1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Fix for "no lora weight found module" with some loras (#7875)

* return layer weight if not found

* better system and test

* key example and typo
This commit is contained in:
Álvaro Somoza
2024-05-07 07:54:57 -04:00
committed by GitHub
parent 0d23645bd1
commit 23e091564f
2 changed files with 37 additions and 1 deletions

View File

@@ -246,7 +246,13 @@ def set_weights_and_activate_adapters(model, adapter_names, weights):
for layer_name, weight_ in weight_for_adapter.items():
if layer_name in module_name:
return weight_
raise RuntimeError(f"No LoRA weight found for module {module_name}.")
parts = module_name.split(".")
# e.g. key = "down_blocks.1.attentions.0"
key = f"{parts[0]}.{parts[1]}.attentions.{parts[3]}"
block_weight = weight_for_adapter.get(key, 1.0)
return block_weight
# iterate over each adapter, make it active and set the corresponding scaling weight
for adapter_name, weight in zip(adapter_names, weights):

View File

@@ -202,6 +202,36 @@ class LoraSDXLIntegrationTests(unittest.TestCase):
pipe.unload_lora_weights()
release_memory(pipe)
def test_sdxl_1_0_blockwise_lora(self):
generator = torch.Generator("cpu").manual_seed(0)
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
pipe.enable_model_cpu_offload()
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, adapter_name="offset")
scales = {
"unet": {
"down": {"block_1": [1.0, 1.0], "block_2": [1.0, 1.0]},
"mid": 1.0,
"up": {"block_0": [1.0, 1.0, 1.0], "block_1": [1.0, 1.0, 1.0]},
},
}
pipe.set_adapters(["offset"], [scales])
images = pipe(
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
).images
images = images[0, -3:, -3:, -1].flatten()
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])
max_diff = numpy_cosine_similarity_distance(expected, images)
assert max_diff < 1e-4
pipe.unload_lora_weights()
release_memory(pipe)
def test_sdxl_lcm_lora(self):
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16