mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
test
This commit is contained in:
@@ -16,6 +16,7 @@ import os
|
||||
from typing import Callable, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import re
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
|
||||
from ..utils import (
|
||||
@@ -4805,50 +4806,152 @@ class WanLoraLoaderMixin(LoraBaseMixin):
|
||||
return state_dict
|
||||
|
||||
@classmethod
|
||||
def _maybe_expand_t2v_lora_for_i2v(
|
||||
cls,
|
||||
transformer: torch.nn.Module,
|
||||
state_dict,
|
||||
):
|
||||
if transformer.config.image_dim is None:
|
||||
return state_dict
|
||||
def _modified_maybe_expand_t2v_lora( # Renamed for clarity
|
||||
# cls, # if it were a classmethod
|
||||
transformer: torch.nn.Module,
|
||||
state_dict: Dict[str, torch.Tensor],
|
||||
lora_filename_for_rank_inference: Optional[str] = None # Optional: for rank hint
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
|
||||
target_device = transformer.device
|
||||
# Default dtype from transformer, can be refined if LoRA weights have a different one
|
||||
lora_weights_dtype = next(iter(transformer.parameters())).dtype
|
||||
|
||||
if any(k.startswith("transformer.blocks.") for k in state_dict):
|
||||
num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
|
||||
is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
|
||||
has_bias = any(".lora_B.bias" in k for k in state_dict)
|
||||
# --- Infer LoRA rank and potentially refine dtype from existing LoRA weights ---
|
||||
inferred_rank = None
|
||||
if state_dict: # If LoRA state_dict already has entries from the T2V LoRA
|
||||
for k, v_tensor in state_dict.items():
|
||||
if k.endswith(".lora_A.weight"): # Standard LoRA weight key part
|
||||
inferred_rank = v_tensor.shape[0] # rank is the output dim of lora_A
|
||||
lora_weights_dtype = v_tensor.dtype # Use dtype of existing LoRA weights
|
||||
break # Found rank and dtype
|
||||
|
||||
if is_i2v_lora:
|
||||
return state_dict
|
||||
if inferred_rank is None and lora_filename_for_rank_inference:
|
||||
match = re.search(r"rank(\d+)", lora_filename_for_rank_inference, re.IGNORECASE)
|
||||
if match:
|
||||
inferred_rank = int(match.group(1))
|
||||
print(f"INFO: Inferred LoRA rank {inferred_rank} from filename for padding.")
|
||||
|
||||
for i in range(num_blocks):
|
||||
for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
|
||||
# These keys should exist if the block `i` was part of the T2V LoRA.
|
||||
ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
|
||||
ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"
|
||||
# Determine if the original LoRA format (the T2V part) uses biases for lora_B
|
||||
lora_format_has_bias = any(".lora_B.bias" in k for k in state_dict.keys())
|
||||
|
||||
if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
|
||||
continue
|
||||
# --- Part 1: Original I2V expansion for standard transformer.blocks ---
|
||||
# (Assuming transformer.config and transformer.blocks structure for this part)
|
||||
if hasattr(transformer, 'config') and hasattr(transformer.config, 'image_dim') and \
|
||||
transformer.config.image_dim is not None and hasattr(transformer, 'blocks'):
|
||||
|
||||
state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
|
||||
state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
|
||||
)
|
||||
state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
|
||||
state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
|
||||
)
|
||||
standard_block_keys_present = any(k.startswith("transformer.blocks.") for k in state_dict)
|
||||
|
||||
# If the original LoRA had biases (indicated by has_bias)
|
||||
# AND the specific reference bias key exists for this block.
|
||||
if standard_block_keys_present and inferred_rank is not None:
|
||||
num_blocks_in_lora = 0
|
||||
block_indices = set()
|
||||
for k_lora in state_dict:
|
||||
if "transformer.blocks." in k_lora:
|
||||
try:
|
||||
block_idx_str = k_lora.split("transformer.blocks.")[1].split(".")[0]
|
||||
if block_idx_str.isdigit():
|
||||
block_indices.add(int(block_idx_str))
|
||||
except IndexError:
|
||||
pass
|
||||
if block_indices:
|
||||
num_blocks_in_lora = max(block_indices) + 1
|
||||
|
||||
ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
|
||||
if has_bias and ref_key_lora_B_bias in state_dict:
|
||||
ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
|
||||
state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
|
||||
ref_lora_B_bias_tensor,
|
||||
device=target_device,
|
||||
)
|
||||
is_i2v_lora_standard_blocks = any(
|
||||
k.startswith("transformer.blocks.") and "add_k_proj" in k for k in state_dict
|
||||
) and any(
|
||||
k.startswith("transformer.blocks.") and "add_v_proj" in k for k in state_dict
|
||||
)
|
||||
|
||||
if not is_i2v_lora_standard_blocks and num_blocks_in_lora > 0:
|
||||
print(f"INFO: Expanding T2V LoRA for I2V compatibility (standard blocks). Rank: {inferred_rank}")
|
||||
for i in range(num_blocks_in_lora):
|
||||
# Check if block 'i' relevant parts are in the T2V LoRA
|
||||
ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
|
||||
if ref_key_lora_A not in state_dict:
|
||||
continue # This block's specific part wasn't in the LoRA.
|
||||
|
||||
try:
|
||||
model_block = transformer.blocks[i]
|
||||
# Ensure these target layers exist in the model's standard block
|
||||
if not (hasattr(model_block, 'attn2') and \
|
||||
hasattr(model_block.attn2, 'add_k_proj') and \
|
||||
hasattr(model_block.attn2, 'add_v_proj')):
|
||||
continue
|
||||
add_k_proj_layer = model_block.attn2.add_k_proj
|
||||
add_v_proj_layer = model_block.attn2.add_v_proj
|
||||
except (AttributeError, IndexError):
|
||||
print(f"WARN: Cannot access standard block {i} or its I2V layers for expansion.")
|
||||
continue
|
||||
|
||||
for proj_name_suffix, model_linear_layer in [("add_k_proj", add_k_proj_layer),
|
||||
("add_v_proj", add_v_proj_layer)]:
|
||||
if not isinstance(model_linear_layer, nn.Linear): continue
|
||||
|
||||
lora_A_key = f"transformer.blocks.{i}.attn2.{proj_name_suffix}.lora_A.weight"
|
||||
lora_B_key = f"transformer.blocks.{i}.attn2.{proj_name_suffix}.lora_B.weight"
|
||||
|
||||
if lora_A_key not in state_dict:
|
||||
state_dict[lora_A_key] = torch.zeros(
|
||||
(inferred_rank, model_linear_layer.in_features),
|
||||
device=target_device, dtype=lora_weights_dtype
|
||||
)
|
||||
if lora_B_key not in state_dict:
|
||||
state_dict[lora_B_key] = torch.zeros(
|
||||
(model_linear_layer.out_features, inferred_rank),
|
||||
device=target_device, dtype=lora_weights_dtype
|
||||
)
|
||||
|
||||
if lora_format_has_bias and model_linear_layer.bias is not None:
|
||||
lora_B_bias_key = f"transformer.blocks.{i}.attn2.{proj_name_suffix}.lora_B.bias"
|
||||
if lora_B_bias_key not in state_dict:
|
||||
state_dict[lora_B_bias_key] = torch.zeros_like(
|
||||
model_linear_layer.bias, device=target_device,
|
||||
dtype=model_linear_layer.bias.dtype
|
||||
)
|
||||
elif inferred_rank is None:
|
||||
print("INFO: LoRA rank not inferred. Skipping I2V expansion for standard blocks.")
|
||||
# else: not standard_block_keys_present or no I2V capability.
|
||||
|
||||
# --- Part 2: Pad LoRA for WanVACETransformer3DModel vace_blocks.X.proj_out ---
|
||||
# Dynamically check for WanVACETransformer3DModel availability for isinstance
|
||||
VACEModelClass = globals().get("WanVACETransformer3DModel")
|
||||
|
||||
if VACEModelClass and isinstance(transformer, VACEModelClass) and hasattr(transformer, 'vace_blocks'):
|
||||
if inferred_rank is None:
|
||||
print("WARNING: LoRA rank not determined. Skipping VACE block padding for proj_out.")
|
||||
else:
|
||||
print(f"INFO: Transformer is WanVACE. Padding LoRA for vace_blocks.X.proj_out. Rank: {inferred_rank}")
|
||||
for i, vace_block_module in enumerate(transformer.vace_blocks):
|
||||
if hasattr(vace_block_module, 'proj_out') and isinstance(vace_block_module.proj_out, nn.Linear):
|
||||
proj_out_layer = vace_block_module.proj_out
|
||||
|
||||
# Keys for the vace_block's proj_out LoRA layers
|
||||
# These are the keys PEFT expects in the state_dict *before* adding adapter name context
|
||||
lora_A_key = f"vace_blocks.{i}.proj_out.lora_A.weight"
|
||||
lora_B_key = f"vace_blocks.{i}.proj_out.lora_B.weight"
|
||||
|
||||
if lora_A_key not in state_dict:
|
||||
state_dict[lora_A_key] = torch.zeros(
|
||||
(inferred_rank, proj_out_layer.in_features),
|
||||
device=target_device, dtype=lora_weights_dtype
|
||||
)
|
||||
# print(f"Padded: {lora_A_key}")
|
||||
|
||||
if lora_B_key not in state_dict:
|
||||
state_dict[lora_B_key] = torch.zeros(
|
||||
(proj_out_layer.out_features, inferred_rank),
|
||||
device=target_device, dtype=lora_weights_dtype
|
||||
)
|
||||
# print(f"Padded: {lora_B_key}")
|
||||
|
||||
if lora_format_has_bias and proj_out_layer.bias is not None:
|
||||
lora_B_bias_key = f"vace_blocks.{i}.proj_out.lora_B.bias"
|
||||
if lora_B_bias_key not in state_dict:
|
||||
state_dict[lora_B_bias_key] = torch.zeros_like(
|
||||
proj_out_layer.bias, device=target_device, dtype=proj_out_layer.bias.dtype
|
||||
)
|
||||
# print(f"Padded: {lora_B_bias_key}")
|
||||
# else: VACE block 'i' might not have proj_out or it's not Linear.
|
||||
|
||||
return state_dict
|
||||
|
||||
|
||||
Reference in New Issue
Block a user