mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
add more tests schedulers
This commit is contained in:
@@ -33,7 +33,7 @@ class LatentDiffusion(DiffusionPipeline):
|
||||
text_input = self.tokenizer(prompt, padding="max_length", max_length=77, return_tensors='pt').to(torch_device)
|
||||
text_embedding = self.bert(text_input.input_ids)[0]
|
||||
|
||||
num_trained_timesteps = self.noise_scheduler.num_timesteps
|
||||
num_trained_timesteps = self.noise_scheduler.timesteps
|
||||
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
|
||||
|
||||
image = self.noise_scheduler.sample_noise(
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
import torch
|
||||
|
||||
import tqdm
|
||||
from .. import DiffusionPipeline
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
|
||||
|
||||
class DDIM(DiffusionPipeline):
|
||||
@@ -30,7 +30,7 @@ class DDIM(DiffusionPipeline):
|
||||
if torch_device is None:
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
num_trained_timesteps = self.noise_scheduler.num_timesteps
|
||||
num_trained_timesteps = self.noise_scheduler.timesteps
|
||||
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
|
||||
|
||||
self.unet.to(torch_device)
|
||||
@@ -64,7 +64,7 @@ class DDIM(DiffusionPipeline):
|
||||
variance = 0
|
||||
if eta > 0:
|
||||
noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
|
||||
variance = self.noise_scheduler.get_variance(t).sqrt() * eta * noise
|
||||
variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
|
||||
|
||||
# 4. set current image to prev_image: x_t -> x_t-1
|
||||
image = pred_prev_image + variance
|
||||
|
||||
@@ -883,7 +883,7 @@ class LatentDiffusion(DiffusionPipeline):
|
||||
text_input = self.tokenizer(prompt, padding="max_length", max_length=77, return_tensors='pt').to(torch_device)
|
||||
text_embedding = self.bert(text_input.input_ids)[0]
|
||||
|
||||
num_trained_timesteps = self.noise_scheduler.num_timesteps
|
||||
num_trained_timesteps = self.noise_scheduler.timesteps
|
||||
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
|
||||
|
||||
image = self.noise_scheduler.sample_noise(
|
||||
|
||||
@@ -61,7 +61,7 @@ class ClassifierFreeGuidanceScheduler(nn.Module, ConfigMixin):
|
||||
timesteps=timesteps,
|
||||
beta_schedule=beta_schedule,
|
||||
)
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.timesteps = int(timesteps)
|
||||
|
||||
if beta_schedule == "squaredcos_cap_v2":
|
||||
# GLIDE cosine schedule
|
||||
@@ -94,4 +94,4 @@ class ClassifierFreeGuidanceScheduler(nn.Module, ConfigMixin):
|
||||
return torch.randn(shape, generator=generator).to(device)
|
||||
|
||||
def __len__(self):
|
||||
return self.num_timesteps
|
||||
return self.timesteps
|
||||
|
||||
@@ -42,7 +42,7 @@ class DDIMScheduler(nn.Module, ConfigMixin):
|
||||
beta_end=beta_end,
|
||||
beta_schedule=beta_schedule,
|
||||
)
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.timesteps = int(timesteps)
|
||||
self.clip_image = clip_predicted_image
|
||||
|
||||
if beta_schedule == "linear":
|
||||
@@ -90,7 +90,7 @@ class DDIMScheduler(nn.Module, ConfigMixin):
|
||||
def get_orig_t(self, t, num_inference_steps):
|
||||
if t < 0:
|
||||
return -1
|
||||
return self.num_timesteps // num_inference_steps * t
|
||||
return self.timesteps // num_inference_steps * t
|
||||
|
||||
def get_variance(self, t, num_inference_steps):
|
||||
orig_t = self.get_orig_t(t, num_inference_steps)
|
||||
@@ -105,7 +105,7 @@ class DDIMScheduler(nn.Module, ConfigMixin):
|
||||
|
||||
return variance
|
||||
|
||||
def step(self, residual, image, t, num_inference_steps, eta, output_pred_x_0=False):
|
||||
def step(self, residual, image, t, num_inference_steps, eta):
|
||||
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
||||
# Ideally, read DDIM paper in-detail understanding
|
||||
|
||||
@@ -152,4 +152,4 @@ class DDIMScheduler(nn.Module, ConfigMixin):
|
||||
return torch.randn(shape, generator=generator).to(device)
|
||||
|
||||
def __len__(self):
|
||||
return self.num_timesteps
|
||||
return self.timesteps
|
||||
|
||||
@@ -44,7 +44,7 @@ class GaussianDDPMScheduler(nn.Module, ConfigMixin):
|
||||
variance_type=variance_type,
|
||||
clip_predicted_image=clip_predicted_image,
|
||||
)
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.timesteps = int(timesteps)
|
||||
self.clip_image = clip_predicted_image
|
||||
self.variance_type = variance_type
|
||||
|
||||
@@ -107,7 +107,7 @@ class GaussianDDPMScheduler(nn.Module, ConfigMixin):
|
||||
|
||||
return variance
|
||||
|
||||
def step(self, residual, image, t, output_pred_x_0=False):
|
||||
def step(self, residual, image, t):
|
||||
# 1. compute alphas, betas
|
||||
alpha_prod_t = self.get_alpha_prod(t)
|
||||
alpha_prod_t_prev = self.get_alpha_prod(t - 1)
|
||||
@@ -138,4 +138,4 @@ class GaussianDDPMScheduler(nn.Module, ConfigMixin):
|
||||
return torch.randn(shape, generator=generator).to(device)
|
||||
|
||||
def __len__(self):
|
||||
return self.num_timesteps
|
||||
return self.timesteps
|
||||
|
||||
@@ -32,12 +32,12 @@ class GlideDDIMScheduler(nn.Module, ConfigMixin):
|
||||
timesteps=timesteps,
|
||||
beta_schedule=beta_schedule,
|
||||
)
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.timesteps = int(timesteps)
|
||||
|
||||
if beta_schedule == "linear":
|
||||
# Linear schedule from Ho et al, extended to work for any number of
|
||||
# diffusion steps.
|
||||
scale = 1000 / self.num_timesteps
|
||||
scale = 1000 / self.timesteps
|
||||
beta_start = scale * 0.0001
|
||||
beta_end = scale * 0.02
|
||||
betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
|
||||
@@ -88,4 +88,4 @@ class GlideDDIMScheduler(nn.Module, ConfigMixin):
|
||||
return torch.randn(shape, generator=generator).to(device)
|
||||
|
||||
def __len__(self):
|
||||
return self.num_timesteps
|
||||
return self.timesteps
|
||||
|
||||
@@ -75,16 +75,18 @@ class ModelTesterMixin(unittest.TestCase):
|
||||
sizes = (32, 32)
|
||||
|
||||
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
|
||||
time_step = torch.tensor([10])
|
||||
time_step = torch.tensor([10]).to(torch_device)
|
||||
|
||||
return (noise, time_step)
|
||||
|
||||
def test_from_pretrained_save_pretrained(self):
|
||||
model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
|
||||
model.to(torch_device)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
model.save_pretrained(tmpdirname)
|
||||
new_model = UNetModel.from_pretrained(tmpdirname)
|
||||
new_model.to(torch_device)
|
||||
|
||||
dummy_input = self.dummy_input
|
||||
|
||||
@@ -95,6 +97,7 @@ class ModelTesterMixin(unittest.TestCase):
|
||||
|
||||
def test_from_pretrained_hub(self):
|
||||
model = UNetModel.from_pretrained("fusing/ddpm_dummy")
|
||||
model.to(torch_device)
|
||||
|
||||
image = model(*self.dummy_input)
|
||||
|
||||
|
||||
@@ -26,8 +26,8 @@ torch.backends.cuda.matmul.allow_tf32 = False
|
||||
|
||||
|
||||
class SchedulerCommonTest(unittest.TestCase):
|
||||
|
||||
scheduler_class = None
|
||||
scheduler_classes = ()
|
||||
forward_default_kwargs = ()
|
||||
|
||||
@property
|
||||
def dummy_image(self):
|
||||
@@ -38,42 +38,271 @@ class SchedulerCommonTest(unittest.TestCase):
|
||||
|
||||
image = np.random.rand(batch_size, num_channels, height, width)
|
||||
|
||||
return image
|
||||
return torch.tensor(image)
|
||||
|
||||
@property
|
||||
def dummy_image_deter(self):
|
||||
batch_size = 4
|
||||
num_channels = 3
|
||||
height = 8
|
||||
width = 8
|
||||
|
||||
num_elems = batch_size * num_channels * height * width
|
||||
image = np.arange(num_elems)
|
||||
image = image.reshape(num_channels, height, width, batch_size)
|
||||
image = image / num_elems
|
||||
image = image.transpose(3, 0, 1, 2)
|
||||
|
||||
return torch.tensor(image)
|
||||
|
||||
def get_scheduler_config(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def dummy_model(self):
|
||||
def model(image, residual, t, *args):
|
||||
return (image + residual) * t / (t + 1)
|
||||
def model(image, t, *args):
|
||||
return image * t / (t + 1)
|
||||
|
||||
return model
|
||||
|
||||
def check_over_configs(self, time_step=0, **config):
|
||||
kwargs = dict(self.forward_default_kwargs)
|
||||
|
||||
for scheduler_class in self.scheduler_classes:
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
image = self.dummy_image
|
||||
residual = 0.1 * image
|
||||
|
||||
scheduler_config = self.get_scheduler_config(**config)
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
scheduler.save_config(tmpdirname)
|
||||
new_scheduler = scheduler_class.from_config(tmpdirname)
|
||||
|
||||
output = scheduler.step(residual, image, time_step, **kwargs)
|
||||
new_output = new_scheduler.step(residual, image, time_step, **kwargs)
|
||||
|
||||
assert (output - new_output).abs().sum() < 1e-5, "Scheduler outputs are not identical"
|
||||
|
||||
def check_over_forward(self, time_step=0, **forward_kwargs):
|
||||
kwargs = dict(self.forward_default_kwargs)
|
||||
kwargs.update(forward_kwargs)
|
||||
|
||||
for scheduler_class in self.scheduler_classes:
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
image = self.dummy_image
|
||||
residual = 0.1 * image
|
||||
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
scheduler.save_config(tmpdirname)
|
||||
new_scheduler = scheduler_class.from_config(tmpdirname)
|
||||
|
||||
output = scheduler.step(residual, image, time_step, **kwargs)
|
||||
new_output = new_scheduler.step(residual, image, time_step, **kwargs)
|
||||
|
||||
assert (output - new_output).abs().sum() < 1e-5, "Scheduler outputs are not identical"
|
||||
|
||||
def test_from_pretrained_save_pretrained(self):
|
||||
image = self.dummy_image
|
||||
residual = 0.1 * image
|
||||
kwargs = dict(self.forward_default_kwargs)
|
||||
|
||||
for scheduler_class in self.scheduler_classes:
|
||||
image = self.dummy_image
|
||||
residual = 0.1 * image
|
||||
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
scheduler.save_config(tmpdirname)
|
||||
new_scheduler = scheduler_class.from_config(tmpdirname)
|
||||
|
||||
output = scheduler.step(residual, image, 1, **kwargs)
|
||||
new_output = new_scheduler.step(residual, image, 1, **kwargs)
|
||||
|
||||
assert (output - new_output).abs().sum() < 1e-5, "Scheduler outputs are not identical"
|
||||
|
||||
def test_step_shape(self):
|
||||
kwargs = dict(self.forward_default_kwargs)
|
||||
|
||||
for scheduler_class in self.scheduler_classes:
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
image = self.dummy_image
|
||||
residual = 0.1 * image
|
||||
|
||||
output_0 = scheduler.step(residual, image, 0, **kwargs)
|
||||
output_1 = scheduler.step(residual, image, 1, **kwargs)
|
||||
|
||||
self.assertEqual(output_0.shape, image.shape)
|
||||
self.assertEqual(output_0.shape, output_1.shape)
|
||||
|
||||
|
||||
class DDPMSchedulerTest(SchedulerCommonTest):
|
||||
scheduler_classes = (GaussianDDPMScheduler,)
|
||||
|
||||
def get_scheduler_config(self, **kwargs):
|
||||
config = {
|
||||
"timesteps": 1000,
|
||||
"beta_start": 0.0001,
|
||||
"beta_end": 0.02,
|
||||
"beta_schedule": "linear",
|
||||
"variance_type": "fixed_small",
|
||||
"clip_predicted_image": True
|
||||
}
|
||||
|
||||
config.update(**kwargs)
|
||||
return config
|
||||
|
||||
def test_timesteps(self):
|
||||
for timesteps in [1, 5, 100, 1000]:
|
||||
self.check_over_configs(timesteps=timesteps)
|
||||
|
||||
def test_betas(self):
|
||||
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
|
||||
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
|
||||
|
||||
def test_schedules(self):
|
||||
for schedule in ["linear", "squaredcos_cap_v2"]:
|
||||
self.check_over_configs(beta_schedule=schedule)
|
||||
|
||||
def test_variance_type(self):
|
||||
for variance in ["fixed_small", "fixed_large", "other"]:
|
||||
self.check_over_configs(variance_type=variance)
|
||||
|
||||
def test_clip_image(self):
|
||||
for clip_predicted_image in [True, False]:
|
||||
self.check_over_configs(clip_predicted_image=clip_predicted_image)
|
||||
|
||||
def test_time_indices(self):
|
||||
for t in [0, 500, 999]:
|
||||
self.check_over_forward(time_step=t)
|
||||
|
||||
def test_variance(self):
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = self.scheduler_class(scheduler_config())
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
scheduler.save_pretrained(tmpdirname)
|
||||
new_scheduler = self.scheduler_class.from_config(tmpdirname)
|
||||
assert (scheduler.get_variance(0) - 0.0).abs().sum() < 1e-5
|
||||
assert (scheduler.get_variance(487) - 0.00979).abs().sum() < 1e-5
|
||||
assert (scheduler.get_variance(999) - 0.02).abs().sum() < 1e-5
|
||||
|
||||
output = scheduler(residual, image, 1)
|
||||
new_output = new_scheduler(residual, image, 1)
|
||||
|
||||
import ipdb; ipdb.set_trace()
|
||||
|
||||
def test_step(self):
|
||||
def test_full_loop_no_noise(self):
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = self.scheduler_class(scheduler_config())
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
image = self.dummy_image
|
||||
residual = 0.1 * image
|
||||
num_trained_timesteps = len(scheduler)
|
||||
|
||||
output_0 = scheduler(residual, image, 0)
|
||||
output_1 = scheduler(residual, image, 1)
|
||||
model = self.dummy_model()
|
||||
image = self.dummy_image_deter
|
||||
|
||||
self.assertEqual(output_0.shape, image.shape)
|
||||
self.assertEqual(output_0.shape, output_1.shape)
|
||||
for t in reversed(range(num_trained_timesteps)):
|
||||
# 1. predict noise residual
|
||||
residual = model(image, t)
|
||||
|
||||
# 2. predict previous mean of image x_t-1
|
||||
pred_prev_image = scheduler.step(residual, image, t)
|
||||
|
||||
if t > 0:
|
||||
noise = self.dummy_image_deter
|
||||
variance = scheduler.get_variance(t).sqrt() * noise
|
||||
|
||||
image = pred_prev_image + variance
|
||||
|
||||
result_sum = image.abs().sum()
|
||||
result_mean = image.abs().mean()
|
||||
|
||||
assert result_sum.item() - 732.9947 < 1e-3
|
||||
assert result_mean.item() - 0.9544 < 1e-3
|
||||
|
||||
|
||||
class DDIMSchedulerTest(SchedulerCommonTest):
|
||||
scheduler_classes = (DDIMScheduler,)
|
||||
forward_default_kwargs = (("num_inference_steps", 50), ("eta", 0.0))
|
||||
|
||||
def get_scheduler_config(self, **kwargs):
|
||||
config = {
|
||||
"timesteps": 1000,
|
||||
"beta_start": 0.0001,
|
||||
"beta_end": 0.02,
|
||||
"beta_schedule": "linear",
|
||||
"clip_predicted_image": True
|
||||
}
|
||||
|
||||
config.update(**kwargs)
|
||||
return config
|
||||
|
||||
def test_timesteps(self):
|
||||
for timesteps in [1, 5, 100, 1000]:
|
||||
self.check_over_configs(timesteps=timesteps)
|
||||
|
||||
def test_betas(self):
|
||||
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
|
||||
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
|
||||
|
||||
def test_schedules(self):
|
||||
for schedule in ["linear", "squaredcos_cap_v2"]:
|
||||
self.check_over_configs(beta_schedule=schedule)
|
||||
|
||||
def test_clip_image(self):
|
||||
for clip_predicted_image in [True, False]:
|
||||
self.check_over_configs(clip_predicted_image=clip_predicted_image)
|
||||
|
||||
def test_time_indices(self):
|
||||
for t in [1, 10, 49]:
|
||||
self.check_over_forward(time_step=t)
|
||||
|
||||
def test_inference_steps(self):
|
||||
for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
|
||||
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
|
||||
|
||||
def test_eta(self):
|
||||
for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
|
||||
self.check_over_forward(time_step=t, eta=eta)
|
||||
|
||||
def test_variance(self):
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
assert (scheduler.get_variance(0, 50) - 0.0).abs().sum() < 1e-5
|
||||
assert (scheduler.get_variance(21, 50) - 0.14771).abs().sum() < 1e-5
|
||||
assert (scheduler.get_variance(49, 50) - 0.32460).abs().sum() < 1e-5
|
||||
assert (scheduler.get_variance(0, 1000) - 0.0).abs().sum() < 1e-5
|
||||
assert (scheduler.get_variance(487, 1000) - 0.00979).abs().sum() < 1e-5
|
||||
assert (scheduler.get_variance(999, 1000) - 0.02).abs().sum() < 1e-5
|
||||
|
||||
def test_full_loop_no_noise(self):
|
||||
scheduler_class = self.scheduler_classes[0]
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = scheduler_class(**scheduler_config)
|
||||
|
||||
num_inference_steps, eta = 10, 0.1
|
||||
num_trained_timesteps = len(scheduler)
|
||||
|
||||
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
|
||||
|
||||
model = self.dummy_model()
|
||||
image = self.dummy_image_deter
|
||||
|
||||
for t in reversed(range(num_inference_steps)):
|
||||
residual = model(image, inference_step_times[t])
|
||||
|
||||
pred_prev_image = scheduler.step(residual, image, t, num_inference_steps, eta)
|
||||
|
||||
variance = 0
|
||||
if eta > 0:
|
||||
noise = self.dummy_image_deter
|
||||
variance = scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
|
||||
|
||||
image = pred_prev_image + variance
|
||||
|
||||
result_sum = image.abs().sum()
|
||||
result_mean = image.abs().mean()
|
||||
|
||||
assert result_sum.item() - 270.6214 < 1e-3
|
||||
assert result_mean.item() - 0.3524 < 1e-3
|
||||
|
||||
Reference in New Issue
Block a user