1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

add more tests schedulers

This commit is contained in:
Patrick von Platen
2022-06-12 19:56:13 +00:00
parent bda825f910
commit 2d97544dc7
9 changed files with 274 additions and 42 deletions

View File

@@ -33,7 +33,7 @@ class LatentDiffusion(DiffusionPipeline):
text_input = self.tokenizer(prompt, padding="max_length", max_length=77, return_tensors='pt').to(torch_device)
text_embedding = self.bert(text_input.input_ids)[0]
num_trained_timesteps = self.noise_scheduler.num_timesteps
num_trained_timesteps = self.noise_scheduler.timesteps
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
image = self.noise_scheduler.sample_noise(

View File

@@ -17,7 +17,7 @@
import torch
import tqdm
from .. import DiffusionPipeline
from ..pipeline_utils import DiffusionPipeline
class DDIM(DiffusionPipeline):
@@ -30,7 +30,7 @@ class DDIM(DiffusionPipeline):
if torch_device is None:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
num_trained_timesteps = self.noise_scheduler.num_timesteps
num_trained_timesteps = self.noise_scheduler.timesteps
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
self.unet.to(torch_device)
@@ -64,7 +64,7 @@ class DDIM(DiffusionPipeline):
variance = 0
if eta > 0:
noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
variance = self.noise_scheduler.get_variance(t).sqrt() * eta * noise
variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
# 4. set current image to prev_image: x_t -> x_t-1
image = pred_prev_image + variance

View File

@@ -883,7 +883,7 @@ class LatentDiffusion(DiffusionPipeline):
text_input = self.tokenizer(prompt, padding="max_length", max_length=77, return_tensors='pt').to(torch_device)
text_embedding = self.bert(text_input.input_ids)[0]
num_trained_timesteps = self.noise_scheduler.num_timesteps
num_trained_timesteps = self.noise_scheduler.timesteps
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
image = self.noise_scheduler.sample_noise(

View File

@@ -61,7 +61,7 @@ class ClassifierFreeGuidanceScheduler(nn.Module, ConfigMixin):
timesteps=timesteps,
beta_schedule=beta_schedule,
)
self.num_timesteps = int(timesteps)
self.timesteps = int(timesteps)
if beta_schedule == "squaredcos_cap_v2":
# GLIDE cosine schedule
@@ -94,4 +94,4 @@ class ClassifierFreeGuidanceScheduler(nn.Module, ConfigMixin):
return torch.randn(shape, generator=generator).to(device)
def __len__(self):
return self.num_timesteps
return self.timesteps

View File

@@ -42,7 +42,7 @@ class DDIMScheduler(nn.Module, ConfigMixin):
beta_end=beta_end,
beta_schedule=beta_schedule,
)
self.num_timesteps = int(timesteps)
self.timesteps = int(timesteps)
self.clip_image = clip_predicted_image
if beta_schedule == "linear":
@@ -90,7 +90,7 @@ class DDIMScheduler(nn.Module, ConfigMixin):
def get_orig_t(self, t, num_inference_steps):
if t < 0:
return -1
return self.num_timesteps // num_inference_steps * t
return self.timesteps // num_inference_steps * t
def get_variance(self, t, num_inference_steps):
orig_t = self.get_orig_t(t, num_inference_steps)
@@ -105,7 +105,7 @@ class DDIMScheduler(nn.Module, ConfigMixin):
return variance
def step(self, residual, image, t, num_inference_steps, eta, output_pred_x_0=False):
def step(self, residual, image, t, num_inference_steps, eta):
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
@@ -152,4 +152,4 @@ class DDIMScheduler(nn.Module, ConfigMixin):
return torch.randn(shape, generator=generator).to(device)
def __len__(self):
return self.num_timesteps
return self.timesteps

View File

@@ -44,7 +44,7 @@ class GaussianDDPMScheduler(nn.Module, ConfigMixin):
variance_type=variance_type,
clip_predicted_image=clip_predicted_image,
)
self.num_timesteps = int(timesteps)
self.timesteps = int(timesteps)
self.clip_image = clip_predicted_image
self.variance_type = variance_type
@@ -107,7 +107,7 @@ class GaussianDDPMScheduler(nn.Module, ConfigMixin):
return variance
def step(self, residual, image, t, output_pred_x_0=False):
def step(self, residual, image, t):
# 1. compute alphas, betas
alpha_prod_t = self.get_alpha_prod(t)
alpha_prod_t_prev = self.get_alpha_prod(t - 1)
@@ -138,4 +138,4 @@ class GaussianDDPMScheduler(nn.Module, ConfigMixin):
return torch.randn(shape, generator=generator).to(device)
def __len__(self):
return self.num_timesteps
return self.timesteps

View File

@@ -32,12 +32,12 @@ class GlideDDIMScheduler(nn.Module, ConfigMixin):
timesteps=timesteps,
beta_schedule=beta_schedule,
)
self.num_timesteps = int(timesteps)
self.timesteps = int(timesteps)
if beta_schedule == "linear":
# Linear schedule from Ho et al, extended to work for any number of
# diffusion steps.
scale = 1000 / self.num_timesteps
scale = 1000 / self.timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
@@ -88,4 +88,4 @@ class GlideDDIMScheduler(nn.Module, ConfigMixin):
return torch.randn(shape, generator=generator).to(device)
def __len__(self):
return self.num_timesteps
return self.timesteps

View File

@@ -75,16 +75,18 @@ class ModelTesterMixin(unittest.TestCase):
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10])
time_step = torch.tensor([10]).to(torch_device)
return (noise, time_step)
def test_from_pretrained_save_pretrained(self):
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
model.to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
new_model = UNetModel.from_pretrained(tmpdirname)
new_model.to(torch_device)
dummy_input = self.dummy_input
@@ -95,6 +97,7 @@ class ModelTesterMixin(unittest.TestCase):
def test_from_pretrained_hub(self):
model = UNetModel.from_pretrained("fusing/ddpm_dummy")
model.to(torch_device)
image = model(*self.dummy_input)

View File

@@ -26,8 +26,8 @@ torch.backends.cuda.matmul.allow_tf32 = False
class SchedulerCommonTest(unittest.TestCase):
scheduler_class = None
scheduler_classes = ()
forward_default_kwargs = ()
@property
def dummy_image(self):
@@ -38,42 +38,271 @@ class SchedulerCommonTest(unittest.TestCase):
image = np.random.rand(batch_size, num_channels, height, width)
return image
return torch.tensor(image)
@property
def dummy_image_deter(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
num_elems = batch_size * num_channels * height * width
image = np.arange(num_elems)
image = image.reshape(num_channels, height, width, batch_size)
image = image / num_elems
image = image.transpose(3, 0, 1, 2)
return torch.tensor(image)
def get_scheduler_config(self):
raise NotImplementedError
def dummy_model(self):
def model(image, residual, t, *args):
return (image + residual) * t / (t + 1)
def model(image, t, *args):
return image * t / (t + 1)
return model
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
for scheduler_class in self.scheduler_classes:
scheduler_class = self.scheduler_classes[0]
image = self.dummy_image
residual = 0.1 * image
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
output = scheduler.step(residual, image, time_step, **kwargs)
new_output = new_scheduler.step(residual, image, time_step, **kwargs)
assert (output - new_output).abs().sum() < 1e-5, "Scheduler outputs are not identical"
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
kwargs.update(forward_kwargs)
for scheduler_class in self.scheduler_classes:
scheduler_class = self.scheduler_classes[0]
image = self.dummy_image
residual = 0.1 * image
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
output = scheduler.step(residual, image, time_step, **kwargs)
new_output = new_scheduler.step(residual, image, time_step, **kwargs)
assert (output - new_output).abs().sum() < 1e-5, "Scheduler outputs are not identical"
def test_from_pretrained_save_pretrained(self):
image = self.dummy_image
residual = 0.1 * image
kwargs = dict(self.forward_default_kwargs)
for scheduler_class in self.scheduler_classes:
image = self.dummy_image
residual = 0.1 * image
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
output = scheduler.step(residual, image, 1, **kwargs)
new_output = new_scheduler.step(residual, image, 1, **kwargs)
assert (output - new_output).abs().sum() < 1e-5, "Scheduler outputs are not identical"
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
image = self.dummy_image
residual = 0.1 * image
output_0 = scheduler.step(residual, image, 0, **kwargs)
output_1 = scheduler.step(residual, image, 1, **kwargs)
self.assertEqual(output_0.shape, image.shape)
self.assertEqual(output_0.shape, output_1.shape)
class DDPMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (GaussianDDPMScheduler,)
def get_scheduler_config(self, **kwargs):
config = {
"timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_predicted_image": True
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_variance_type(self):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=variance)
def test_clip_image(self):
for clip_predicted_image in [True, False]:
self.check_over_configs(clip_predicted_image=clip_predicted_image)
def test_time_indices(self):
for t in [0, 500, 999]:
self.check_over_forward(time_step=t)
def test_variance(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = self.scheduler_class(scheduler_config())
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_pretrained(tmpdirname)
new_scheduler = self.scheduler_class.from_config(tmpdirname)
assert (scheduler.get_variance(0) - 0.0).abs().sum() < 1e-5
assert (scheduler.get_variance(487) - 0.00979).abs().sum() < 1e-5
assert (scheduler.get_variance(999) - 0.02).abs().sum() < 1e-5
output = scheduler(residual, image, 1)
new_output = new_scheduler(residual, image, 1)
import ipdb; ipdb.set_trace()
def test_step(self):
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = self.scheduler_class(scheduler_config())
scheduler = scheduler_class(**scheduler_config)
image = self.dummy_image
residual = 0.1 * image
num_trained_timesteps = len(scheduler)
output_0 = scheduler(residual, image, 0)
output_1 = scheduler(residual, image, 1)
model = self.dummy_model()
image = self.dummy_image_deter
self.assertEqual(output_0.shape, image.shape)
self.assertEqual(output_0.shape, output_1.shape)
for t in reversed(range(num_trained_timesteps)):
# 1. predict noise residual
residual = model(image, t)
# 2. predict previous mean of image x_t-1
pred_prev_image = scheduler.step(residual, image, t)
if t > 0:
noise = self.dummy_image_deter
variance = scheduler.get_variance(t).sqrt() * noise
image = pred_prev_image + variance
result_sum = image.abs().sum()
result_mean = image.abs().mean()
assert result_sum.item() - 732.9947 < 1e-3
assert result_mean.item() - 0.9544 < 1e-3
class DDIMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (DDIMScheduler,)
forward_default_kwargs = (("num_inference_steps", 50), ("eta", 0.0))
def get_scheduler_config(self, **kwargs):
config = {
"timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_predicted_image": True
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_clip_image(self):
for clip_predicted_image in [True, False]:
self.check_over_configs(clip_predicted_image=clip_predicted_image)
def test_time_indices(self):
for t in [1, 10, 49]:
self.check_over_forward(time_step=t)
def test_inference_steps(self):
for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
def test_eta(self):
for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
self.check_over_forward(time_step=t, eta=eta)
def test_variance(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
assert (scheduler.get_variance(0, 50) - 0.0).abs().sum() < 1e-5
assert (scheduler.get_variance(21, 50) - 0.14771).abs().sum() < 1e-5
assert (scheduler.get_variance(49, 50) - 0.32460).abs().sum() < 1e-5
assert (scheduler.get_variance(0, 1000) - 0.0).abs().sum() < 1e-5
assert (scheduler.get_variance(487, 1000) - 0.00979).abs().sum() < 1e-5
assert (scheduler.get_variance(999, 1000) - 0.02).abs().sum() < 1e-5
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
num_inference_steps, eta = 10, 0.1
num_trained_timesteps = len(scheduler)
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
model = self.dummy_model()
image = self.dummy_image_deter
for t in reversed(range(num_inference_steps)):
residual = model(image, inference_step_times[t])
pred_prev_image = scheduler.step(residual, image, t, num_inference_steps, eta)
variance = 0
if eta > 0:
noise = self.dummy_image_deter
variance = scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
image = pred_prev_image + variance
result_sum = image.abs().sum()
result_mean = image.abs().mean()
assert result_sum.item() - 270.6214 < 1e-3
assert result_mean.item() - 0.3524 < 1e-3