1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Improve post-processing performance (#10170)

* Use multiplication instead of division
* Add fast path when denormalizing all or none of the images
This commit is contained in:
Soof Golan
2024-12-10 20:07:26 +02:00
committed by GitHub
parent c9e4fab42c
commit 22d3a82651

View File

@@ -236,7 +236,7 @@ class VaeImageProcessor(ConfigMixin):
`np.ndarray` or `torch.Tensor`:
The denormalized image array.
"""
return (images / 2 + 0.5).clamp(0, 1)
return (images * 0.5 + 0.5).clamp(0, 1)
@staticmethod
def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
@@ -537,6 +537,26 @@ class VaeImageProcessor(ConfigMixin):
return image
def _denormalize_conditionally(
self, images: torch.Tensor, do_denormalize: Optional[List[bool]] = None
) -> torch.Tensor:
r"""
Denormalize a batch of images based on a condition list.
Args:
images (`torch.Tensor`):
The input image tensor.
do_denormalize (`Optional[List[bool]`, *optional*, defaults to `None`):
A list of booleans indicating whether to denormalize each image in the batch. If `None`, will use the
value of `do_normalize` in the `VaeImageProcessor` config.
"""
if do_denormalize is None:
return self.denormalize(images) if self.config.do_normalize else images
return torch.stack(
[self.denormalize(images[i]) if do_denormalize[i] else images[i] for i in range(images.shape[0])]
)
def get_default_height_width(
self,
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
@@ -752,12 +772,7 @@ class VaeImageProcessor(ConfigMixin):
if output_type == "latent":
return image
if do_denormalize is None:
do_denormalize = [self.config.do_normalize] * image.shape[0]
image = torch.stack(
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
)
image = self._denormalize_conditionally(image, do_denormalize)
if output_type == "pt":
return image
@@ -966,12 +981,7 @@ class VaeImageProcessorLDM3D(VaeImageProcessor):
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
output_type = "np"
if do_denormalize is None:
do_denormalize = [self.config.do_normalize] * image.shape[0]
image = torch.stack(
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
)
image = self._denormalize_conditionally(image, do_denormalize)
image = self.pt_to_numpy(image)