mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
Update README.md
This commit is contained in:
committed by
GitHub
parent
ab7857019a
commit
2299951e6d
@@ -23,9 +23,7 @@ More precisely, 🤗 Diffusers offers:
|
||||
- State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)). Check [this overview](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/README.md#pipelines-summary) to see all supported pipelines and their corresponding official papers.
|
||||
- Various noise schedulers that can be used interchangeably for the prefered speed vs. quality trade-off in inference (see [src/diffusers/schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)).
|
||||
- Multiple types of models, such as UNet, can be used as building blocks in an end-to-end diffusion system (see [src/diffusers/models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)).
|
||||
- Training examples to show how to train the most popular diffusion models (see [examples/training](https://github.com/huggingface/diffusers/tree/main/examples/training)).
|
||||
- Inference examples to show how to create custom pipelines for advanced tasks such as image2image, in-painting (see [examples/inference](https://github.com/huggingface/diffusers/tree/main/examples/inference))
|
||||
|
||||
- Training examples to show how to train the most popular diffusion model tasks (see [examples](https://github.com/huggingface/diffusers/tree/main/examples), *e.g.* [unconditional-image-generation](https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation)).
|
||||
|
||||
## Quickstart
|
||||
|
||||
|
||||
Reference in New Issue
Block a user