mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
support flux, ltx i2v, ltx condition
This commit is contained in:
@@ -906,7 +906,7 @@ class FluxPipeline(
|
||||
)
|
||||
|
||||
# 6. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar, self.transformer._cache_context() as cc:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
@@ -917,6 +917,7 @@ class FluxPipeline(
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||
|
||||
cc.mark_state("cond")
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latents,
|
||||
timestep=timestep / 1000,
|
||||
@@ -932,6 +933,8 @@ class FluxPipeline(
|
||||
if do_true_cfg:
|
||||
if negative_image_embeds is not None:
|
||||
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
|
||||
|
||||
cc.mark_state("uncond")
|
||||
neg_noise_pred = self.transformer(
|
||||
hidden_states=latents,
|
||||
timestep=timestep / 1000,
|
||||
|
||||
@@ -1061,7 +1061,7 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 7. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar, self.transformer._cache_context() as cc:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
@@ -1090,6 +1090,7 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
|
||||
timestep = t.expand(latent_model_input.shape[0]).unsqueeze(-1).float()
|
||||
timestep = torch.min(timestep, (1 - conditioning_mask_model_input) * 1000.0)
|
||||
|
||||
cc.mark_state("cond_uncond")
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
|
||||
@@ -771,7 +771,7 @@ class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLo
|
||||
)
|
||||
|
||||
# 7. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar, self.transformer._cache_context() as cc:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
@@ -783,6 +783,7 @@ class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLo
|
||||
timestep = t.expand(latent_model_input.shape[0])
|
||||
timestep = timestep.unsqueeze(-1) * (1 - conditioning_mask)
|
||||
|
||||
cc.mark_state("cond_uncond")
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
|
||||
Reference in New Issue
Block a user