allowed_required_args = [
"source_prompt",
"prompt",
"image",
"mask_image",
"example_image",
"class_labels",
"token_indices",
]
required_optional_params = ["generator", "num_inference_steps", "return_dict"]
num_inference_steps_args = ["num_inference_steps"]