1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

UnCLIP Image Interpolation -> Keep same initial noise across interpolation steps (#3782)

* Maintain same decoder start noise for all interp steps

* Correct comment

* use batch_size for consistency
This commit is contained in:
Naga Sai Abhinay
2023-06-15 18:45:40 +05:30
committed by GitHub
parent 75124fc91e
commit 231bdf2e56

View File

@@ -376,14 +376,16 @@ class UnCLIPImageInterpolationPipeline(DiffusionPipeline):
height = self.decoder.config.sample_size
width = self.decoder.config.sample_size
# Get the decoder latents for 1 step and then repeat the same tensor for the entire batch to keep same noise across all interpolation steps.
decoder_latents = self.prepare_latents(
(batch_size, num_channels_latents, height, width),
(1, num_channels_latents, height, width),
text_encoder_hidden_states.dtype,
device,
generator,
decoder_latents,
self.decoder_scheduler,
)
decoder_latents = decoder_latents.repeat((batch_size, 1, 1, 1))
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)):
# expand the latents if we are doing classifier free guidance