mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Flux pipeline (#9043)
add flux! Signed-off-by: Adrien <adrien@huggingface.co> Co-authored-by: Adrien <adrien.69740@gmail.com> Co-authored-by: Anatoly Belikov <abelikov@singularitynet.io> Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by: yiyixuxu <yixu310@gmail.com>
This commit is contained in:
@@ -253,6 +253,8 @@
|
||||
title: HunyuanDiT2DModel
|
||||
- local: api/models/aura_flow_transformer2d
|
||||
title: AuraFlowTransformer2DModel
|
||||
- local: api/models/flux_transformer
|
||||
title: FluxTransformer2DModel
|
||||
- local: api/models/latte_transformer3d
|
||||
title: LatteTransformer3DModel
|
||||
- local: api/models/lumina_nextdit2d
|
||||
@@ -320,6 +322,8 @@
|
||||
title: DiffEdit
|
||||
- local: api/pipelines/dit
|
||||
title: DiT
|
||||
- local: api/pipelines/flux
|
||||
title: Flux
|
||||
- local: api/pipelines/hunyuandit
|
||||
title: Hunyuan-DiT
|
||||
- local: api/pipelines/i2vgenxl
|
||||
|
||||
19
docs/source/en/api/models/flux_transformer.md
Normal file
19
docs/source/en/api/models/flux_transformer.md
Normal file
@@ -0,0 +1,19 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# FluxTransformer2DModel
|
||||
|
||||
A Transformer model for image-like data from [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).
|
||||
|
||||
## FluxTransformer2DModel
|
||||
|
||||
[[autodoc]] FluxTransformer2DModel
|
||||
84
docs/source/en/api/pipelines/flux.md
Normal file
84
docs/source/en/api/pipelines/flux.md
Normal file
@@ -0,0 +1,84 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Flux
|
||||
|
||||
Flux is a series of text-to-image generation models based on diffusion transformers. To know more about Flux, check out the original [blog post](https://blackforestlabs.ai/announcing-black-forest-labs/) by the creators of Flux, Black Forest Labs.
|
||||
|
||||
Original model checkpoints for Flux can be found [here](https://huggingface.co/black-forest-labs). Original inference code can be found [here](https://github.com/black-forest-labs/flux).
|
||||
|
||||
<Tip>
|
||||
|
||||
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more.
|
||||
|
||||
</Tip>
|
||||
|
||||
Flux comes in two variants:
|
||||
|
||||
* Timestep-distilled (`black-forest-labs/FLUX.1-schnell`)
|
||||
* Guidance-distilled (`black-forest-labs/FLUX.1-dev`)
|
||||
|
||||
Both checkpoints have slightly difference usage which we detail below.
|
||||
|
||||
### Timestep-distilled
|
||||
|
||||
* `max_sequence_length` cannot be more than 256.
|
||||
* `guidance_scale` needs to be 0.
|
||||
* As this is a timestep-distilled model, it benefits from fewer sampling steps.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import FluxPipeline
|
||||
|
||||
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
prompt = "A cat holding a sign that says hello world"
|
||||
out = pipe(
|
||||
prompt=prompt,
|
||||
guidance_scale=0.,
|
||||
height=768,
|
||||
width=1360,
|
||||
num_inference_steps=4,
|
||||
max_sequence_length=256,
|
||||
).images[0]
|
||||
out.save("image.png")
|
||||
```
|
||||
|
||||
### Guidance-distilled
|
||||
|
||||
* The guidance-distilled variant takes about 50 sampling steps for good-quality generation.
|
||||
* It doesn't have any limitations around the `max_sequence_length`.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import FluxPipeline
|
||||
|
||||
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
prompt = "a tiny astronaut hatching from an egg on the moon"
|
||||
out = pipe(
|
||||
prompt=prompt,
|
||||
guidance_scale=3.5,
|
||||
height=768,
|
||||
width=1360,
|
||||
num_inference_steps=50,
|
||||
).images[0]
|
||||
out.save("image.png")
|
||||
```
|
||||
|
||||
## FluxPipeline
|
||||
|
||||
[[autodoc]] FluxPipeline
|
||||
- all
|
||||
- __call__
|
||||
303
scripts/convert_flux_to_diffusers.py
Normal file
303
scripts/convert_flux_to_diffusers.py
Normal file
@@ -0,0 +1,303 @@
|
||||
import argparse
|
||||
from contextlib import nullcontext
|
||||
|
||||
import safetensors.torch
|
||||
import torch
|
||||
from accelerate import init_empty_weights
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
from diffusers import AutoencoderKL, FluxTransformer2DModel
|
||||
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint
|
||||
from diffusers.utils.import_utils import is_accelerate_available
|
||||
|
||||
|
||||
"""
|
||||
# Transformer
|
||||
|
||||
python scripts/convert_flux_to_diffusers.py \
|
||||
--original_state_dict_repo_id "black-forest-labs/FLUX.1-schnell" \
|
||||
--filename "flux1-schnell.sft"
|
||||
--output_path "flux-schnell" \
|
||||
--transformer
|
||||
"""
|
||||
|
||||
"""
|
||||
# VAE
|
||||
|
||||
python scripts/convert_flux_to_diffusers.py \
|
||||
--original_state_dict_repo_id "black-forest-labs/FLUX.1-schnell" \
|
||||
--filename "ae.sft"
|
||||
--output_path "flux-schnell" \
|
||||
--vae
|
||||
"""
|
||||
|
||||
CTX = init_empty_weights if is_accelerate_available else nullcontext
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--original_state_dict_repo_id", default=None, type=str)
|
||||
parser.add_argument("--filename", default="flux.safetensors", type=str)
|
||||
parser.add_argument("--checkpoint_path", default=None, type=str)
|
||||
parser.add_argument("--vae", action="store_true")
|
||||
parser.add_argument("--transformer", action="store_true")
|
||||
parser.add_argument("--output_path", type=str)
|
||||
parser.add_argument("--dtype", type=str, default="bf16")
|
||||
|
||||
args = parser.parse_args()
|
||||
dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float32
|
||||
|
||||
|
||||
def load_original_checkpoint(args):
|
||||
if args.original_state_dict_repo_id is not None:
|
||||
ckpt_path = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename=args.filename)
|
||||
elif args.checkpoint_path is not None:
|
||||
ckpt_path = args.checkpoint_path
|
||||
else:
|
||||
raise ValueError(" please provide either `original_state_dict_repo_id` or a local `checkpoint_path`")
|
||||
|
||||
original_state_dict = safetensors.torch.load_file(ckpt_path)
|
||||
return original_state_dict
|
||||
|
||||
|
||||
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
|
||||
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
|
||||
def swap_scale_shift(weight):
|
||||
shift, scale = weight.chunk(2, dim=0)
|
||||
new_weight = torch.cat([scale, shift], dim=0)
|
||||
return new_weight
|
||||
|
||||
|
||||
def convert_flux_transformer_checkpoint_to_diffusers(
|
||||
original_state_dict, num_layers, num_single_layers, inner_dim, mlp_ratio=4.0
|
||||
):
|
||||
converted_state_dict = {}
|
||||
|
||||
## time_text_embed.timestep_embedder <- time_in
|
||||
converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
|
||||
"time_in.in_layer.weight"
|
||||
)
|
||||
converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop(
|
||||
"time_in.in_layer.bias"
|
||||
)
|
||||
converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
|
||||
"time_in.out_layer.weight"
|
||||
)
|
||||
converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop(
|
||||
"time_in.out_layer.bias"
|
||||
)
|
||||
|
||||
## time_text_embed.text_embedder <- vector_in
|
||||
converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop(
|
||||
"vector_in.in_layer.weight"
|
||||
)
|
||||
converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop(
|
||||
"vector_in.in_layer.bias"
|
||||
)
|
||||
converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop(
|
||||
"vector_in.out_layer.weight"
|
||||
)
|
||||
converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop(
|
||||
"vector_in.out_layer.bias"
|
||||
)
|
||||
|
||||
# guidance
|
||||
has_guidance = any("guidance" in k for k in original_state_dict)
|
||||
if has_guidance:
|
||||
converted_state_dict["time_text_embed.guidance_embedder.linear_1.weight"] = original_state_dict.pop(
|
||||
"guidance_in.in_layer.weight"
|
||||
)
|
||||
converted_state_dict["time_text_embed.guidance_embedder.linear_1.bias"] = original_state_dict.pop(
|
||||
"guidance_in.in_layer.bias"
|
||||
)
|
||||
converted_state_dict["time_text_embed.guidance_embedder.linear_2.weight"] = original_state_dict.pop(
|
||||
"guidance_in.out_layer.weight"
|
||||
)
|
||||
converted_state_dict["time_text_embed.guidance_embedder.linear_2.bias"] = original_state_dict.pop(
|
||||
"guidance_in.out_layer.bias"
|
||||
)
|
||||
|
||||
# context_embedder
|
||||
converted_state_dict["context_embedder.weight"] = original_state_dict.pop("txt_in.weight")
|
||||
converted_state_dict["context_embedder.bias"] = original_state_dict.pop("txt_in.bias")
|
||||
|
||||
# x_embedder
|
||||
converted_state_dict["x_embedder.weight"] = original_state_dict.pop("img_in.weight")
|
||||
converted_state_dict["x_embedder.bias"] = original_state_dict.pop("img_in.bias")
|
||||
|
||||
# double transformer blocks
|
||||
for i in range(num_layers):
|
||||
block_prefix = f"transformer_blocks.{i}."
|
||||
# norms.
|
||||
## norm1
|
||||
converted_state_dict[f"{block_prefix}norm1.linear.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.img_mod.lin.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}norm1.linear.bias"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.img_mod.lin.bias"
|
||||
)
|
||||
## norm1_context
|
||||
converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.txt_mod.lin.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.txt_mod.lin.bias"
|
||||
)
|
||||
# Q, K, V
|
||||
sample_q, sample_k, sample_v = torch.chunk(
|
||||
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0
|
||||
)
|
||||
context_q, context_k, context_v = torch.chunk(
|
||||
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
|
||||
)
|
||||
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
|
||||
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
|
||||
)
|
||||
context_q_bias, context_k_bias, context_v_bias = torch.chunk(
|
||||
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
|
||||
converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
|
||||
converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
|
||||
converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
|
||||
# qk_norm
|
||||
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.img_attn.norm.query_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.img_attn.norm.key_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
|
||||
)
|
||||
# ff img_mlp
|
||||
converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.img_mlp.0.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.img_mlp.0.bias"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff.net.2.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.img_mlp.2.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff.net.2.bias"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.img_mlp.2.bias"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.txt_mlp.0.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.txt_mlp.0.bias"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.txt_mlp.2.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.txt_mlp.2.bias"
|
||||
)
|
||||
# output projections.
|
||||
converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.img_attn.proj.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.img_attn.proj.bias"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.txt_attn.proj.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = original_state_dict.pop(
|
||||
f"double_blocks.{i}.txt_attn.proj.bias"
|
||||
)
|
||||
|
||||
# single transfomer blocks
|
||||
for i in range(num_single_layers):
|
||||
block_prefix = f"single_transformer_blocks.{i}."
|
||||
# norm.linear <- single_blocks.0.modulation.lin
|
||||
converted_state_dict[f"{block_prefix}norm.linear.weight"] = original_state_dict.pop(
|
||||
f"single_blocks.{i}.modulation.lin.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}norm.linear.bias"] = original_state_dict.pop(
|
||||
f"single_blocks.{i}.modulation.lin.bias"
|
||||
)
|
||||
# Q, K, V, mlp
|
||||
mlp_hidden_dim = int(inner_dim * mlp_ratio)
|
||||
split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
|
||||
q, k, v, mlp = torch.split(original_state_dict.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
|
||||
q_bias, k_bias, v_bias, mlp_bias = torch.split(
|
||||
original_state_dict.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
|
||||
converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
|
||||
converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
|
||||
# qk norm
|
||||
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
|
||||
f"single_blocks.{i}.norm.query_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
|
||||
f"single_blocks.{i}.norm.key_norm.scale"
|
||||
)
|
||||
# output projections.
|
||||
converted_state_dict[f"{block_prefix}proj_out.weight"] = original_state_dict.pop(
|
||||
f"single_blocks.{i}.linear2.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}proj_out.bias"] = original_state_dict.pop(
|
||||
f"single_blocks.{i}.linear2.bias"
|
||||
)
|
||||
|
||||
converted_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight")
|
||||
converted_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias")
|
||||
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
|
||||
original_state_dict.pop("final_layer.adaLN_modulation.1.weight")
|
||||
)
|
||||
converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
|
||||
original_state_dict.pop("final_layer.adaLN_modulation.1.bias")
|
||||
)
|
||||
|
||||
return converted_state_dict
|
||||
|
||||
|
||||
def main(args):
|
||||
original_ckpt = load_original_checkpoint(args)
|
||||
has_guidance = any("guidance" in k for k in original_ckpt)
|
||||
|
||||
if args.transformer:
|
||||
num_layers = 19
|
||||
num_single_layers = 38
|
||||
inner_dim = 3072
|
||||
mlp_ratio = 4.0
|
||||
converted_transformer_state_dict = convert_flux_transformer_checkpoint_to_diffusers(
|
||||
original_ckpt, num_layers, num_single_layers, inner_dim, mlp_ratio=mlp_ratio
|
||||
)
|
||||
transformer = FluxTransformer2DModel(guidance_embeds=has_guidance)
|
||||
transformer.load_state_dict(converted_transformer_state_dict, strict=True)
|
||||
|
||||
print(
|
||||
f"Saving Flux Transformer in Diffusers format. Variant: {'guidance-distilled' if has_guidance else 'timestep-distilled'}"
|
||||
)
|
||||
transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer")
|
||||
|
||||
if args.vae:
|
||||
config = AutoencoderKL.load_config("stabilityai/stable-diffusion-3-medium-diffusers", subfolder="vae")
|
||||
vae = AutoencoderKL.from_config(config, scaling_factor=0.3611, shift_factor=0.1159).to(torch.bfloat16)
|
||||
|
||||
converted_vae_state_dict = convert_ldm_vae_checkpoint(original_ckpt, vae.config)
|
||||
vae.load_state_dict(converted_vae_state_dict, strict=True)
|
||||
vae.to(dtype).save_pretrained(f"{args.output_path}/vae")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(args)
|
||||
@@ -85,6 +85,7 @@ else:
|
||||
"ControlNetModel",
|
||||
"ControlNetXSAdapter",
|
||||
"DiTTransformer2DModel",
|
||||
"FluxTransformer2DModel",
|
||||
"HunyuanDiT2DControlNetModel",
|
||||
"HunyuanDiT2DModel",
|
||||
"HunyuanDiT2DMultiControlNetModel",
|
||||
@@ -249,6 +250,7 @@ else:
|
||||
"ChatGLMTokenizer",
|
||||
"CLIPImageProjection",
|
||||
"CycleDiffusionPipeline",
|
||||
"FluxPipeline",
|
||||
"HunyuanDiTControlNetPipeline",
|
||||
"HunyuanDiTPipeline",
|
||||
"I2VGenXLPipeline",
|
||||
@@ -527,6 +529,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ControlNetModel,
|
||||
ControlNetXSAdapter,
|
||||
DiTTransformer2DModel,
|
||||
FluxTransformer2DModel,
|
||||
HunyuanDiT2DControlNetModel,
|
||||
HunyuanDiT2DModel,
|
||||
HunyuanDiT2DMultiControlNetModel,
|
||||
@@ -669,6 +672,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ChatGLMTokenizer,
|
||||
CLIPImageProjection,
|
||||
CycleDiffusionPipeline,
|
||||
FluxPipeline,
|
||||
HunyuanDiTControlNetPipeline,
|
||||
HunyuanDiTPipeline,
|
||||
I2VGenXLPipeline,
|
||||
|
||||
@@ -51,6 +51,7 @@ if is_torch_available():
|
||||
_import_structure["transformers.stable_audio_transformer"] = ["StableAudioDiTModel"]
|
||||
_import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"]
|
||||
_import_structure["transformers.transformer_2d"] = ["Transformer2DModel"]
|
||||
_import_structure["transformers.transformer_flux"] = ["FluxTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_sd3"] = ["SD3Transformer2DModel"]
|
||||
_import_structure["transformers.transformer_temporal"] = ["TransformerTemporalModel"]
|
||||
_import_structure["unets.unet_1d"] = ["UNet1DModel"]
|
||||
@@ -93,6 +94,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AuraFlowTransformer2DModel,
|
||||
DiTTransformer2DModel,
|
||||
DualTransformer2DModel,
|
||||
FluxTransformer2DModel,
|
||||
HunyuanDiT2DModel,
|
||||
LatteTransformer3DModel,
|
||||
LuminaNextDiT2DModel,
|
||||
|
||||
@@ -121,11 +121,12 @@ class Attention(nn.Module):
|
||||
processor: Optional["AttnProcessor"] = None,
|
||||
out_dim: int = None,
|
||||
context_pre_only=None,
|
||||
pre_only=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# To prevent circular import.
|
||||
from .normalization import FP32LayerNorm
|
||||
from .normalization import FP32LayerNorm, RMSNorm
|
||||
|
||||
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
||||
self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
|
||||
@@ -141,6 +142,7 @@ class Attention(nn.Module):
|
||||
self.fused_projections = False
|
||||
self.out_dim = out_dim if out_dim is not None else query_dim
|
||||
self.context_pre_only = context_pre_only
|
||||
self.pre_only = pre_only
|
||||
|
||||
# we make use of this private variable to know whether this class is loaded
|
||||
# with an deprecated state dict so that we can convert it on the fly
|
||||
@@ -186,6 +188,9 @@ class Attention(nn.Module):
|
||||
# Lumina applys qk norm across all heads
|
||||
self.norm_q = nn.LayerNorm(dim_head * heads, eps=eps)
|
||||
self.norm_k = nn.LayerNorm(dim_head * kv_heads, eps=eps)
|
||||
elif qk_norm == "rms_norm":
|
||||
self.norm_q = RMSNorm(dim_head, eps=eps)
|
||||
self.norm_k = RMSNorm(dim_head, eps=eps)
|
||||
else:
|
||||
raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'")
|
||||
|
||||
@@ -228,9 +233,10 @@ class Attention(nn.Module):
|
||||
if self.context_pre_only is not None:
|
||||
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
|
||||
|
||||
self.to_out = nn.ModuleList([])
|
||||
self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
|
||||
self.to_out.append(nn.Dropout(dropout))
|
||||
if not self.pre_only:
|
||||
self.to_out = nn.ModuleList([])
|
||||
self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
|
||||
self.to_out.append(nn.Dropout(dropout))
|
||||
|
||||
if self.context_pre_only is not None and not self.context_pre_only:
|
||||
self.to_add_out = nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)
|
||||
@@ -239,6 +245,9 @@ class Attention(nn.Module):
|
||||
if qk_norm == "fp32_layer_norm":
|
||||
self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
|
||||
self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
|
||||
elif qk_norm == "rms_norm":
|
||||
self.norm_added_q = RMSNorm(dim_head, eps=eps)
|
||||
self.norm_added_k = RMSNorm(dim_head, eps=eps)
|
||||
else:
|
||||
self.norm_added_q = None
|
||||
self.norm_added_k = None
|
||||
@@ -1265,6 +1274,179 @@ class AuraFlowAttnProcessor2_0:
|
||||
return hidden_states
|
||||
|
||||
|
||||
# YiYi to-do: refactor rope related functions/classes
|
||||
def apply_rope(xq, xk, freqs_cis):
|
||||
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
||||
|
||||
|
||||
class FluxSingleAttnProcessor2_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
input_ndim = hidden_states.ndim
|
||||
|
||||
if input_ndim == 4:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
|
||||
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# Apply RoPE if needed
|
||||
if image_rotary_emb is not None:
|
||||
# YiYi to-do: update uising apply_rotary_emb
|
||||
# from ..embeddings import apply_rotary_emb
|
||||
# query = apply_rotary_emb(query, image_rotary_emb)
|
||||
# key = apply_rotary_emb(key, image_rotary_emb)
|
||||
query, key = apply_rope(query, key, image_rotary_emb)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if input_ndim == 4:
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FluxAttnProcessor2_0:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
input_ndim = hidden_states.ndim
|
||||
if input_ndim == 4:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
context_input_ndim = encoder_hidden_states.ndim
|
||||
if context_input_ndim == 4:
|
||||
batch_size, channel, height, width = encoder_hidden_states.shape
|
||||
encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
|
||||
batch_size = encoder_hidden_states.shape[0]
|
||||
|
||||
# `sample` projections.
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# `context` projections.
|
||||
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
||||
batch_size, -1, attn.heads, head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
||||
|
||||
# attention
|
||||
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
||||
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
||||
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
# YiYi to-do: update uising apply_rotary_emb
|
||||
# from ..embeddings import apply_rotary_emb
|
||||
# query = apply_rotary_emb(query, image_rotary_emb)
|
||||
# key = apply_rotary_emb(key, image_rotary_emb)
|
||||
query, key = apply_rope(query, key, image_rotary_emb)
|
||||
|
||||
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
encoder_hidden_states, hidden_states = (
|
||||
hidden_states[:, : encoder_hidden_states.shape[1]],
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :],
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
if input_ndim == 4:
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
if context_input_ndim == 4:
|
||||
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
|
||||
class XFormersAttnAddedKVProcessor:
|
||||
r"""
|
||||
Processor for implementing memory efficient attention using xFormers.
|
||||
|
||||
@@ -795,6 +795,30 @@ class CombinedTimestepTextProjEmbeddings(nn.Module):
|
||||
return conditioning
|
||||
|
||||
|
||||
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
|
||||
def __init__(self, embedding_dim, pooled_projection_dim):
|
||||
super().__init__()
|
||||
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
||||
|
||||
def forward(self, timestep, guidance, pooled_projection):
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
|
||||
|
||||
guidance_proj = self.time_proj(guidance)
|
||||
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) # (N, D)
|
||||
|
||||
time_guidance_emb = timesteps_emb + guidance_emb
|
||||
|
||||
pooled_projections = self.text_embedder(pooled_projection)
|
||||
conditioning = time_guidance_emb + pooled_projections
|
||||
|
||||
return conditioning
|
||||
|
||||
|
||||
class HunyuanDiTAttentionPool(nn.Module):
|
||||
# Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6
|
||||
|
||||
|
||||
@@ -106,6 +106,38 @@ class AdaLayerNormZero(nn.Module):
|
||||
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
class AdaLayerNormZeroSingle(nn.Module):
|
||||
r"""
|
||||
Norm layer adaptive layer norm zero (adaLN-Zero).
|
||||
|
||||
Parameters:
|
||||
embedding_dim (`int`): The size of each embedding vector.
|
||||
num_embeddings (`int`): The size of the embeddings dictionary.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
||||
super().__init__()
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
|
||||
if norm_type == "layer_norm":
|
||||
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
emb: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
emb = self.linear(self.silu(emb))
|
||||
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1)
|
||||
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||
return x, gate_msa
|
||||
|
||||
|
||||
class LuminaRMSNormZero(nn.Module):
|
||||
"""
|
||||
Norm layer adaptive RMS normalization zero.
|
||||
|
||||
@@ -13,5 +13,6 @@ if is_torch_available():
|
||||
from .stable_audio_transformer import StableAudioDiTModel
|
||||
from .t5_film_transformer import T5FilmDecoder
|
||||
from .transformer_2d import Transformer2DModel
|
||||
from .transformer_flux import FluxTransformer2DModel
|
||||
from .transformer_sd3 import SD3Transformer2DModel
|
||||
from .transformer_temporal import TransformerTemporalModel
|
||||
|
||||
446
src/diffusers/models/transformers/transformer_flux.py
Normal file
446
src/diffusers/models/transformers/transformer_flux.py
Normal file
@@ -0,0 +1,446 @@
|
||||
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
||||
from ...models.attention import FeedForward
|
||||
from ...models.attention_processor import Attention, FluxAttnProcessor2_0, FluxSingleAttnProcessor2_0
|
||||
from ...models.modeling_utils import ModelMixin
|
||||
from ...models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
|
||||
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ...utils.torch_utils import maybe_allow_in_graph
|
||||
from ..embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
# YiYi to-do: refactor rope related functions/classes
|
||||
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
|
||||
assert dim % 2 == 0, "The dimension must be even."
|
||||
|
||||
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
||||
omega = 1.0 / (theta**scale)
|
||||
|
||||
batch_size, seq_length = pos.shape
|
||||
out = torch.einsum("...n,d->...nd", pos, omega)
|
||||
cos_out = torch.cos(out)
|
||||
sin_out = torch.sin(out)
|
||||
|
||||
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
||||
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
|
||||
return out.float()
|
||||
|
||||
|
||||
# YiYi to-do: refactor rope related functions/classes
|
||||
class EmbedND(nn.Module):
|
||||
def __init__(self, dim: int, theta: int, axes_dim: List[int]):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.theta = theta
|
||||
self.axes_dim = axes_dim
|
||||
|
||||
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
||||
n_axes = ids.shape[-1]
|
||||
emb = torch.cat(
|
||||
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
||||
dim=-3,
|
||||
)
|
||||
|
||||
return emb.unsqueeze(1)
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class FluxSingleTransformerBlock(nn.Module):
|
||||
r"""
|
||||
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
||||
|
||||
Reference: https://arxiv.org/abs/2403.03206
|
||||
|
||||
Parameters:
|
||||
dim (`int`): The number of channels in the input and output.
|
||||
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`): The number of channels in each head.
|
||||
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
||||
processing of `context` conditions.
|
||||
"""
|
||||
|
||||
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
||||
super().__init__()
|
||||
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
|
||||
self.norm = AdaLayerNormZeroSingle(dim)
|
||||
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
||||
self.act_mlp = nn.GELU(approximate="tanh")
|
||||
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
||||
|
||||
processor = FluxSingleAttnProcessor2_0()
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
bias=True,
|
||||
processor=processor,
|
||||
qk_norm="rms_norm",
|
||||
eps=1e-6,
|
||||
pre_only=True,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
temb: torch.FloatTensor,
|
||||
image_rotary_emb=None,
|
||||
):
|
||||
residual = hidden_states
|
||||
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
||||
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
||||
|
||||
attn_output = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
||||
hidden_states = gate * self.proj_out(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class FluxTransformerBlock(nn.Module):
|
||||
r"""
|
||||
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
||||
|
||||
Reference: https://arxiv.org/abs/2403.03206
|
||||
|
||||
Parameters:
|
||||
dim (`int`): The number of channels in the input and output.
|
||||
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`): The number of channels in each head.
|
||||
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
||||
processing of `context` conditions.
|
||||
"""
|
||||
|
||||
def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = AdaLayerNormZero(dim)
|
||||
|
||||
self.norm1_context = AdaLayerNormZero(dim)
|
||||
|
||||
if hasattr(F, "scaled_dot_product_attention"):
|
||||
processor = FluxAttnProcessor2_0()
|
||||
else:
|
||||
raise ValueError(
|
||||
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
||||
)
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
added_kv_proj_dim=dim,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
context_pre_only=False,
|
||||
bias=True,
|
||||
processor=processor,
|
||||
qk_norm=qk_norm,
|
||||
eps=eps,
|
||||
)
|
||||
|
||||
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
||||
|
||||
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
||||
|
||||
# let chunk size default to None
|
||||
self._chunk_size = None
|
||||
self._chunk_dim = 0
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor,
|
||||
temb: torch.FloatTensor,
|
||||
image_rotary_emb=None,
|
||||
):
|
||||
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
||||
|
||||
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
||||
encoder_hidden_states, emb=temb
|
||||
)
|
||||
|
||||
# Attention.
|
||||
attn_output, context_attn_output = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
encoder_hidden_states=norm_encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
# Process attention outputs for the `hidden_states`.
|
||||
attn_output = gate_msa.unsqueeze(1) * attn_output
|
||||
hidden_states = hidden_states + attn_output
|
||||
|
||||
norm_hidden_states = self.norm2(hidden_states)
|
||||
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
||||
|
||||
hidden_states = hidden_states + ff_output
|
||||
|
||||
# Process attention outputs for the `encoder_hidden_states`.
|
||||
|
||||
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
||||
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
||||
|
||||
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
||||
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
||||
|
||||
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
||||
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
||||
|
||||
return encoder_hidden_states, hidden_states
|
||||
|
||||
|
||||
class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
||||
"""
|
||||
The Transformer model introduced in Flux.
|
||||
|
||||
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
||||
|
||||
Parameters:
|
||||
patch_size (`int`): Patch size to turn the input data into small patches.
|
||||
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
||||
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
||||
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
||||
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
||||
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
||||
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
||||
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
||||
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 1,
|
||||
in_channels: int = 64,
|
||||
num_layers: int = 19,
|
||||
num_single_layers: int = 38,
|
||||
attention_head_dim: int = 128,
|
||||
num_attention_heads: int = 24,
|
||||
joint_attention_dim: int = 4096,
|
||||
pooled_projection_dim: int = 768,
|
||||
guidance_embeds: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = in_channels
|
||||
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
||||
|
||||
self.pos_embed = EmbedND(dim=self.inner_dim, theta=10000, axes_dim=[16, 56, 56])
|
||||
text_time_guidance_cls = (
|
||||
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
||||
)
|
||||
self.time_text_embed = text_time_guidance_cls(
|
||||
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
||||
)
|
||||
|
||||
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
|
||||
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
FluxTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=self.config.num_attention_heads,
|
||||
attention_head_dim=self.config.attention_head_dim,
|
||||
)
|
||||
for i in range(self.config.num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
FluxSingleTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=self.config.num_attention_heads,
|
||||
attention_head_dim=self.config.attention_head_dim,
|
||||
)
|
||||
for i in range(self.config.num_single_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
||||
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor = None,
|
||||
pooled_projections: torch.Tensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
img_ids: torch.Tensor = None,
|
||||
txt_ids: torch.Tensor = None,
|
||||
guidance: torch.Tensor = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
||||
"""
|
||||
The [`FluxTransformer2DModel`] forward method.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
||||
Input `hidden_states`.
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
||||
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
||||
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
||||
from the embeddings of input conditions.
|
||||
timestep ( `torch.LongTensor`):
|
||||
Used to indicate denoising step.
|
||||
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
||||
A list of tensors that if specified are added to the residuals of transformer blocks.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
||||
tuple.
|
||||
|
||||
Returns:
|
||||
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
||||
`tuple` where the first element is the sample tensor.
|
||||
"""
|
||||
if joint_attention_kwargs is not None:
|
||||
joint_attention_kwargs = joint_attention_kwargs.copy()
|
||||
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
|
||||
timestep = timestep.to(hidden_states.dtype) * 1000
|
||||
if guidance is not None:
|
||||
guidance = guidance.to(hidden_states.dtype) * 1000
|
||||
else:
|
||||
guidance = None
|
||||
temb = (
|
||||
self.time_text_embed(timestep, pooled_projections)
|
||||
if guidance is None
|
||||
else self.time_text_embed(timestep, guidance, pooled_projections)
|
||||
)
|
||||
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
image_rotary_emb = self.pos_embed(ids)
|
||||
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
|
||||
for index_block, block in enumerate(self.single_transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
output = self.proj_out(hidden_states)
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
@@ -123,6 +123,7 @@ else:
|
||||
"AnimateDiffSparseControlNetPipeline",
|
||||
"AnimateDiffVideoToVideoPipeline",
|
||||
]
|
||||
_import_structure["flux"] = ["FluxPipeline"]
|
||||
_import_structure["audioldm"] = ["AudioLDMPipeline"]
|
||||
_import_structure["audioldm2"] = [
|
||||
"AudioLDM2Pipeline",
|
||||
@@ -476,6 +477,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
VersatileDiffusionTextToImagePipeline,
|
||||
VQDiffusionPipeline,
|
||||
)
|
||||
from .flux import FluxPipeline
|
||||
from .hunyuandit import HunyuanDiTPipeline
|
||||
from .i2vgen_xl import I2VGenXLPipeline
|
||||
from .kandinsky import (
|
||||
|
||||
@@ -28,6 +28,7 @@ from .controlnet import (
|
||||
StableDiffusionXLControlNetPipeline,
|
||||
)
|
||||
from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline
|
||||
from .flux import FluxPipeline
|
||||
from .hunyuandit import HunyuanDiTPipeline
|
||||
from .kandinsky import (
|
||||
KandinskyCombinedPipeline,
|
||||
@@ -99,6 +100,7 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
||||
("stable-diffusion-xl-controlnet-pag", StableDiffusionXLControlNetPAGPipeline),
|
||||
("auraflow", AuraFlowPipeline),
|
||||
("kolors", KolorsPipeline),
|
||||
("flux", FluxPipeline),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
47
src/diffusers/pipelines/flux/__init__.py
Normal file
47
src/diffusers/pipelines/flux/__init__.py
Normal file
@@ -0,0 +1,47 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import (
|
||||
DIFFUSERS_SLOW_IMPORT,
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
)
|
||||
|
||||
|
||||
_dummy_objects = {}
|
||||
_additional_imports = {}
|
||||
_import_structure = {"pipeline_output": ["FluxPipelineOutput"]}
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_flux"] = ["FluxPipeline"]
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
|
||||
else:
|
||||
from .pipeline_flux import FluxPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(
|
||||
__name__,
|
||||
globals()["__file__"],
|
||||
_import_structure,
|
||||
module_spec=__spec__,
|
||||
)
|
||||
|
||||
for name, value in _dummy_objects.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
for name, value in _additional_imports.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
760
src/diffusers/pipelines/flux/pipeline_flux.py
Normal file
760
src/diffusers/pipelines/flux/pipeline_flux.py
Normal file
@@ -0,0 +1,760 @@
|
||||
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
CLIPTextModel,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
T5TokenizerFast,
|
||||
)
|
||||
|
||||
from ...image_processor import VaeImageProcessor
|
||||
from ...loaders import SD3LoraLoaderMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.transformers import FluxTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
is_torch_xla_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .pipeline_output import FluxPipelineOutput
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
XLA_AVAILABLE = True
|
||||
else:
|
||||
XLA_AVAILABLE = False
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers import FluxPipeline
|
||||
|
||||
>>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
||||
>>> pipe.to("cuda")
|
||||
>>> prompt = "A cat holding a sign that says hello world"
|
||||
>>> # Depending on the variant being used, the pipeline call will slightly vary.
|
||||
>>> # Refer to the pipeline documentation for more details.
|
||||
>>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
|
||||
>>> image.save("flux.png")
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
def calculate_shift(
|
||||
image_seq_len,
|
||||
base_seq_len: int = 256,
|
||||
max_seq_len: int = 4096,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.16,
|
||||
):
|
||||
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
||||
b = base_shift - m * base_seq_len
|
||||
mu = image_seq_len * m + b
|
||||
return mu
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class FluxPipeline(DiffusionPipeline, SD3LoraLoaderMixin):
|
||||
r"""
|
||||
The Flux pipeline for text-to-image generation.
|
||||
|
||||
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
||||
|
||||
Args:
|
||||
transformer ([`FluxTransformer2DModel`]):
|
||||
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
||||
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`CLIPTextModelWithProjection`]):
|
||||
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
||||
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
|
||||
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
|
||||
as its dimension.
|
||||
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
||||
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
||||
specifically the
|
||||
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
||||
variant.
|
||||
tokenizer (`CLIPTokenizer`):
|
||||
Tokenizer of class
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
tokenizer_2 (`CLIPTokenizer`):
|
||||
Second Tokenizer of class
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
"""
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
||||
_optional_components = []
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: CLIPTextModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
text_encoder_2: T5EncoderModel,
|
||||
tokenizer_2: T5TokenizerFast,
|
||||
transformer: FluxTransformer2DModel,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
text_encoder_2=text_encoder_2,
|
||||
tokenizer=tokenizer,
|
||||
tokenizer_2=tokenizer_2,
|
||||
transformer=transformer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
self.vae_scale_factor = (
|
||||
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
|
||||
)
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
self.tokenizer_max_length = (
|
||||
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
||||
)
|
||||
self.default_sample_size = 64
|
||||
|
||||
def _get_t5_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
max_sequence_length: int = 512,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
dtype = dtype or self.text_encoder.dtype
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
batch_size = len(prompt)
|
||||
|
||||
text_inputs = self.tokenizer_2(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
return_length=False,
|
||||
return_overflowing_tokens=False,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
||||
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because `max_sequence_length` is set to "
|
||||
f" {max_sequence_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
||||
|
||||
dtype = self.text_encoder_2.dtype
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
_, seq_len, _ = prompt_embeds.shape
|
||||
|
||||
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
def _get_clip_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
num_images_per_prompt: int = 1,
|
||||
device: Optional[torch.device] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
batch_size = len(prompt)
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer_max_length,
|
||||
truncation=True,
|
||||
return_overflowing_tokens=False,
|
||||
return_length=False,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
text_input_ids = text_inputs.input_ids
|
||||
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
||||
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
||||
)
|
||||
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
||||
|
||||
# Use pooled output of CLIPTextModel
|
||||
prompt_embeds = prompt_embeds.pooler_output
|
||||
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
||||
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
max_sequence_length: int = 512,
|
||||
lora_scale: Optional[float] = None,
|
||||
):
|
||||
r"""
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
prompt_2 (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
||||
used in all text-encoders
|
||||
device: (`torch.device`):
|
||||
torch device
|
||||
num_images_per_prompt (`int`):
|
||||
number of images that should be generated per prompt
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
||||
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
||||
clip_skip (`int`, *optional*):
|
||||
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
||||
the output of the pre-final layer will be used for computing the prompt embeddings.
|
||||
lora_scale (`float`, *optional*):
|
||||
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
||||
"""
|
||||
device = device or self._execution_device
|
||||
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
|
||||
self._lora_scale = lora_scale
|
||||
|
||||
# dynamically adjust the LoRA scale
|
||||
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
||||
scale_lora_layers(self.text_encoder, lora_scale)
|
||||
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
||||
scale_lora_layers(self.text_encoder_2, lora_scale)
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
if prompt is not None:
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt_2 = prompt_2 or prompt
|
||||
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
||||
|
||||
# We only use the pooled prompt output from the CLIPTextModel
|
||||
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
)
|
||||
prompt_embeds = self._get_t5_prompt_embeds(
|
||||
prompt=prompt_2,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
)
|
||||
|
||||
if self.text_encoder is not None:
|
||||
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
if self.text_encoder_2 is not None:
|
||||
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
||||
|
||||
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=self.text_encoder.dtype)
|
||||
|
||||
return prompt_embeds, pooled_prompt_embeds, text_ids
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
prompt_2,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds=None,
|
||||
pooled_prompt_embeds=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
max_sequence_length=None,
|
||||
):
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt_2 is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
||||
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
||||
|
||||
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
||||
)
|
||||
|
||||
if max_sequence_length is not None and max_sequence_length > 512:
|
||||
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
||||
|
||||
@staticmethod
|
||||
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
||||
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
||||
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
||||
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
||||
|
||||
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
||||
|
||||
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
|
||||
latent_image_ids = latent_image_ids.reshape(
|
||||
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
||||
)
|
||||
|
||||
return latent_image_ids.to(device=device, dtype=dtype)
|
||||
|
||||
@staticmethod
|
||||
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
||||
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
||||
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
||||
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
||||
|
||||
return latents
|
||||
|
||||
@staticmethod
|
||||
def _unpack_latents(latents, height, width, vae_scale_factor):
|
||||
batch_size, num_patches, channels = latents.shape
|
||||
|
||||
height = height // vae_scale_factor
|
||||
width = width // vae_scale_factor
|
||||
|
||||
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
||||
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
||||
|
||||
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
|
||||
|
||||
return latents
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
):
|
||||
height = 2 * (int(height) // self.vae_scale_factor)
|
||||
width = 2 * (int(width) // self.vae_scale_factor)
|
||||
|
||||
shape = (batch_size, num_channels_latents, height, width)
|
||||
|
||||
if latents is not None:
|
||||
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
||||
return latents.to(device=device, dtype=dtype), latent_image_ids
|
||||
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
||||
|
||||
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
||||
|
||||
return latents, latent_image_ids
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def joint_attention_kwargs(self):
|
||||
return self._joint_attention_kwargs
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 28,
|
||||
timesteps: List[int] = None,
|
||||
guidance_scale: float = 7.0,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
prompt_2 (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
||||
will be used instead
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
||||
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
||||
passed will be used. Must be in descending order.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
||||
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
||||
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
||||
images.
|
||||
"""
|
||||
|
||||
height = height or self.default_sample_size * self.vae_scale_factor
|
||||
width = width or self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
prompt_2,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds=prompt_embeds,
|
||||
pooled_prompt_embeds=pooled_prompt_embeds,
|
||||
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._joint_attention_kwargs = joint_attention_kwargs
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
lora_scale = (
|
||||
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
||||
)
|
||||
(
|
||||
prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
text_ids,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
prompt_2=prompt_2,
|
||||
prompt_embeds=prompt_embeds,
|
||||
pooled_prompt_embeds=pooled_prompt_embeds,
|
||||
device=device,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
|
||||
# 4. Prepare latent variables
|
||||
num_channels_latents = self.transformer.config.in_channels // 4
|
||||
latents, latent_image_ids = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# 5. Prepare timesteps
|
||||
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
||||
image_seq_len = latents.shape[1]
|
||||
mu = calculate_shift(
|
||||
image_seq_len,
|
||||
self.scheduler.config.base_image_seq_len,
|
||||
self.scheduler.config.max_image_seq_len,
|
||||
self.scheduler.config.base_shift,
|
||||
self.scheduler.config.max_shift,
|
||||
)
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler,
|
||||
num_inference_steps,
|
||||
device,
|
||||
timesteps,
|
||||
sigmas,
|
||||
mu=mu,
|
||||
)
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 6. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||
|
||||
# handle guidance
|
||||
if self.transformer.config.guidance_embeds:
|
||||
guidance = torch.tensor([guidance_scale], device=device)
|
||||
guidance = guidance.expand(latents.shape[0])
|
||||
else:
|
||||
guidance = None
|
||||
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latents,
|
||||
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
||||
timestep=timestep / 1000,
|
||||
guidance=guidance,
|
||||
pooled_projections=pooled_prompt_embeds,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
txt_ids=text_ids,
|
||||
img_ids=latent_image_ids,
|
||||
joint_attention_kwargs=self.joint_attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents_dtype = latents.dtype
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
|
||||
if latents.dtype != latents_dtype:
|
||||
if torch.backends.mps.is_available():
|
||||
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
||||
latents = latents.to(latents_dtype)
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
|
||||
else:
|
||||
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
||||
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
||||
|
||||
image = self.vae.decode(latents, return_dict=False)[0]
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return FluxPipelineOutput(images=image)
|
||||
21
src/diffusers/pipelines/flux/pipeline_output.py
Normal file
21
src/diffusers/pipelines/flux/pipeline_output.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Union
|
||||
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
|
||||
from ...utils import BaseOutput
|
||||
|
||||
|
||||
@dataclass
|
||||
class FluxPipelineOutput(BaseOutput):
|
||||
"""
|
||||
Output class for Stable Diffusion pipelines.
|
||||
|
||||
Args:
|
||||
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
||||
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
||||
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
||||
"""
|
||||
|
||||
images: Union[List[PIL.Image.Image], np.ndarray]
|
||||
@@ -12,6 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
@@ -20,7 +21,6 @@ import torch
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..utils import BaseOutput, logging
|
||||
from ..utils.torch_utils import randn_tensor
|
||||
from .scheduling_utils import SchedulerMixin
|
||||
|
||||
|
||||
@@ -66,12 +66,19 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
shift: float = 1.0,
|
||||
use_dynamic_shifting=False,
|
||||
base_shift: Optional[float] = 0.5,
|
||||
max_shift: Optional[float] = 1.15,
|
||||
base_image_seq_len: Optional[int] = 256,
|
||||
max_image_seq_len: Optional[int] = 4096,
|
||||
):
|
||||
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
||||
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
|
||||
|
||||
sigmas = timesteps / num_train_timesteps
|
||||
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
|
||||
if not use_dynamic_shifting:
|
||||
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
|
||||
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
|
||||
|
||||
self.timesteps = sigmas * num_train_timesteps
|
||||
|
||||
@@ -158,11 +165,15 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
def _sigma_to_t(self, sigma):
|
||||
return sigma * self.config.num_train_timesteps
|
||||
|
||||
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int = None,
|
||||
device: Union[str, torch.device] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
mu: Optional[float] = None,
|
||||
):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
@@ -174,6 +185,9 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
"""
|
||||
|
||||
if self.config.use_dynamic_shifting and mu is None:
|
||||
raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")
|
||||
|
||||
if sigmas is None:
|
||||
self.num_inference_steps = num_inference_steps
|
||||
timesteps = np.linspace(
|
||||
@@ -181,6 +195,10 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
|
||||
sigmas = timesteps / self.config.num_train_timesteps
|
||||
|
||||
if self.config.use_dynamic_shifting:
|
||||
sigmas = self.time_shift(mu, 1.0, sigmas)
|
||||
else:
|
||||
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
|
||||
|
||||
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
||||
@@ -274,32 +292,10 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
sample = sample.to(torch.float32)
|
||||
|
||||
sigma = self.sigmas[self.step_index]
|
||||
sigma_next = self.sigmas[self.step_index + 1]
|
||||
|
||||
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
|
||||
prev_sample = sample + (sigma_next - sigma) * model_output
|
||||
|
||||
noise = randn_tensor(
|
||||
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
|
||||
)
|
||||
|
||||
eps = noise * s_noise
|
||||
sigma_hat = sigma * (gamma + 1)
|
||||
|
||||
if gamma > 0:
|
||||
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
|
||||
|
||||
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
||||
# NOTE: "original_sample" should not be an expected prediction_type but is left in for
|
||||
# backwards compatibility
|
||||
|
||||
# if self.config.prediction_type == "vector_field":
|
||||
|
||||
denoised = sample - model_output * sigma
|
||||
# 2. Convert to an ODE derivative
|
||||
derivative = (sample - denoised) / sigma_hat
|
||||
|
||||
dt = self.sigmas[self.step_index + 1] - sigma_hat
|
||||
|
||||
prev_sample = sample + derivative * dt
|
||||
# Cast sample back to model compatible dtype
|
||||
prev_sample = prev_sample.to(model_output.dtype)
|
||||
|
||||
|
||||
@@ -152,6 +152,21 @@ class DiTTransformer2DModel(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class FluxTransformer2DModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class HunyuanDiT2DControlNetModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
@@ -302,6 +302,21 @@ class CycleDiffusionPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class FluxPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class HunyuanDiTControlNetPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
0
tests/pipelines/flux/__init__.py
Normal file
0
tests/pipelines/flux/__init__.py
Normal file
281
tests/pipelines/flux/test_pipeline_flux.py
Normal file
281
tests/pipelines/flux/test_pipeline_flux.py
Normal file
@@ -0,0 +1,281 @@
|
||||
import gc
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel
|
||||
from diffusers.utils.testing_utils import (
|
||||
numpy_cosine_similarity_distance,
|
||||
require_torch_gpu,
|
||||
slow,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..test_pipelines_common import (
|
||||
PipelineTesterMixin,
|
||||
check_qkv_fusion_matches_attn_procs_length,
|
||||
check_qkv_fusion_processors_exist,
|
||||
)
|
||||
|
||||
|
||||
@unittest.skip("Tests needs to be revisited.")
|
||||
class FluxPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
pipeline_class = FluxPipeline
|
||||
params = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
"height",
|
||||
"width",
|
||||
"guidance_scale",
|
||||
"negative_prompt",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
]
|
||||
)
|
||||
batch_params = frozenset(["prompt", "negative_prompt"])
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
transformer = FluxTransformer2DModel(
|
||||
sample_size=32,
|
||||
patch_size=1,
|
||||
in_channels=4,
|
||||
num_layers=1,
|
||||
attention_head_dim=8,
|
||||
num_attention_heads=4,
|
||||
caption_projection_dim=32,
|
||||
joint_attention_dim=32,
|
||||
pooled_projection_dim=64,
|
||||
out_channels=4,
|
||||
)
|
||||
clip_text_encoder_config = CLIPTextConfig(
|
||||
bos_token_id=0,
|
||||
eos_token_id=2,
|
||||
hidden_size=32,
|
||||
intermediate_size=37,
|
||||
layer_norm_eps=1e-05,
|
||||
num_attention_heads=4,
|
||||
num_hidden_layers=5,
|
||||
pad_token_id=1,
|
||||
vocab_size=1000,
|
||||
hidden_act="gelu",
|
||||
projection_dim=32,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKL(
|
||||
sample_size=32,
|
||||
in_channels=3,
|
||||
out_channels=3,
|
||||
block_out_channels=(4,),
|
||||
layers_per_block=1,
|
||||
latent_channels=4,
|
||||
norm_num_groups=1,
|
||||
use_quant_conv=False,
|
||||
use_post_quant_conv=False,
|
||||
shift_factor=0.0609,
|
||||
scaling_factor=1.5035,
|
||||
)
|
||||
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
|
||||
return {
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"text_encoder_2": text_encoder_2,
|
||||
"tokenizer": tokenizer,
|
||||
"tokenizer_2": tokenizer_2,
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
}
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device="cpu").manual_seed(seed)
|
||||
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 5.0,
|
||||
"output_type": "np",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_flux_different_prompts(self):
|
||||
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
output_same_prompt = pipe(**inputs).images[0]
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs["prompt_2"] = "a different prompt"
|
||||
output_different_prompts = pipe(**inputs).images[0]
|
||||
|
||||
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
|
||||
|
||||
# Outputs should be different here
|
||||
assert max_diff > 1e-2
|
||||
|
||||
def test_flux_different_negative_prompts(self):
|
||||
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
output_same_prompt = pipe(**inputs).images[0]
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs["negative_prompt_2"] = "deformed"
|
||||
output_different_prompts = pipe(**inputs).images[0]
|
||||
|
||||
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
|
||||
|
||||
# Outputs should be different here
|
||||
assert max_diff > 1e-2
|
||||
|
||||
def test_flux_prompt_embeds(self):
|
||||
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
output_with_prompt = pipe(**inputs).images[0]
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
prompt = inputs.pop("prompt")
|
||||
|
||||
do_classifier_free_guidance = inputs["guidance_scale"] > 1
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
text_ids,
|
||||
) = pipe.encode_prompt(
|
||||
prompt,
|
||||
prompt_2=None,
|
||||
prompt_3=None,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
device=torch_device,
|
||||
)
|
||||
output_with_embeds = pipe(
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
pooled_prompt_embeds=pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
||||
**inputs,
|
||||
).images[0]
|
||||
|
||||
max_diff = np.abs(output_with_prompt - output_with_embeds).max()
|
||||
assert max_diff < 1e-4
|
||||
|
||||
def test_fused_qkv_projections(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe = pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe(**inputs).images
|
||||
original_image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
# TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
|
||||
# to the pipeline level.
|
||||
pipe.transformer.fuse_qkv_projections()
|
||||
assert check_qkv_fusion_processors_exist(
|
||||
pipe.transformer
|
||||
), "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
|
||||
assert check_qkv_fusion_matches_attn_procs_length(
|
||||
pipe.transformer, pipe.transformer.original_attn_processors
|
||||
), "Something wrong with the attention processors concerning the fused QKV projections."
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe(**inputs).images
|
||||
image_slice_fused = image[0, -3:, -3:, -1]
|
||||
|
||||
pipe.transformer.unfuse_qkv_projections()
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe(**inputs).images
|
||||
image_slice_disabled = image[0, -3:, -3:, -1]
|
||||
|
||||
assert np.allclose(
|
||||
original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3
|
||||
), "Fusion of QKV projections shouldn't affect the outputs."
|
||||
assert np.allclose(
|
||||
image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3
|
||||
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
|
||||
assert np.allclose(
|
||||
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
|
||||
), "Original outputs should match when fused QKV projections are disabled."
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
class FluxPipelineSlowTests(unittest.TestCase):
|
||||
pipeline_class = FluxPipeline
|
||||
repo_id = "black-forest-labs/FLUX.1-schnell"
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def get_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device="cpu").manual_seed(seed)
|
||||
|
||||
return {
|
||||
"prompt": "A photo of a cat",
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 5.0,
|
||||
"output_type": "np",
|
||||
"generator": generator,
|
||||
}
|
||||
|
||||
# TODO: Dhruv. Move large model tests to a dedicated runner)
|
||||
@unittest.skip("We cannot run inference on this model with the current CI hardware")
|
||||
def test_flux_inference(self):
|
||||
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
inputs = self.get_inputs(torch_device)
|
||||
|
||||
image = pipe(**inputs).images[0]
|
||||
image_slice = image[0, :10, :10]
|
||||
expected_slice = np.array(
|
||||
[
|
||||
[0.36132812, 0.30004883, 0.25830078],
|
||||
[0.36669922, 0.31103516, 0.23754883],
|
||||
[0.34814453, 0.29248047, 0.23583984],
|
||||
[0.35791016, 0.30981445, 0.23999023],
|
||||
[0.36328125, 0.31274414, 0.2607422],
|
||||
[0.37304688, 0.32177734, 0.26171875],
|
||||
[0.3671875, 0.31933594, 0.25756836],
|
||||
[0.36035156, 0.31103516, 0.2578125],
|
||||
[0.3857422, 0.33789062, 0.27563477],
|
||||
[0.3701172, 0.31982422, 0.265625],
|
||||
],
|
||||
dtype=np.float32,
|
||||
)
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
|
||||
|
||||
assert max_diff < 1e-4
|
||||
Reference in New Issue
Block a user