mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
Merge branch 'main' into control-lora
This commit is contained in:
@@ -50,7 +50,8 @@ The following models are available for the image-to-video pipeline:
|
||||
| Model name | Description |
|
||||
|:---|:---|
|
||||
| [`Skywork/SkyReels-V1-Hunyuan-I2V`](https://huggingface.co/Skywork/SkyReels-V1-Hunyuan-I2V) | Skywork's custom finetune of HunyuanVideo (de-distilled). Performs best with `97x544x960` resolution. Performs best at `97x544x960` resolution, `guidance_scale=1.0`, `true_cfg_scale=6.0` and a negative prompt. |
|
||||
| [`hunyuanvideo-community/HunyuanVideo-I2V`](https://huggingface.co/hunyuanvideo-community/HunyuanVideo-I2V) | Tecent's official HunyuanVideo I2V model. Performs best at resolutions of 480, 720, 960, 1280. A higher `shift` value when initializing the scheduler is recommended (good values are between 7 and 20) |
|
||||
| [`hunyuanvideo-community/HunyuanVideo-I2V-33ch`](https://huggingface.co/hunyuanvideo-community/HunyuanVideo-I2V) | Tecent's official HunyuanVideo 33-channel I2V model. Performs best at resolutions of 480, 720, 960, 1280. A higher `shift` value when initializing the scheduler is recommended (good values are between 7 and 20). |
|
||||
| [`hunyuanvideo-community/HunyuanVideo-I2V`](https://huggingface.co/hunyuanvideo-community/HunyuanVideo-I2V) | Tecent's official HunyuanVideo 16-channel I2V model. Performs best at resolutions of 480, 720, 960, 1280. A higher `shift` value when initializing the scheduler is recommended (good values are between 7 and 20) |
|
||||
|
||||
## Quantization
|
||||
|
||||
|
||||
@@ -198,6 +198,18 @@ export_to_video(video, "output.mp4", fps=8)
|
||||
|
||||
Group offloading (for CUDA devices with support for asynchronous data transfer streams) overlaps data transfer and computation to reduce the overall execution time compared to sequential offloading. This is enabled using layer prefetching with CUDA streams. The next layer to be executed is loaded onto the accelerator device while the current layer is being executed - this increases the memory requirements slightly. Group offloading also supports leaf-level offloading (equivalent to sequential CPU offloading) but can be made much faster when using streams.
|
||||
|
||||
<Tip>
|
||||
|
||||
- Group offloading may not work with all models out-of-the-box. If the forward implementations of the model contain weight-dependent device-casting of inputs, it may clash with the offloading mechanism's handling of device-casting.
|
||||
- The `offload_type` parameter can be set to either `block_level` or `leaf_level`. `block_level` offloads groups of `torch::nn::ModuleList` or `torch::nn:Sequential` modules based on a configurable attribute `num_blocks_per_group`. For example, if you set `num_blocks_per_group=2` on a standard transformer model containing 40 layers, it will onload/offload 2 layers at a time for a total of 20 onload/offloads. This drastically reduces the VRAM requirements. `leaf_level` offloads individual layers at the lowest level, which is equivalent to sequential offloading. However, unlike sequential offloading, group offloading can be made much faster when using streams, with minimal compromise to end-to-end generation time.
|
||||
- The `use_stream` parameter can be used with CUDA devices to enable prefetching layers for onload. It defaults to `False`. Layer prefetching allows overlapping computation and data transfer of model weights, which drastically reduces the overall execution time compared to other offloading methods. However, it can increase the CPU RAM usage significantly. Ensure that available CPU RAM that is at least twice the size of the model when setting `use_stream=True`. You can find more information about CUDA streams [here](https://pytorch.org/docs/stable/generated/torch.cuda.Stream.html)
|
||||
- If specifying `use_stream=True` on VAEs with tiling enabled, make sure to do a dummy forward pass (possibly with dummy inputs) before the actual inference to avoid device-mismatch errors. This may not work on all implementations. Please open an issue if you encounter any problems.
|
||||
- The parameter `low_cpu_mem_usage` can be set to `True` to reduce CPU memory usage when using streams for group offloading. This is useful when the CPU memory is the bottleneck, but it may counteract the benefits of using streams and increase the overall execution time. The CPU memory savings come from creating pinned-tensors on-the-fly instead of pre-pinning them. This parameter is better suited for using `leaf_level` offloading.
|
||||
|
||||
For more information about available parameters and an explanation of how group offloading works, refer to [`~hooks.group_offloading.apply_group_offloading`].
|
||||
|
||||
</Tip>
|
||||
|
||||
## FP8 layerwise weight-casting
|
||||
|
||||
PyTorch supports `torch.float8_e4m3fn` and `torch.float8_e5m2` as weight storage dtypes, but they can't be used for computation in many different tensor operations due to unimplemented kernel support. However, you can use these dtypes to store model weights in fp8 precision and upcast them on-the-fly when the layers are used in the forward pass. This is known as layerwise weight-casting.
|
||||
@@ -235,6 +247,14 @@ In the above example, layerwise casting is enabled on the transformer component
|
||||
|
||||
However, you gain more control and flexibility by directly utilizing the [`~hooks.layerwise_casting.apply_layerwise_casting`] function instead of [`~ModelMixin.enable_layerwise_casting`].
|
||||
|
||||
<Tip>
|
||||
|
||||
- Layerwise casting may not work with all models out-of-the-box. Sometimes, the forward implementations of the model might contain internal typecasting of weight values. Such implementations are not supported due to the currently simplistic implementation of layerwise casting, which assumes that the forward pass is independent of the weight precision and that the input dtypes are always in `compute_dtype`. An example of an incompatible implementation can be found [here](https://github.com/huggingface/transformers/blob/7f5077e53682ca855afc826162b204ebf809f1f9/src/transformers/models/t5/modeling_t5.py#L294-L299).
|
||||
- Layerwise casting may fail on custom modeling implementations that make use of [PEFT](https://github.com/huggingface/peft) layers. Some minimal checks to handle this case is implemented but is not extensively tested or guaranteed to work in all cases.
|
||||
- It can be also be applied partially to specific layers of a model. Partially applying layerwise casting can either be done manually by calling the `apply_layerwise_casting` function on specific internal modules, or by specifying the `skip_modules_pattern` and `skip_modules_classes` parameters for a root module. These parameters are particularly useful for layers such as normalization and modulation.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Channels-last memory format
|
||||
|
||||
The channels-last memory format is an alternative way of ordering NCHW tensors in memory to preserve dimension ordering. Channels-last tensors are ordered in such a way that the channels become the densest dimension (storing images pixel-per-pixel). Since not all operators currently support the channels-last format, it may result in worst performance but you should still try and see if it works for your model.
|
||||
|
||||
@@ -66,12 +66,6 @@ from accelerate.utils import write_basic_config
|
||||
write_basic_config()
|
||||
```
|
||||
|
||||
## 원을 채우는 데이터셋
|
||||
|
||||
원본 데이터셋은 ControlNet [repo](https://huggingface.co/lllyasviel/ControlNet/blob/main/training/fill50k.zip)에 올라와있지만, 우리는 [여기](https://huggingface.co/datasets/fusing/fill50k)에 새롭게 다시 올려서 🤗 Datasets 과 호환가능합니다. 그래서 학습 스크립트 상에서 데이터 불러오기를 다룰 수 있습니다.
|
||||
|
||||
우리의 학습 예시는 원래 ControlNet의 학습에 쓰였던 [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)을 사용합니다. 그렇지만 ControlNet은 대응되는 어느 Stable Diffusion 모델([`CompVis/stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4)) 혹은 [`stabilityai/stable-diffusion-2-1`](https://huggingface.co/stabilityai/stable-diffusion-2-1)의 증가를 위해 학습될 수 있습니다.
|
||||
|
||||
자체 데이터셋을 사용하기 위해서는 [학습을 위한 데이터셋 생성하기](create_dataset) 가이드를 확인하세요.
|
||||
|
||||
## 학습
|
||||
|
||||
@@ -1,20 +1,27 @@
|
||||
# AnyTextPipeline Pipeline
|
||||
# AnyTextPipeline
|
||||
|
||||
Project page: https://aigcdesigngroup.github.io/homepage_anytext
|
||||
|
||||
"AnyText comprises a diffusion pipeline with two primary elements: an auxiliary latent module and a text embedding module. The former uses inputs like text glyph, position, and masked image to generate latent features for text generation or editing. The latter employs an OCR model for encoding stroke data as embeddings, which blend with image caption embeddings from the tokenizer to generate texts that seamlessly integrate with the background. We employed text-control diffusion loss and text perceptual loss for training to further enhance writing accuracy."
|
||||
|
||||
Each text line that needs to be generated should be enclosed in double quotes. For any usage questions, please refer to the [paper](https://arxiv.org/abs/2311.03054).
|
||||
> **Note:** Each text line that needs to be generated should be enclosed in double quotes.
|
||||
|
||||
For any usage questions, please refer to the [paper](https://arxiv.org/abs/2311.03054).
|
||||
|
||||
[](https://colab.research.google.com/gist/tolgacangoz/b87ec9d2f265b448dd947c9d4a0da389/anytext.ipynb)
|
||||
|
||||
```py
|
||||
# This example requires the `anytext_controlnet.py` file:
|
||||
# !git clone --depth 1 https://github.com/huggingface/diffusers.git
|
||||
# %cd diffusers/examples/research_projects/anytext
|
||||
# Let's choose a font file shared by an HF staff:
|
||||
# !wget https://huggingface.co/spaces/ysharma/TranslateQuotesInImageForwards/resolve/main/arial-unicode-ms.ttf
|
||||
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
from anytext_controlnet import AnyTextControlNetModel
|
||||
from diffusers.utils import load_image
|
||||
|
||||
# I chose a font file shared by an HF staff:
|
||||
# !wget https://huggingface.co/spaces/ysharma/TranslateQuotesInImageForwards/resolve/main/arial-unicode-ms.ttf
|
||||
|
||||
anytext_controlnet = AnyTextControlNetModel.from_pretrained("tolgacangoz/anytext-controlnet", torch_dtype=torch.float16,
|
||||
variant="fp16",)
|
||||
@@ -26,6 +33,7 @@ pipe = DiffusionPipeline.from_pretrained("tolgacangoz/anytext", font_path="arial
|
||||
# generate image
|
||||
prompt = 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream'
|
||||
draw_pos = load_image("https://raw.githubusercontent.com/tyxsspa/AnyText/refs/heads/main/example_images/gen9.png")
|
||||
# There are two modes: "generate" and "edit". "edit" mode requires `ori_image` parameter for the image to be edited.
|
||||
image = pipe(prompt, num_inference_steps=20, mode="generate", draw_pos=draw_pos,
|
||||
).images[0]
|
||||
image
|
||||
|
||||
@@ -146,14 +146,17 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> # This example requires the `anytext_controlnet.py` file:
|
||||
>>> # !git clone --depth 1 https://github.com/huggingface/diffusers.git
|
||||
>>> # %cd diffusers/examples/research_projects/anytext
|
||||
>>> # Let's choose a font file shared by an HF staff:
|
||||
>>> # !wget https://huggingface.co/spaces/ysharma/TranslateQuotesInImageForwards/resolve/main/arial-unicode-ms.ttf
|
||||
|
||||
>>> import torch
|
||||
>>> from diffusers import DiffusionPipeline
|
||||
>>> from anytext_controlnet import AnyTextControlNetModel
|
||||
>>> from diffusers.utils import load_image
|
||||
|
||||
>>> # I chose a font file shared by an HF staff:
|
||||
>>> !wget https://huggingface.co/spaces/ysharma/TranslateQuotesInImageForwards/resolve/main/arial-unicode-ms.ttf
|
||||
|
||||
>>> anytext_controlnet = AnyTextControlNetModel.from_pretrained("tolgacangoz/anytext-controlnet", torch_dtype=torch.float16,
|
||||
... variant="fp16",)
|
||||
>>> pipe = DiffusionPipeline.from_pretrained("tolgacangoz/anytext", font_path="arial-unicode-ms.ttf",
|
||||
@@ -165,6 +168,7 @@ EXAMPLE_DOC_STRING = """
|
||||
>>> # generate image
|
||||
>>> prompt = 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream'
|
||||
>>> draw_pos = load_image("https://raw.githubusercontent.com/tyxsspa/AnyText/refs/heads/main/example_images/gen9.png")
|
||||
>>> # There are two modes: "generate" and "edit". "edit" mode requires `ori_image` parameter for the image to be edited.
|
||||
>>> image = pipe(prompt, num_inference_steps=20, mode="generate", draw_pos=draw_pos,
|
||||
... ).images[0]
|
||||
>>> image
|
||||
@@ -257,11 +261,11 @@ class EmbeddingManager(ModelMixin, ConfigMixin):
|
||||
idx = tokenized_text[i] == self.placeholder_token.to(device)
|
||||
if sum(idx) > 0:
|
||||
if i >= len(self.text_embs_all):
|
||||
print("truncation for log images...")
|
||||
logger.warning("truncation for log images...")
|
||||
break
|
||||
text_emb = torch.cat(self.text_embs_all[i], dim=0)
|
||||
if sum(idx) != len(text_emb):
|
||||
print("truncation for long caption...")
|
||||
logger.warning("truncation for long caption...")
|
||||
text_emb = text_emb.to(embedded_text.device)
|
||||
embedded_text[i][idx] = text_emb[: sum(idx)]
|
||||
return embedded_text
|
||||
@@ -1058,6 +1062,8 @@ class AuxiliaryLatentModule(ModelMixin, ConfigMixin):
|
||||
raise ValueError(f"Can't read ori_image image from {ori_image}!")
|
||||
elif isinstance(ori_image, torch.Tensor):
|
||||
ori_image = ori_image.cpu().numpy()
|
||||
elif isinstance(ori_image, PIL.Image.Image):
|
||||
ori_image = np.array(ori_image.convert("RGB"))
|
||||
else:
|
||||
if not isinstance(ori_image, np.ndarray):
|
||||
raise ValueError(f"Unknown format of ori_image: {type(ori_image)}")
|
||||
|
||||
@@ -160,8 +160,9 @@ TRANSFORMER_CONFIGS = {
|
||||
"pooled_projection_dim": 768,
|
||||
"rope_theta": 256.0,
|
||||
"rope_axes_dim": (16, 56, 56),
|
||||
"image_condition_type": None,
|
||||
},
|
||||
"HYVideo-T/2-I2V": {
|
||||
"HYVideo-T/2-I2V-33ch": {
|
||||
"in_channels": 16 * 2 + 1,
|
||||
"out_channels": 16,
|
||||
"num_attention_heads": 24,
|
||||
@@ -178,6 +179,26 @@ TRANSFORMER_CONFIGS = {
|
||||
"pooled_projection_dim": 768,
|
||||
"rope_theta": 256.0,
|
||||
"rope_axes_dim": (16, 56, 56),
|
||||
"image_condition_type": "latent_concat",
|
||||
},
|
||||
"HYVideo-T/2-I2V-16ch": {
|
||||
"in_channels": 16,
|
||||
"out_channels": 16,
|
||||
"num_attention_heads": 24,
|
||||
"attention_head_dim": 128,
|
||||
"num_layers": 20,
|
||||
"num_single_layers": 40,
|
||||
"num_refiner_layers": 2,
|
||||
"mlp_ratio": 4.0,
|
||||
"patch_size": 2,
|
||||
"patch_size_t": 1,
|
||||
"qk_norm": "rms_norm",
|
||||
"guidance_embeds": True,
|
||||
"text_embed_dim": 4096,
|
||||
"pooled_projection_dim": 768,
|
||||
"rope_theta": 256.0,
|
||||
"rope_axes_dim": (16, 56, 56),
|
||||
"image_condition_type": "token_replace",
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
@@ -27,7 +27,10 @@ from diffusers.utils.import_utils import is_accelerate_available
|
||||
CTX = init_empty_weights if is_accelerate_available else nullcontext
|
||||
|
||||
ckpt_ids = [
|
||||
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px/checkpoints/Sana_Sprint_0.6B_1024px.pth"
|
||||
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px/checkpoints/Sana_Sprint_1.6B_1024px.pth"
|
||||
"Efficient-Large-Model/SANA1.5_4.8B_1024px/checkpoints/SANA1.5_4.8B_1024px.pth",
|
||||
"Efficient-Large-Model/SANA1.5_1.6B_1024px/checkpoints/SANA1.5_1.6B_1024px.pth",
|
||||
"Efficient-Large-Model/Sana_1600M_4Kpx_BF16/checkpoints/Sana_1600M_4Kpx_BF16.pth",
|
||||
"Efficient-Large-Model/Sana_1600M_2Kpx_BF16/checkpoints/Sana_1600M_2Kpx_BF16.pth",
|
||||
"Efficient-Large-Model/Sana_1600M_1024px_MultiLing/checkpoints/Sana_1600M_1024px_MultiLing.pth",
|
||||
@@ -314,7 +317,6 @@ def main(args):
|
||||
|
||||
# SCM Scheduler for Sana Sprint
|
||||
scheduler_config = {
|
||||
"num_train_timesteps": 1000,
|
||||
"prediction_type": "trigflow",
|
||||
"sigma_data": 0.5,
|
||||
}
|
||||
@@ -378,7 +380,8 @@ if __name__ == "__main__":
|
||||
choices=[
|
||||
"SanaMS_1600M_P1_D20",
|
||||
"SanaMS_600M_P1_D28",
|
||||
"SanaMS_4800M_P1_D60",
|
||||
"SanaMS1.5_1600M_P1_D20",
|
||||
"SanaMS1.5_4800M_P1_D60",
|
||||
"SanaSprint_1600M_P1_D20",
|
||||
"SanaSprint_600M_P1_D28",
|
||||
],
|
||||
@@ -421,7 +424,7 @@ if __name__ == "__main__":
|
||||
"cross_attention_dim": 2240,
|
||||
"num_layers": 20,
|
||||
},
|
||||
"SanaMS1.5__4800M_P1_D60": {
|
||||
"SanaMS1.5_4800M_P1_D60": {
|
||||
"num_attention_heads": 70,
|
||||
"attention_head_dim": 32,
|
||||
"num_cross_attention_heads": 20,
|
||||
|
||||
@@ -331,7 +331,7 @@ def apply_group_offloading(
|
||||
num_blocks_per_group: Optional[int] = None,
|
||||
non_blocking: bool = False,
|
||||
use_stream: bool = False,
|
||||
low_cpu_mem_usage=False,
|
||||
low_cpu_mem_usage: bool = False,
|
||||
) -> None:
|
||||
r"""
|
||||
Applies group offloading to the internal layers of a torch.nn.Module. To understand what group offloading is, and
|
||||
@@ -378,6 +378,10 @@ def apply_group_offloading(
|
||||
use_stream (`bool`, defaults to `False`):
|
||||
If True, offloading and onloading is done asynchronously using a CUDA stream. This can be useful for
|
||||
overlapping computation and data transfer.
|
||||
low_cpu_mem_usage (`bool`, defaults to `False`):
|
||||
If True, the CPU memory usage is minimized by pinning tensors on-the-fly instead of pre-pinning them. This
|
||||
option only matters when using streamed CPU offloading (i.e. `use_stream=True`). This can be useful when
|
||||
the CPU memory is a bottleneck but may counteract the benefits of using streams.
|
||||
|
||||
Example:
|
||||
```python
|
||||
|
||||
@@ -27,13 +27,15 @@ from ..attention import FeedForward
|
||||
from ..attention_processor import Attention, AttentionProcessor
|
||||
from ..cache_utils import CacheMixin
|
||||
from ..embeddings import (
|
||||
CombinedTimestepGuidanceTextProjEmbeddings,
|
||||
CombinedTimestepTextProjEmbeddings,
|
||||
PixArtAlphaTextProjection,
|
||||
TimestepEmbedding,
|
||||
Timesteps,
|
||||
get_1d_rotary_pos_embed,
|
||||
)
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
|
||||
from ..normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, FP32LayerNorm
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
@@ -173,6 +175,141 @@ class HunyuanVideoAdaNorm(nn.Module):
|
||||
return gate_msa, gate_mlp
|
||||
|
||||
|
||||
class HunyuanVideoTokenReplaceAdaLayerNormZero(nn.Module):
|
||||
def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True):
|
||||
super().__init__()
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
|
||||
|
||||
if norm_type == "layer_norm":
|
||||
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
||||
elif norm_type == "fp32_layer_norm":
|
||||
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
emb: torch.Tensor,
|
||||
token_replace_emb: torch.Tensor,
|
||||
first_frame_num_tokens: int,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
emb = self.linear(self.silu(emb))
|
||||
token_replace_emb = self.linear(self.silu(token_replace_emb))
|
||||
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
|
||||
tr_shift_msa, tr_scale_msa, tr_gate_msa, tr_shift_mlp, tr_scale_mlp, tr_gate_mlp = token_replace_emb.chunk(
|
||||
6, dim=1
|
||||
)
|
||||
|
||||
norm_hidden_states = self.norm(hidden_states)
|
||||
hidden_states_zero = (
|
||||
norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None]
|
||||
)
|
||||
hidden_states_orig = (
|
||||
norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||
)
|
||||
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
|
||||
|
||||
return (
|
||||
hidden_states,
|
||||
gate_msa,
|
||||
shift_mlp,
|
||||
scale_mlp,
|
||||
gate_mlp,
|
||||
tr_gate_msa,
|
||||
tr_shift_mlp,
|
||||
tr_scale_mlp,
|
||||
tr_gate_mlp,
|
||||
)
|
||||
|
||||
|
||||
class HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(nn.Module):
|
||||
def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True):
|
||||
super().__init__()
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
|
||||
|
||||
if norm_type == "layer_norm":
|
||||
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
emb: torch.Tensor,
|
||||
token_replace_emb: torch.Tensor,
|
||||
first_frame_num_tokens: int,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
emb = self.linear(self.silu(emb))
|
||||
token_replace_emb = self.linear(self.silu(token_replace_emb))
|
||||
|
||||
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1)
|
||||
tr_shift_msa, tr_scale_msa, tr_gate_msa = token_replace_emb.chunk(3, dim=1)
|
||||
|
||||
norm_hidden_states = self.norm(hidden_states)
|
||||
hidden_states_zero = (
|
||||
norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None]
|
||||
)
|
||||
hidden_states_orig = (
|
||||
norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||
)
|
||||
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
|
||||
|
||||
return hidden_states, gate_msa, tr_gate_msa
|
||||
|
||||
|
||||
class HunyuanVideoConditionEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
pooled_projection_dim: int,
|
||||
guidance_embeds: bool,
|
||||
image_condition_type: Optional[str] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.image_condition_type = image_condition_type
|
||||
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
||||
|
||||
self.guidance_embedder = None
|
||||
if guidance_embeds:
|
||||
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
|
||||
def forward(
|
||||
self, timestep: torch.Tensor, pooled_projection: torch.Tensor, guidance: Optional[torch.Tensor] = None
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
|
||||
pooled_projections = self.text_embedder(pooled_projection)
|
||||
conditioning = timesteps_emb + pooled_projections
|
||||
|
||||
token_replace_emb = None
|
||||
if self.image_condition_type == "token_replace":
|
||||
token_replace_timestep = torch.zeros_like(timestep)
|
||||
token_replace_proj = self.time_proj(token_replace_timestep)
|
||||
token_replace_emb = self.timestep_embedder(token_replace_proj.to(dtype=pooled_projection.dtype))
|
||||
token_replace_emb = token_replace_emb + pooled_projections
|
||||
|
||||
if self.guidance_embedder is not None:
|
||||
guidance_proj = self.time_proj(guidance)
|
||||
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
|
||||
conditioning = conditioning + guidance_emb
|
||||
|
||||
return conditioning, token_replace_emb
|
||||
|
||||
|
||||
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -390,6 +527,8 @@ class HunyuanVideoSingleTransformerBlock(nn.Module):
|
||||
temb: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
text_seq_length = encoder_hidden_states.shape[1]
|
||||
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
||||
@@ -468,6 +607,8 @@ class HunyuanVideoTransformerBlock(nn.Module):
|
||||
temb: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# 1. Input normalization
|
||||
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
||||
@@ -503,6 +644,181 @@ class HunyuanVideoTransformerBlock(nn.Module):
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
|
||||
class HunyuanVideoTokenReplaceSingleTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_norm: str = "rms_norm",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
hidden_size = num_attention_heads * attention_head_dim
|
||||
mlp_dim = int(hidden_size * mlp_ratio)
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=hidden_size,
|
||||
cross_attention_dim=None,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=hidden_size,
|
||||
bias=True,
|
||||
processor=HunyuanVideoAttnProcessor2_0(),
|
||||
qk_norm=qk_norm,
|
||||
eps=1e-6,
|
||||
pre_only=True,
|
||||
)
|
||||
|
||||
self.norm = HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
|
||||
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
|
||||
self.act_mlp = nn.GELU(approximate="tanh")
|
||||
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
token_replace_emb: torch.Tensor = None,
|
||||
num_tokens: int = None,
|
||||
) -> torch.Tensor:
|
||||
text_seq_length = encoder_hidden_states.shape[1]
|
||||
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
# 1. Input normalization
|
||||
norm_hidden_states, gate, tr_gate = self.norm(hidden_states, temb, token_replace_emb, num_tokens)
|
||||
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
||||
|
||||
norm_hidden_states, norm_encoder_hidden_states = (
|
||||
norm_hidden_states[:, :-text_seq_length, :],
|
||||
norm_hidden_states[:, -text_seq_length:, :],
|
||||
)
|
||||
|
||||
# 2. Attention
|
||||
attn_output, context_attn_output = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
encoder_hidden_states=norm_encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
|
||||
|
||||
# 3. Modulation and residual connection
|
||||
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
||||
|
||||
proj_output = self.proj_out(hidden_states)
|
||||
hidden_states_zero = proj_output[:, :num_tokens] * tr_gate.unsqueeze(1)
|
||||
hidden_states_orig = proj_output[:, num_tokens:] * gate.unsqueeze(1)
|
||||
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
hidden_states, encoder_hidden_states = (
|
||||
hidden_states[:, :-text_seq_length, :],
|
||||
hidden_states[:, -text_seq_length:, :],
|
||||
)
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
|
||||
class HunyuanVideoTokenReplaceTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
mlp_ratio: float,
|
||||
qk_norm: str = "rms_norm",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
hidden_size = num_attention_heads * attention_head_dim
|
||||
|
||||
self.norm1 = HunyuanVideoTokenReplaceAdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
||||
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=hidden_size,
|
||||
cross_attention_dim=None,
|
||||
added_kv_proj_dim=hidden_size,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=hidden_size,
|
||||
context_pre_only=False,
|
||||
bias=True,
|
||||
processor=HunyuanVideoAttnProcessor2_0(),
|
||||
qk_norm=qk_norm,
|
||||
eps=1e-6,
|
||||
)
|
||||
|
||||
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
||||
|
||||
self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
token_replace_emb: torch.Tensor = None,
|
||||
num_tokens: int = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# 1. Input normalization
|
||||
(
|
||||
norm_hidden_states,
|
||||
gate_msa,
|
||||
shift_mlp,
|
||||
scale_mlp,
|
||||
gate_mlp,
|
||||
tr_gate_msa,
|
||||
tr_shift_mlp,
|
||||
tr_scale_mlp,
|
||||
tr_gate_mlp,
|
||||
) = self.norm1(hidden_states, temb, token_replace_emb, num_tokens)
|
||||
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
||||
encoder_hidden_states, emb=temb
|
||||
)
|
||||
|
||||
# 2. Joint attention
|
||||
attn_output, context_attn_output = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
encoder_hidden_states=norm_encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
image_rotary_emb=freqs_cis,
|
||||
)
|
||||
|
||||
# 3. Modulation and residual connection
|
||||
hidden_states_zero = hidden_states[:, :num_tokens] + attn_output[:, :num_tokens] * tr_gate_msa.unsqueeze(1)
|
||||
hidden_states_orig = hidden_states[:, num_tokens:] + attn_output[:, num_tokens:] * gate_msa.unsqueeze(1)
|
||||
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
|
||||
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1)
|
||||
|
||||
norm_hidden_states = self.norm2(hidden_states)
|
||||
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
||||
|
||||
hidden_states_zero = norm_hidden_states[:, :num_tokens] * (1 + tr_scale_mlp[:, None]) + tr_shift_mlp[:, None]
|
||||
hidden_states_orig = norm_hidden_states[:, num_tokens:] * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||
norm_hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
|
||||
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
||||
|
||||
# 4. Feed-forward
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
||||
|
||||
hidden_states_zero = hidden_states[:, :num_tokens] + ff_output[:, :num_tokens] * tr_gate_mlp.unsqueeze(1)
|
||||
hidden_states_orig = hidden_states[:, num_tokens:] + ff_output[:, num_tokens:] * gate_mlp.unsqueeze(1)
|
||||
hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1)
|
||||
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
|
||||
class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
|
||||
r"""
|
||||
A Transformer model for video-like data used in [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo).
|
||||
@@ -540,6 +856,10 @@ class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin,
|
||||
The value of theta to use in the RoPE layer.
|
||||
rope_axes_dim (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
||||
The dimensions of the axes to use in the RoPE layer.
|
||||
image_condition_type (`str`, *optional*, defaults to `None`):
|
||||
The type of image conditioning to use. If `None`, no image conditioning is used. If `latent_concat`, the
|
||||
image is concatenated to the latent stream. If `token_replace`, the image is used to replace first-frame
|
||||
tokens in the latent stream and apply conditioning.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
@@ -570,9 +890,16 @@ class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin,
|
||||
pooled_projection_dim: int = 768,
|
||||
rope_theta: float = 256.0,
|
||||
rope_axes_dim: Tuple[int] = (16, 56, 56),
|
||||
image_condition_type: Optional[str] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
supported_image_condition_types = ["latent_concat", "token_replace"]
|
||||
if image_condition_type is not None and image_condition_type not in supported_image_condition_types:
|
||||
raise ValueError(
|
||||
f"Invalid `image_condition_type` ({image_condition_type}). Supported ones are: {supported_image_condition_types}"
|
||||
)
|
||||
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
out_channels = out_channels or in_channels
|
||||
|
||||
@@ -582,33 +909,52 @@ class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin,
|
||||
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
|
||||
)
|
||||
|
||||
if guidance_embeds:
|
||||
self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
|
||||
else:
|
||||
self.time_text_embed = CombinedTimestepTextProjEmbeddings(inner_dim, pooled_projection_dim)
|
||||
self.time_text_embed = HunyuanVideoConditionEmbedding(
|
||||
inner_dim, pooled_projection_dim, guidance_embeds, image_condition_type
|
||||
)
|
||||
|
||||
# 2. RoPE
|
||||
self.rope = HunyuanVideoRotaryPosEmbed(patch_size, patch_size_t, rope_axes_dim, rope_theta)
|
||||
|
||||
# 3. Dual stream transformer blocks
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
HunyuanVideoTransformerBlock(
|
||||
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
if image_condition_type == "token_replace":
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
HunyuanVideoTokenReplaceTransformerBlock(
|
||||
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
else:
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
HunyuanVideoTransformerBlock(
|
||||
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
# 4. Single stream transformer blocks
|
||||
self.single_transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
HunyuanVideoSingleTransformerBlock(
|
||||
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
||||
)
|
||||
for _ in range(num_single_layers)
|
||||
]
|
||||
)
|
||||
if image_condition_type == "token_replace":
|
||||
self.single_transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
HunyuanVideoTokenReplaceSingleTransformerBlock(
|
||||
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
||||
)
|
||||
for _ in range(num_single_layers)
|
||||
]
|
||||
)
|
||||
else:
|
||||
self.single_transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
HunyuanVideoSingleTransformerBlock(
|
||||
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
||||
)
|
||||
for _ in range(num_single_layers)
|
||||
]
|
||||
)
|
||||
|
||||
# 5. Output projection
|
||||
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
|
||||
@@ -707,15 +1053,13 @@ class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin,
|
||||
post_patch_num_frames = num_frames // p_t
|
||||
post_patch_height = height // p
|
||||
post_patch_width = width // p
|
||||
first_frame_num_tokens = 1 * post_patch_height * post_patch_width
|
||||
|
||||
# 1. RoPE
|
||||
image_rotary_emb = self.rope(hidden_states)
|
||||
|
||||
# 2. Conditional embeddings
|
||||
if self.config.guidance_embeds:
|
||||
temb = self.time_text_embed(timestep, guidance, pooled_projections)
|
||||
else:
|
||||
temb = self.time_text_embed(timestep, pooled_projections)
|
||||
temb, token_replace_emb = self.time_text_embed(timestep, pooled_projections, guidance)
|
||||
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask)
|
||||
@@ -746,6 +1090,8 @@ class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin,
|
||||
temb,
|
||||
attention_mask,
|
||||
image_rotary_emb,
|
||||
token_replace_emb,
|
||||
first_frame_num_tokens,
|
||||
)
|
||||
|
||||
for block in self.single_transformer_blocks:
|
||||
@@ -756,17 +1102,31 @@ class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin,
|
||||
temb,
|
||||
attention_mask,
|
||||
image_rotary_emb,
|
||||
token_replace_emb,
|
||||
first_frame_num_tokens,
|
||||
)
|
||||
|
||||
else:
|
||||
for block in self.transformer_blocks:
|
||||
hidden_states, encoder_hidden_states = block(
|
||||
hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
temb,
|
||||
attention_mask,
|
||||
image_rotary_emb,
|
||||
token_replace_emb,
|
||||
first_frame_num_tokens,
|
||||
)
|
||||
|
||||
for block in self.single_transformer_blocks:
|
||||
hidden_states, encoder_hidden_states = block(
|
||||
hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
temb,
|
||||
attention_mask,
|
||||
image_rotary_emb,
|
||||
token_replace_emb,
|
||||
first_frame_num_tokens,
|
||||
)
|
||||
|
||||
# 5. Output projection
|
||||
|
||||
@@ -68,7 +68,7 @@ def calculate_shift(
|
||||
return mu
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
# Copied from diffusers.pipelines.cogview4.pipeline_cogview4.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
@@ -100,10 +100,19 @@ def retrieve_timesteps(
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
accepts_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps and not accepts_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep or sigma schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif timesteps is not None and sigmas is None:
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
@@ -112,9 +121,8 @@ def retrieve_timesteps(
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
elif timesteps is None and sigmas is not None:
|
||||
if not accepts_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
@@ -515,8 +523,8 @@ class CogView4ControlPipeline(DiffusionPipeline):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
Whether or not to return a [`~pipelines.pipeline_CogView4.CogView4PipelineOutput`] instead of a plain
|
||||
tuple.
|
||||
attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
@@ -532,7 +540,6 @@ class CogView4ControlPipeline(DiffusionPipeline):
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int`, defaults to `224`):
|
||||
Maximum sequence length in encoded prompt. Can be set to other values but may lead to poorer results.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
|
||||
@@ -54,6 +54,7 @@ EXAMPLE_DOC_STRING = """
|
||||
>>> from diffusers import HunyuanVideoImageToVideoPipeline, HunyuanVideoTransformer3DModel
|
||||
>>> from diffusers.utils import load_image, export_to_video
|
||||
|
||||
>>> # Available checkpoints: hunyuanvideo-community/HunyuanVideo-I2V, hunyuanvideo-community/HunyuanVideo-I2V-33ch
|
||||
>>> model_id = "hunyuanvideo-community/HunyuanVideo-I2V"
|
||||
>>> transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
||||
... model_id, subfolder="transformer", torch_dtype=torch.bfloat16
|
||||
@@ -69,7 +70,12 @@ EXAMPLE_DOC_STRING = """
|
||||
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guitar-man.png"
|
||||
... )
|
||||
|
||||
>>> output = pipe(image=image, prompt=prompt).frames[0]
|
||||
>>> # If using hunyuanvideo-community/HunyuanVideo-I2V
|
||||
>>> output = pipe(image=image, prompt=prompt, guidance_scale=6.0).frames[0]
|
||||
|
||||
>>> # If using hunyuanvideo-community/HunyuanVideo-I2V-33ch
|
||||
>>> output = pipe(image=image, prompt=prompt, guidance_scale=1.0, true_cfg_scale=1.0).frames[0]
|
||||
|
||||
>>> export_to_video(output, "output.mp4", fps=15)
|
||||
```
|
||||
"""
|
||||
@@ -399,7 +405,8 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
max_sequence_length: int = 256,
|
||||
):
|
||||
image_embed_interleave: int = 2,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
if prompt_embeds is None:
|
||||
prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds(
|
||||
image,
|
||||
@@ -409,6 +416,7 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
max_sequence_length=max_sequence_length,
|
||||
image_embed_interleave=image_embed_interleave,
|
||||
)
|
||||
|
||||
if pooled_prompt_embeds is None:
|
||||
@@ -433,6 +441,8 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
prompt_embeds=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
prompt_template=None,
|
||||
true_cfg_scale=1.0,
|
||||
guidance_scale=1.0,
|
||||
):
|
||||
if height % 16 != 0 or width % 16 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
|
||||
@@ -471,6 +481,13 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
f"`prompt_template` has to contain a key `template` but only found {prompt_template.keys()}"
|
||||
)
|
||||
|
||||
if true_cfg_scale > 1.0 and guidance_scale > 1.0:
|
||||
logger.warning(
|
||||
"Both `true_cfg_scale` and `guidance_scale` are greater than 1.0. This will result in both "
|
||||
"classifier-free guidance and embedded-guidance to be applied. This is not recommended "
|
||||
"as it may lead to higher memory usage, slower inference and potentially worse results."
|
||||
)
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
image: torch.Tensor,
|
||||
@@ -483,6 +500,7 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
device: Optional[torch.device] = None,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
image_condition_type: str = "latent_concat",
|
||||
) -> torch.Tensor:
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
@@ -497,10 +515,11 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
image = image.unsqueeze(2) # [B, C, 1, H, W]
|
||||
if isinstance(generator, list):
|
||||
image_latents = [
|
||||
retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i]) for i in range(batch_size)
|
||||
retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i], "argmax")
|
||||
for i in range(batch_size)
|
||||
]
|
||||
else:
|
||||
image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in image]
|
||||
image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator, "argmax") for img in image]
|
||||
|
||||
image_latents = torch.cat(image_latents, dim=0).to(dtype) * self.vae_scaling_factor
|
||||
image_latents = image_latents.repeat(1, 1, num_latent_frames, 1, 1)
|
||||
@@ -513,6 +532,9 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
t = torch.tensor([0.999]).to(device=device)
|
||||
latents = latents * t + image_latents * (1 - t)
|
||||
|
||||
if image_condition_type == "token_replace":
|
||||
image_latents = image_latents[:, :, :1]
|
||||
|
||||
return latents, image_latents
|
||||
|
||||
def enable_vae_slicing(self):
|
||||
@@ -598,6 +620,7 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
|
||||
max_sequence_length: int = 256,
|
||||
image_embed_interleave: Optional[int] = None,
|
||||
):
|
||||
r"""
|
||||
The call function to the pipeline for generation.
|
||||
@@ -704,12 +727,22 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
prompt_embeds,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_template,
|
||||
true_cfg_scale,
|
||||
guidance_scale,
|
||||
)
|
||||
|
||||
image_condition_type = self.transformer.config.image_condition_type
|
||||
has_neg_prompt = negative_prompt is not None or (
|
||||
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
|
||||
)
|
||||
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
||||
image_embed_interleave = (
|
||||
image_embed_interleave
|
||||
if image_embed_interleave is not None
|
||||
else (
|
||||
2 if image_condition_type == "latent_concat" else 4 if image_condition_type == "token_replace" else 1
|
||||
)
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._attention_kwargs = attention_kwargs
|
||||
@@ -729,7 +762,12 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
# 3. Prepare latent variables
|
||||
vae_dtype = self.vae.dtype
|
||||
image_tensor = self.video_processor.preprocess(image, height, width).to(device, vae_dtype)
|
||||
num_channels_latents = (self.transformer.config.in_channels - 1) // 2
|
||||
|
||||
if image_condition_type == "latent_concat":
|
||||
num_channels_latents = (self.transformer.config.in_channels - 1) // 2
|
||||
elif image_condition_type == "token_replace":
|
||||
num_channels_latents = self.transformer.config.in_channels
|
||||
|
||||
latents, image_latents = self.prepare_latents(
|
||||
image_tensor,
|
||||
batch_size * num_videos_per_prompt,
|
||||
@@ -741,10 +779,12 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
image_condition_type,
|
||||
)
|
||||
image_latents[:, :, 1:] = 0
|
||||
mask = image_latents.new_ones(image_latents.shape[0], 1, *image_latents.shape[2:])
|
||||
mask[:, :, 1:] = 0
|
||||
if image_condition_type == "latent_concat":
|
||||
image_latents[:, :, 1:] = 0
|
||||
mask = image_latents.new_ones(image_latents.shape[0], 1, *image_latents.shape[2:])
|
||||
mask[:, :, 1:] = 0
|
||||
|
||||
# 4. Encode input prompt
|
||||
transformer_dtype = self.transformer.dtype
|
||||
@@ -759,6 +799,7 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
prompt_attention_mask=prompt_attention_mask,
|
||||
device=device,
|
||||
max_sequence_length=max_sequence_length,
|
||||
image_embed_interleave=image_embed_interleave,
|
||||
)
|
||||
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
||||
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
|
||||
@@ -782,10 +823,17 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
negative_prompt_attention_mask = negative_prompt_attention_mask.to(transformer_dtype)
|
||||
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
# 5. Prepare timesteps
|
||||
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
|
||||
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
|
||||
|
||||
# 6. Prepare guidance condition
|
||||
guidance = None
|
||||
if self.transformer.config.guidance_embeds:
|
||||
guidance = (
|
||||
torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
|
||||
)
|
||||
|
||||
# 7. Denoising loop
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
self._num_timesteps = len(timesteps)
|
||||
@@ -796,16 +844,21 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
continue
|
||||
|
||||
self._current_timestep = t
|
||||
latent_model_input = torch.cat([latents, image_latents, mask], dim=1).to(transformer_dtype)
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||
|
||||
if image_condition_type == "latent_concat":
|
||||
latent_model_input = torch.cat([latents, image_latents, mask], dim=1).to(transformer_dtype)
|
||||
elif image_condition_type == "token_replace":
|
||||
latent_model_input = torch.cat([image_latents, latents[:, :, 1:]], dim=2).to(transformer_dtype)
|
||||
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
encoder_attention_mask=prompt_attention_mask,
|
||||
pooled_projections=pooled_prompt_embeds,
|
||||
guidance=guidance,
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
@@ -817,13 +870,20 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
encoder_hidden_states=negative_prompt_embeds,
|
||||
encoder_attention_mask=negative_prompt_attention_mask,
|
||||
pooled_projections=negative_pooled_prompt_embeds,
|
||||
guidance=guidance,
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
if image_condition_type == "latent_concat":
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
elif image_condition_type == "token_replace":
|
||||
latents = latents = self.scheduler.step(
|
||||
noise_pred[:, :, 1:], t, latents[:, :, 1:], return_dict=False
|
||||
)[0]
|
||||
latents = torch.cat([image_latents, latents], dim=2)
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
@@ -844,12 +904,16 @@ class HunyuanVideoImageToVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoader
|
||||
self._current_timestep = None
|
||||
|
||||
if not output_type == "latent":
|
||||
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
|
||||
latents = latents.to(self.vae.dtype) / self.vae_scaling_factor
|
||||
video = self.vae.decode(latents, return_dict=False)[0]
|
||||
video = video[:, :, 4:, :, :]
|
||||
if image_condition_type == "latent_concat":
|
||||
video = video[:, :, 4:, :, :]
|
||||
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
||||
else:
|
||||
video = latents[:, :, 1:, :, :]
|
||||
if image_condition_type == "latent_concat":
|
||||
video = latents[:, :, 1:, :, :]
|
||||
else:
|
||||
video = latents
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
@@ -80,6 +80,7 @@ class HunyuanVideoTransformer3DTests(ModelTesterMixin, unittest.TestCase):
|
||||
"text_embed_dim": 16,
|
||||
"pooled_projection_dim": 8,
|
||||
"rope_axes_dim": (2, 4, 4),
|
||||
"image_condition_type": None,
|
||||
}
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
@@ -144,6 +145,7 @@ class HunyuanSkyreelsImageToVideoTransformer3DTests(ModelTesterMixin, unittest.T
|
||||
"text_embed_dim": 16,
|
||||
"pooled_projection_dim": 8,
|
||||
"rope_axes_dim": (2, 4, 4),
|
||||
"image_condition_type": None,
|
||||
}
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
@@ -209,6 +211,75 @@ class HunyuanVideoImageToVideoTransformer3DTests(ModelTesterMixin, unittest.Test
|
||||
"text_embed_dim": 16,
|
||||
"pooled_projection_dim": 8,
|
||||
"rope_axes_dim": (2, 4, 4),
|
||||
"image_condition_type": "latent_concat",
|
||||
}
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
def test_output(self):
|
||||
super().test_output(expected_output_shape=(1, *self.output_shape))
|
||||
|
||||
def test_gradient_checkpointing_is_applied(self):
|
||||
expected_set = {"HunyuanVideoTransformer3DModel"}
|
||||
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
||||
|
||||
|
||||
class HunyuanVideoTokenReplaceImageToVideoTransformer3DTests(ModelTesterMixin, unittest.TestCase):
|
||||
model_class = HunyuanVideoTransformer3DModel
|
||||
main_input_name = "hidden_states"
|
||||
uses_custom_attn_processor = True
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
batch_size = 1
|
||||
num_channels = 2
|
||||
num_frames = 1
|
||||
height = 16
|
||||
width = 16
|
||||
text_encoder_embedding_dim = 16
|
||||
pooled_projection_dim = 8
|
||||
sequence_length = 12
|
||||
|
||||
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
|
||||
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
||||
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
|
||||
pooled_projections = torch.randn((batch_size, pooled_projection_dim)).to(torch_device)
|
||||
encoder_attention_mask = torch.ones((batch_size, sequence_length)).to(torch_device)
|
||||
guidance = torch.randint(0, 1000, size=(batch_size,)).to(torch_device, dtype=torch.float32)
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"timestep": timestep,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"pooled_projections": pooled_projections,
|
||||
"encoder_attention_mask": encoder_attention_mask,
|
||||
"guidance": guidance,
|
||||
}
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
return (8, 1, 16, 16)
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
return (4, 1, 16, 16)
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
init_dict = {
|
||||
"in_channels": 2,
|
||||
"out_channels": 4,
|
||||
"num_attention_heads": 2,
|
||||
"attention_head_dim": 10,
|
||||
"num_layers": 1,
|
||||
"num_single_layers": 1,
|
||||
"num_refiner_layers": 1,
|
||||
"patch_size": 1,
|
||||
"patch_size_t": 1,
|
||||
"guidance_embeds": True,
|
||||
"text_embed_dim": 16,
|
||||
"pooled_projection_dim": 8,
|
||||
"rope_axes_dim": (2, 4, 4),
|
||||
"image_condition_type": "token_replace",
|
||||
}
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
@@ -83,6 +83,7 @@ class HunyuanVideoImageToVideoPipelineFastTests(
|
||||
text_embed_dim=16,
|
||||
pooled_projection_dim=8,
|
||||
rope_axes_dim=(2, 4, 4),
|
||||
image_condition_type="latent_concat",
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
Reference in New Issue
Block a user