1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
This commit is contained in:
linoytsaban
2025-05-21 17:30:32 +03:00
parent 4a4b05861e
commit 26dcfd00a4

View File

@@ -16,6 +16,7 @@ import os
from typing import Callable, Dict, List, Optional, Union
import torch
import re
from huggingface_hub.utils import validate_hf_hub_args
from ..utils import (
@@ -4805,50 +4806,152 @@ class WanLoraLoaderMixin(LoraBaseMixin):
return state_dict
@classmethod
def _maybe_expand_t2v_lora_for_i2v(
cls,
transformer: torch.nn.Module,
state_dict,
):
if transformer.config.image_dim is None:
return state_dict
def _modified_maybe_expand_t2v_lora( # Renamed for clarity
# cls, # if it were a classmethod
transformer: torch.nn.Module,
state_dict: Dict[str, torch.Tensor],
lora_filename_for_rank_inference: Optional[str] = None # Optional: for rank hint
) -> Dict[str, torch.Tensor]:
target_device = transformer.device
# Default dtype from transformer, can be refined if LoRA weights have a different one
lora_weights_dtype = next(iter(transformer.parameters())).dtype
if any(k.startswith("transformer.blocks.") for k in state_dict):
num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
has_bias = any(".lora_B.bias" in k for k in state_dict)
# --- Infer LoRA rank and potentially refine dtype from existing LoRA weights ---
inferred_rank = None
if state_dict: # If LoRA state_dict already has entries from the T2V LoRA
for k, v_tensor in state_dict.items():
if k.endswith(".lora_A.weight"): # Standard LoRA weight key part
inferred_rank = v_tensor.shape[0] # rank is the output dim of lora_A
lora_weights_dtype = v_tensor.dtype # Use dtype of existing LoRA weights
break # Found rank and dtype
if is_i2v_lora:
return state_dict
if inferred_rank is None and lora_filename_for_rank_inference:
match = re.search(r"rank(\d+)", lora_filename_for_rank_inference, re.IGNORECASE)
if match:
inferred_rank = int(match.group(1))
print(f"INFO: Inferred LoRA rank {inferred_rank} from filename for padding.")
for i in range(num_blocks):
for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
# These keys should exist if the block `i` was part of the T2V LoRA.
ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"
# Determine if the original LoRA format (the T2V part) uses biases for lora_B
lora_format_has_bias = any(".lora_B.bias" in k for k in state_dict.keys())
if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
continue
# --- Part 1: Original I2V expansion for standard transformer.blocks ---
# (Assuming transformer.config and transformer.blocks structure for this part)
if hasattr(transformer, 'config') and hasattr(transformer.config, 'image_dim') and \
transformer.config.image_dim is not None and hasattr(transformer, 'blocks'):
state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
)
state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
)
standard_block_keys_present = any(k.startswith("transformer.blocks.") for k in state_dict)
# If the original LoRA had biases (indicated by has_bias)
# AND the specific reference bias key exists for this block.
if standard_block_keys_present and inferred_rank is not None:
num_blocks_in_lora = 0
block_indices = set()
for k_lora in state_dict:
if "transformer.blocks." in k_lora:
try:
block_idx_str = k_lora.split("transformer.blocks.")[1].split(".")[0]
if block_idx_str.isdigit():
block_indices.add(int(block_idx_str))
except IndexError:
pass
if block_indices:
num_blocks_in_lora = max(block_indices) + 1
ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
if has_bias and ref_key_lora_B_bias in state_dict:
ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
ref_lora_B_bias_tensor,
device=target_device,
)
is_i2v_lora_standard_blocks = any(
k.startswith("transformer.blocks.") and "add_k_proj" in k for k in state_dict
) and any(
k.startswith("transformer.blocks.") and "add_v_proj" in k for k in state_dict
)
if not is_i2v_lora_standard_blocks and num_blocks_in_lora > 0:
print(f"INFO: Expanding T2V LoRA for I2V compatibility (standard blocks). Rank: {inferred_rank}")
for i in range(num_blocks_in_lora):
# Check if block 'i' relevant parts are in the T2V LoRA
ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
if ref_key_lora_A not in state_dict:
continue # This block's specific part wasn't in the LoRA.
try:
model_block = transformer.blocks[i]
# Ensure these target layers exist in the model's standard block
if not (hasattr(model_block, 'attn2') and \
hasattr(model_block.attn2, 'add_k_proj') and \
hasattr(model_block.attn2, 'add_v_proj')):
continue
add_k_proj_layer = model_block.attn2.add_k_proj
add_v_proj_layer = model_block.attn2.add_v_proj
except (AttributeError, IndexError):
print(f"WARN: Cannot access standard block {i} or its I2V layers for expansion.")
continue
for proj_name_suffix, model_linear_layer in [("add_k_proj", add_k_proj_layer),
("add_v_proj", add_v_proj_layer)]:
if not isinstance(model_linear_layer, nn.Linear): continue
lora_A_key = f"transformer.blocks.{i}.attn2.{proj_name_suffix}.lora_A.weight"
lora_B_key = f"transformer.blocks.{i}.attn2.{proj_name_suffix}.lora_B.weight"
if lora_A_key not in state_dict:
state_dict[lora_A_key] = torch.zeros(
(inferred_rank, model_linear_layer.in_features),
device=target_device, dtype=lora_weights_dtype
)
if lora_B_key not in state_dict:
state_dict[lora_B_key] = torch.zeros(
(model_linear_layer.out_features, inferred_rank),
device=target_device, dtype=lora_weights_dtype
)
if lora_format_has_bias and model_linear_layer.bias is not None:
lora_B_bias_key = f"transformer.blocks.{i}.attn2.{proj_name_suffix}.lora_B.bias"
if lora_B_bias_key not in state_dict:
state_dict[lora_B_bias_key] = torch.zeros_like(
model_linear_layer.bias, device=target_device,
dtype=model_linear_layer.bias.dtype
)
elif inferred_rank is None:
print("INFO: LoRA rank not inferred. Skipping I2V expansion for standard blocks.")
# else: not standard_block_keys_present or no I2V capability.
# --- Part 2: Pad LoRA for WanVACETransformer3DModel vace_blocks.X.proj_out ---
# Dynamically check for WanVACETransformer3DModel availability for isinstance
VACEModelClass = globals().get("WanVACETransformer3DModel")
if VACEModelClass and isinstance(transformer, VACEModelClass) and hasattr(transformer, 'vace_blocks'):
if inferred_rank is None:
print("WARNING: LoRA rank not determined. Skipping VACE block padding for proj_out.")
else:
print(f"INFO: Transformer is WanVACE. Padding LoRA for vace_blocks.X.proj_out. Rank: {inferred_rank}")
for i, vace_block_module in enumerate(transformer.vace_blocks):
if hasattr(vace_block_module, 'proj_out') and isinstance(vace_block_module.proj_out, nn.Linear):
proj_out_layer = vace_block_module.proj_out
# Keys for the vace_block's proj_out LoRA layers
# These are the keys PEFT expects in the state_dict *before* adding adapter name context
lora_A_key = f"vace_blocks.{i}.proj_out.lora_A.weight"
lora_B_key = f"vace_blocks.{i}.proj_out.lora_B.weight"
if lora_A_key not in state_dict:
state_dict[lora_A_key] = torch.zeros(
(inferred_rank, proj_out_layer.in_features),
device=target_device, dtype=lora_weights_dtype
)
# print(f"Padded: {lora_A_key}")
if lora_B_key not in state_dict:
state_dict[lora_B_key] = torch.zeros(
(proj_out_layer.out_features, inferred_rank),
device=target_device, dtype=lora_weights_dtype
)
# print(f"Padded: {lora_B_key}")
if lora_format_has_bias and proj_out_layer.bias is not None:
lora_B_bias_key = f"vace_blocks.{i}.proj_out.lora_B.bias"
if lora_B_bias_key not in state_dict:
state_dict[lora_B_bias_key] = torch.zeros_like(
proj_out_layer.bias, device=target_device, dtype=proj_out_layer.bias.dtype
)
# print(f"Padded: {lora_B_bias_key}")
# else: VACE block 'i' might not have proj_out or it's not Linear.
return state_dict