1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

Merge branch 'main' into cogvideox-lora-and-training

This commit is contained in:
Aryan
2024-09-12 13:04:54 +05:30
committed by GitHub
15 changed files with 2554 additions and 4 deletions

View File

@@ -914,6 +914,89 @@ export_to_gif(frames, "animatelcm-motion-lora.gif")
</tr>
</table>
## Using FreeNoise
[FreeNoise: Tuning-Free Longer Video Diffusion via Noise Rescheduling](https://arxiv.org/abs/2310.15169) by Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, Ziwei Liu.
FreeNoise is a sampling mechanism that can generate longer videos with short-video generation models by employing noise-rescheduling, temporal attention over sliding windows, and weighted averaging of latent frames. It also can be used with multiple prompts to allow for interpolated video generations. More details are available in the paper.
The currently supported AnimateDiff pipelines that can be used with FreeNoise are:
- [`AnimateDiffPipeline`]
- [`AnimateDiffControlNetPipeline`]
- [`AnimateDiffVideoToVideoPipeline`]
- [`AnimateDiffVideoToVideoControlNetPipeline`]
In order to use FreeNoise, a single line needs to be added to the inference code after loading your pipelines.
```diff
+ pipe.enable_free_noise()
```
After this, either a single prompt could be used, or multiple prompts can be passed as a dictionary of integer-string pairs. The integer keys of the dictionary correspond to the frame index at which the influence of that prompt would be maximum. Each frame index should map to a single string prompt. The prompts for intermediate frame indices, that are not passed in the dictionary, are created by interpolating between the frame prompts that are passed. By default, simple linear interpolation is used. However, you can customize this behaviour with a callback to the `prompt_interpolation_callback` parameter when enabling FreeNoise.
Full example:
```python
import torch
from diffusers import AutoencoderKL, AnimateDiffPipeline, LCMScheduler, MotionAdapter
from diffusers.utils import export_to_video, load_image
# Load pipeline
dtype = torch.float16
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM", torch_dtype=dtype)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype)
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=motion_adapter, vae=vae, torch_dtype=dtype)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights(
"wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm_lora"
)
pipe.set_adapters(["lcm_lora"], [0.8])
# Enable FreeNoise for long prompt generation
pipe.enable_free_noise(context_length=16, context_stride=4)
pipe.to("cuda")
# Can be a single prompt, or a dictionary with frame timesteps
prompt = {
0: "A caterpillar on a leaf, high quality, photorealistic",
40: "A caterpillar transforming into a cocoon, on a leaf, near flowers, photorealistic",
80: "A cocoon on a leaf, flowers in the backgrond, photorealistic",
120: "A cocoon maturing and a butterfly being born, flowers and leaves visible in the background, photorealistic",
160: "A beautiful butterfly, vibrant colors, sitting on a leaf, flowers in the background, photorealistic",
200: "A beautiful butterfly, flying away in a forest, photorealistic",
240: "A cyberpunk butterfly, neon lights, glowing",
}
negative_prompt = "bad quality, worst quality, jpeg artifacts"
# Run inference
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=256,
guidance_scale=2.5,
num_inference_steps=10,
generator=torch.Generator("cpu").manual_seed(0),
)
# Save video
frames = output.frames[0]
export_to_video(frames, "output.mp4", fps=16)
```
### FreeNoise memory savings
Since FreeNoise processes multiple frames together, there are parts in the modeling where the memory required exceeds that available on normal consumer GPUs. The main memory bottlenecks that we identified are spatial and temporal attention blocks, upsampling and downsampling blocks, resnet blocks and feed-forward layers. Since most of these blocks operate effectively only on the channel/embedding dimension, one can perform chunked inference across the batch dimensions. The batch dimension in AnimateDiff are either spatial (`[B x F, H x W, C]`) or temporal (`B x H x W, F, C`) in nature (note that it may seem counter-intuitive, but the batch dimension here are correct, because spatial blocks process across the `B x F` dimension while the temporal blocks process across the `B x H x W` dimension). We introduce a `SplitInferenceModule` that makes it easier to chunk across any dimension and perform inference. This saves a lot of memory but comes at the cost of requiring more time for inference.
```diff
# Load pipeline and adapters
# ...
+ pipe.enable_free_noise_split_inference()
+ pipe.unet.enable_forward_chunking(16)
```
The call to `pipe.enable_free_noise_split_inference` method accepts two parameters: `spatial_split_size` (defaults to `256`) and `temporal_split_size` (defaults to `16`). These can be configured based on how much VRAM you have available. A lower split size results in lower memory usage but slower inference, whereas a larger split size results in faster inference at the cost of more memory.
## Using `from_single_file` with the MotionAdapter

View File

@@ -0,0 +1,152 @@
# ControlNet training example for Stable Diffusion 3 (SD3)
The `train_controlnet_sd3.py` script shows how to implement the ControlNet training procedure and adapt it for [Stable Diffusion 3](https://arxiv.org/abs/2403.03206).
## Running locally with PyTorch
### Installing the dependencies
Before running the scripts, make sure to install the library's training dependencies:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```
Then cd in the `examples/controlnet` folder and run
```bash
pip install -r requirements_sd3.txt
```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
```bash
accelerate config
```
Or for a default accelerate configuration without answering questions about your environment
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell (e.g., a notebook)
```python
from accelerate.utils import write_basic_config
write_basic_config()
```
When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
## Circle filling dataset
The original dataset is hosted in the [ControlNet repo](https://huggingface.co/lllyasviel/ControlNet/blob/main/training/fill50k.zip). We re-uploaded it to be compatible with `datasets` [here](https://huggingface.co/datasets/fusing/fill50k). Note that `datasets` handles dataloading within the training script.
Please download the dataset and unzip it in the directory `fill50k` in the `examples/controlnet` folder.
## Training
First download the SD3 model from [Hugging Face Hub](https://huggingface.co/stabilityai/stable-diffusion-3-medium). We will use it as a base model for the ControlNet training.
> [!NOTE]
> As the model is gated, before using it with diffusers you first need to go to the [Stable Diffusion 3 Medium Hugging Face page](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows youve accepted the gate. Use the command below to log in:
```bash
huggingface-cli login
```
This will also allow us to push the trained model parameters to the Hugging Face Hub platform.
Our training examples use two test conditioning images. They can be downloaded by running
```sh
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png
```
Then run the following commands to train a ControlNet model.
```bash
export MODEL_DIR="stabilityai/stable-diffusion-3-medium-diffusers"
export OUTPUT_DIR="sd3-controlnet-out"
accelerate launch train_controlnet_sd3.py \
--pretrained_model_name_or_path=$MODEL_DIR \
--output_dir=$OUTPUT_DIR \
--train_data_dir="fill50k" \
--resolution=1024 \
--learning_rate=1e-5 \
--max_train_steps=15000 \
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--validation_steps=100 \
--train_batch_size=1 \
--gradient_accumulation_steps=4
```
To better track our training experiments, we're using flags `validation_image`, `validation_prompt`, and `validation_steps` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
Our experiments were conducted on a single 40GB A100 GPU.
### Inference
Once training is done, we can perform inference like so:
```python
from diffusers import StableDiffusion3ControlNetPipeline, SD3ControlNetModel
from diffusers.utils import load_image
import torch
base_model_path = "stabilityai/stable-diffusion-3-medium-diffusers"
controlnet_path = "sd3-controlnet-out/checkpoint-6500/controlnet"
controlnet = SD3ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
base_model_path, controlnet=controlnet
)
pipe.to("cuda", torch.float16)
control_image = load_image("./conditioning_image_1.png").resize((1024, 1024))
prompt = "pale golden rod circle with old lace background"
# generate image
generator = torch.manual_seed(0)
image = pipe(
prompt, num_inference_steps=20, generator=generator, control_image=control_image
).images[0]
image.save("./output.png")
```
## Notes
### GPU usage
SD3 is a large model and requires a lot of GPU memory.
We recommend using one GPU with at least 80GB of memory.
Make sure to use the right GPU when configuring the [accelerator](https://huggingface.co/docs/transformers/en/accelerate).
## Example results
#### After 500 steps with batch size 8
| | |
|-------------------|:-------------------------:|
|| pale golden rod circle with old lace background |
![conditioning image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png) | ![pale golden rod circle with old lace background](https://huggingface.co/datasets/DavyMorgan/sd3-controlnet-results/resolve/main/step-500.png) |
#### After 6500 steps with batch size 8:
| | |
|-------------------|:-------------------------:|
|| pale golden rod circle with old lace background |
![conditioning image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png) | ![pale golden rod circle with old lace background](https://huggingface.co/datasets/DavyMorgan/sd3-controlnet-results/resolve/main/step-6500.png) |

View File

@@ -0,0 +1,8 @@
accelerate>=0.16.0
torchvision
transformers>=4.25.1
ftfy
tensorboard
Jinja2
datasets
wandb

View File

@@ -115,3 +115,24 @@ class ControlNetSDXL(ExamplesTestsAccelerate):
run_command(self._launch_args + test_args)
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors")))
class ControlNetSD3(ExamplesTestsAccelerate):
def test_controlnet_sd3(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
examples/controlnet/train_controlnet_sd3.py
--pretrained_model_name_or_path=DavyMorgan/tiny-sd3-pipe
--dataset_name=hf-internal-testing/fill10
--output_dir={tmpdir}
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--controlnet_model_name_or_path=DavyMorgan/tiny-controlnet-sd3
--max_train_steps=4
--checkpointing_steps=2
""".split()
run_command(self._launch_args + test_args)
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors")))

File diff suppressed because it is too large Load Diff

View File

@@ -1597,6 +1597,7 @@ def main(args):
tokenizers=[None, None],
text_input_ids_list=[tokens_one, tokens_two],
max_sequence_length=args.max_sequence_length,
device=accelerator.device,
prompt=prompts,
)
else:
@@ -1606,6 +1607,7 @@ def main(args):
tokenizers=[None, None],
text_input_ids_list=[tokens_one, tokens_two],
max_sequence_length=args.max_sequence_length,
device=accelerator.device,
prompt=args.instance_prompt,
)

View File

@@ -0,0 +1,167 @@
# Stable Diffusion text-to-image fine-tuning using PyTorch/XLA
The `train_text_to_image_xla.py` script shows how to fine-tune stable diffusion model on TPU devices using PyTorch/XLA.
It has been tested on v4 and v5p TPU versions. Training code has been tested on multi-host.
This script implements Distributed Data Parallel using GSPMD feature in XLA compiler
where we shard the input batches over the TPU devices.
As of 9-11-2024, these are some expected step times.
| accelerator | global batch size | step time (seconds) |
| ----------- | ----------------- | --------- |
| v5p-128 | 1024 | 0.245 |
| v5p-256 | 2048 | 0.234 |
| v5p-512 | 4096 | 0.2498 |
## Create TPU
To create a TPU on Google Cloud first set these environment variables:
```bash
export TPU_NAME=<tpu-name>
export PROJECT_ID=<project-id>
export ZONE=<google-cloud-zone>
export ACCELERATOR_TYPE=<accelerator type like v5p-8>
export RUNTIME_VERSION=<runtime version like v2-alpha-tpuv5 for v5p>
```
Then run the create TPU command:
```bash
gcloud alpha compute tpus tpu-vm create ${TPU_NAME} --project ${PROJECT_ID}
--zone ${ZONE} --accelerator-type ${ACCELERATOR_TYPE} --version ${RUNTIME_VERSION}
--reserved
```
You can also use other ways to reserve TPUs like GKE or queued resources.
## Setup TPU environment
Install PyTorch and PyTorch/XLA nightly versions:
```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project=${PROJECT_ID} --zone=${ZONE} --worker=all \
--command='
pip3 install --pre torch==2.5.0.dev20240905+cpu torchvision==0.20.0.dev20240905+cpu --index-url https://download.pytorch.org/whl/nightly/cpu
pip3 install "torch_xla[tpu] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.5.0.dev20240905-cp310-cp310-linux_x86_64.whl" -f https://storage.googleapis.com/libtpu-releases/index.html
'
```
Verify that PyTorch and PyTorch/XLA were installed correctly:
```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project ${PROJECT_ID} --zone ${ZONE} --worker=all \
--command='python3 -c "import torch; import torch_xla;"'
```
Install dependencies:
```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project=${PROJECT_ID} --zone=${ZONE} --worker=all \
--command='
git clone https://github.com/huggingface/diffusers.git
cd diffusers
git checkout main
cd examples/research_projects/pytorch_xla
pip3 install -r requirements.txt
pip3 install pillow --upgrade
cd ../../..
pip3 install .'
```
## Run the training job
### Authenticate
Run the following command to authenticate your token.
```bash
huggingface-cli login
```
This script only trains the unet part of the network. The VAE and text encoder
are fixed.
```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project=${PROJECT_ID} --zone=${ZONE} --worker=all \
--command='
export XLA_DISABLE_FUNCTIONALIZATION=1
export PROFILE_DIR=/tmp/
export CACHE_DIR=/tmp/
export DATASET_NAME=lambdalabs/naruto-blip-captions
export PER_HOST_BATCH_SIZE=32 # This is known to work on TPU v4. Can set this to 64 for TPU v5p
export TRAIN_STEPS=50
export OUTPUT_DIR=/tmp/trained-model/
python diffusers/examples/research_projects/pytorch_xla/train_text_to_image_xla.py --pretrained_model_name_or_path=stabilityai/stable-diffusion-2-base --dataset_name=$DATASET_NAME --resolution=512 --center_crop --random_flip --train_batch_size=$PER_HOST_BATCH_SIZE --max_train_steps=$TRAIN_STEPS --learning_rate=1e-06 --mixed_precision=bf16 --profile_duration=80000 --output_dir=$OUTPUT_DIR --dataloader_num_workers=4 --loader_prefetch_size=4 --device_prefetch_size=4'
```
### Environment Envs Explained
* `XLA_DISABLE_FUNCTIONALIZATION`: To optimize the performance for AdamW optimizer.
* `PROFILE_DIR`: Specify where to put the profiling results.
* `CACHE_DIR`: Directory to store XLA compiled graphs for persistent caching.
* `DATASET_NAME`: Dataset to train the model.
* `PER_HOST_BATCH_SIZE`: Size of the batch to load per CPU host. For e.g. for a v5p-16 with 2 CPU hosts, the global batch size will be 2xPER_HOST_BATCH_SIZE. The input batch is sharded along the batch axis.
* `TRAIN_STEPS`: Total number of training steps to run the training for.
* `OUTPUT_DIR`: Directory to store the fine-tuned model.
## Run inference using the output model
To run inference using the output, you can simply load the model and pass it
input prompts. The first pass will compile the graph and takes longer with the following passes running much faster.
```bash
export CACHE_DIR=/tmp/
```
```python
import torch
import os
import sys
import numpy as np
import torch_xla.core.xla_model as xm
from time import time
from diffusers import StableDiffusionPipeline
import torch_xla.runtime as xr
CACHE_DIR = os.environ.get("CACHE_DIR", None)
if CACHE_DIR:
xr.initialize_cache(CACHE_DIR, readonly=False)
def main():
device = xm.xla_device()
model_path = "jffacevedo/pxla_trained_model"
pipe = StableDiffusionPipeline.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
)
pipe.to(device)
prompt = ["A naruto with green eyes and red legs."]
start = time()
print("compiling...")
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
print(f"compile time: {time() - start}")
print("generate...")
start = time()
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
print(f"generation time (after compile) : {time() - start}")
image.save("naruto.png")
if __name__ == '__main__':
main()
```
Expected Results:
```bash
compiling...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [10:03<00:00, 20.10s/it]
compile time: 720.656970500946
generate...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [00:01<00:00, 17.65it/s]
generation time (after compile) : 1.8461642265319824

View File

@@ -0,0 +1,8 @@
accelerate>=0.16.0
torchvision
transformers>=4.25.1
datasets>=2.19.1
ftfy
tensorboard
Jinja2
peft==0.7.0

View File

@@ -0,0 +1,669 @@
import argparse
import os
import random
import time
from pathlib import Path
import datasets
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import torch_xla.core.xla_model as xm
import torch_xla.debug.profiler as xp
import torch_xla.distributed.parallel_loader as pl
import torch_xla.distributed.spmd as xs
import torch_xla.runtime as xr
from huggingface_hub import create_repo, upload_folder
from torchvision import transforms
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDPMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.training_utils import compute_snr
from diffusers.utils import is_wandb_available
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
if is_wandb_available():
pass
PROFILE_DIR = os.environ.get("PROFILE_DIR", None)
CACHE_DIR = os.environ.get("CACHE_DIR", None)
if CACHE_DIR:
xr.initialize_cache(CACHE_DIR, readonly=False)
xr.use_spmd()
DATASET_NAME_MAPPING = {
"lambdalabs/naruto-blip-captions": ("image", "text"),
}
PORT = 9012
def save_model_card(
args,
repo_id: str,
repo_folder: str = None,
):
model_description = f"""
# Text-to-image finetuning - {repo_id}
This pipeline was finetuned from **{args.pretrained_model_name_or_path}** on the **{args.dataset_name}** dataset. \n
## Pipeline usage
You can use the pipeline like so:
```python
import torch
import os
import sys
import numpy as np
import torch_xla.core.xla_model as xm
from time import time
from typing import Tuple
from diffusers import StableDiffusionPipeline
def main(args):
device = xm.xla_device()
model_path = <output_dir>
pipe = StableDiffusionPipeline.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
)
pipe.to(device)
prompt = ["A naruto with green eyes and red legs."]
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
image.save("naruto.png")
if __name__ == '__main__':
main()
```
## Training info
These are the key hyperparameters used during training:
* Steps: {args.max_train_steps}
* Learning rate: {args.learning_rate}
* Batch size: {args.train_batch_size}
* Image resolution: {args.resolution}
* Mixed-precision: {args.mixed_precision}
"""
model_card = load_or_create_model_card(
repo_id_or_path=repo_id,
from_training=True,
license="creativeml-openrail-m",
base_model=args.pretrained_model_name_or_path,
model_description=model_description,
inference=True,
)
tags = ["stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers", "diffusers-training"]
model_card = populate_model_card(model_card, tags=tags)
model_card.save(os.path.join(repo_folder, "README.md"))
class TrainSD:
def __init__(
self,
vae,
weight_dtype,
device,
noise_scheduler,
unet,
optimizer,
text_encoder,
dataloader,
args,
):
self.vae = vae
self.weight_dtype = weight_dtype
self.device = device
self.noise_scheduler = noise_scheduler
self.unet = unet
self.optimizer = optimizer
self.text_encoder = text_encoder
self.args = args
self.mesh = xs.get_global_mesh()
self.dataloader = iter(dataloader)
self.global_step = 0
def run_optimizer(self):
self.optimizer.step()
def start_training(self):
times = []
last_time = time.time()
step = 0
while True:
if self.global_step >= self.args.max_train_steps:
xm.mark_step()
break
if step == 4 and PROFILE_DIR is not None:
xm.wait_device_ops()
xp.trace_detached(f"localhost:{PORT}", PROFILE_DIR, duration_ms=args.profile_duration)
try:
batch = next(self.dataloader)
except Exception as e:
print(e)
break
loss = self.step_fn(batch["pixel_values"], batch["input_ids"])
step_time = time.time() - last_time
if step >= 10:
times.append(step_time)
print(f"step: {step}, step_time: {step_time}")
if step % 5 == 0:
print(f"step: {step}, loss: {loss}")
last_time = time.time()
self.global_step += 1
step += 1
# print(f"Average step time: {sum(times)/len(times)}")
xm.wait_device_ops()
def step_fn(
self,
pixel_values,
input_ids,
):
with xp.Trace("model.forward"):
self.optimizer.zero_grad()
latents = self.vae.encode(pixel_values).latent_dist.sample()
latents = latents * self.vae.config.scaling_factor
noise = torch.randn_like(latents).to(self.device, dtype=self.weight_dtype)
bsz = latents.shape[0]
timesteps = torch.randint(
0, self.noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
)
timesteps = timesteps.long()
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
encoder_hidden_states = self.text_encoder(input_ids, return_dict=False)[0]
if self.args.prediction_type is not None:
# set prediction_type of scheduler if defined
self.noise_scheduler.register_to_config(prediction_type=self.args.prediction_type)
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
model_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0]
with xp.Trace("model.backward"):
if self.args.snr_gamma is None:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
# This is discussed in Section 4.2 of the same paper.
snr = compute_snr(self.noise_scheduler, timesteps)
mse_loss_weights = torch.stack([snr, self.args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(
dim=1
)[0]
if self.noise_scheduler.config.prediction_type == "epsilon":
mse_loss_weights = mse_loss_weights / snr
elif self.noise_scheduler.config.prediction_type == "v_prediction":
mse_loss_weights = mse_loss_weights / (snr + 1)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
loss.backward()
with xp.Trace("optimizer_step"):
self.run_optimizer()
return loss
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1."
)
parser.add_argument("--profile_duration", type=int, default=10000, help="Profile duration in ms")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
),
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-model-finetuned",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--snr_gamma",
type=float,
default=None,
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
"More details here: https://arxiv.org/abs/2303.09556.",
)
parser.add_argument(
"--non_ema_revision",
type=str,
default=None,
required=False,
help=(
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
" remote repository specified with --pretrained_model_name_or_path."
),
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--loader_prefetch_size",
type=int,
default=1,
help=("Number of subprocesses to use for data loading to cpu."),
)
parser.add_argument(
"--device_prefetch_size",
type=int,
default=1,
help=("Number of subprocesses to use for data loading to tpu from cpu. "),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument(
"--prediction_type",
type=str,
default=None,
help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediction_type` is chosen.",
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
args = parser.parse_args()
# default to using the same revision for the non-ema model if not specified
if args.non_ema_revision is None:
args.non_ema_revision = args.revision
return args
def setup_optimizer(unet, args):
optimizer_cls = torch.optim.AdamW
return optimizer_cls(
unet.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
foreach=True,
)
def load_dataset(args):
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = datasets.load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
data_dir=args.train_data_dir,
)
else:
data_files = {}
if args.train_data_dir is not None:
data_files["train"] = os.path.join(args.train_data_dir, "**")
dataset = datasets.load_dataset(
"imagefolder",
data_files=data_files,
cache_dir=args.cache_dir,
)
return dataset
def get_column_names(dataset, args):
column_names = dataset["train"].column_names
dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)
if args.image_column is None:
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
image_column = args.image_column
if image_column not in column_names:
raise ValueError(
f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
)
if args.caption_column is None:
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
caption_column = args.caption_column
if caption_column not in column_names:
raise ValueError(
f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
)
return image_column, caption_column
def main(args):
args = parse_args()
_ = xp.start_server(PORT)
num_devices = xr.global_runtime_device_count()
device_ids = np.arange(num_devices)
mesh_shape = (num_devices, 1)
mesh = xs.Mesh(device_ids, mesh_shape, ("x", "y"))
xs.set_global_mesh(mesh)
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
variant=args.variant,
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
variant=args.variant,
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
revision=args.non_ema_revision,
)
if xm.is_master_ordinal() and args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
).repo_id
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
from torch_xla.distributed.fsdp.utils import apply_xla_patch_to_nn_linear
unet = apply_xla_patch_to_nn_linear(unet, xs.xla_patched_nn_linear_forward)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.train()
# For mixed precision training we cast all non-trainable weights (vae,
# non-lora text_encoder and non-lora unet) to half-precision
# as these weights are only used for inference, keeping weights in full
# precision is not required.
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
device = xm.xla_device()
print("device: ", device)
print("weight_dtype: ", weight_dtype)
text_encoder = text_encoder.to(device, dtype=weight_dtype)
vae = vae.to(device, dtype=weight_dtype)
unet = unet.to(device, dtype=weight_dtype)
optimizer = setup_optimizer(unet, args)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.train()
dataset = load_dataset(args)
image_column, caption_column = get_column_names(dataset, args)
def tokenize_captions(examples, is_train=True):
captions = []
for caption in examples[caption_column]:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
else:
raise ValueError(
f"Caption column `{caption_column}` should contain either strings or lists of strings."
)
inputs = tokenizer(
captions,
max_length=tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)
return inputs.input_ids
train_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
(transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution)),
(transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def preprocess_train(examples):
images = [image.convert("RGB") for image in examples[image_column]]
examples["pixel_values"] = [train_transforms(image) for image in images]
examples["input_ids"] = tokenize_captions(examples)
return examples
train_dataset = dataset["train"]
train_dataset.set_format("torch")
train_dataset.set_transform(preprocess_train)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).to(weight_dtype)
input_ids = torch.stack([example["input_ids"] for example in examples])
return {"pixel_values": pixel_values, "input_ids": input_ids}
g = torch.Generator()
g.manual_seed(xr.host_index())
sampler = torch.utils.data.RandomSampler(train_dataset, replacement=True, num_samples=int(1e10), generator=g)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
sampler=sampler,
collate_fn=collate_fn,
num_workers=args.dataloader_num_workers,
batch_size=args.train_batch_size,
)
train_dataloader = pl.MpDeviceLoader(
train_dataloader,
device,
input_sharding={
"pixel_values": xs.ShardingSpec(mesh, ("x", None, None, None), minibatch=True),
"input_ids": xs.ShardingSpec(mesh, ("x", None), minibatch=True),
},
loader_prefetch_size=args.loader_prefetch_size,
device_prefetch_size=args.device_prefetch_size,
)
if xm.is_master_ordinal():
print("***** Running training *****")
print(f"Instantaneous batch size per device = {args.train_batch_size}")
print(
f"Total train batch size (w. parallel, distributed & accumulation) = {args.train_batch_size * num_devices}"
)
print(f" Total optimization steps = {args.max_train_steps}")
trainer = TrainSD(
vae=vae,
weight_dtype=weight_dtype,
device=device,
noise_scheduler=noise_scheduler,
unet=unet,
optimizer=optimizer,
text_encoder=text_encoder,
dataloader=train_dataloader,
args=args,
)
trainer.start_training()
unet = trainer.unet.to("cpu")
vae = trainer.vae.to("cpu")
text_encoder = trainer.text_encoder.to("cpu")
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
text_encoder=text_encoder,
vae=vae,
unet=unet,
revision=args.revision,
variant=args.variant,
)
pipeline.save_pretrained(args.output_dir)
if xm.is_master_ordinal() and args.push_to_hub:
save_model_card(args, repo_id, repo_folder=args.output_dir)
upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
commit_message="End of training",
ignore_patterns=["step_*", "epoch_*"],
)
if __name__ == "__main__":
args = parse_args()
main(args)

View File

@@ -690,7 +690,7 @@ class FluxPosEmbed(nn.Module):
n_axes = ids.shape[-1]
cos_out = []
sin_out = []
pos = ids.squeeze().float()
pos = ids.float()
is_mps = ids.device.type == "mps"
freqs_dtype = torch.float32 if is_mps else torch.float64
for i in range(n_axes):

View File

@@ -465,6 +465,7 @@ class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
img_ids = img_ids[0]
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)

View File

@@ -28,6 +28,7 @@ from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
USE_PEFT_BACKEND,
deprecate,
is_torch_xla_available,
logging,
replace_example_docstring,
scale_lora_layers,
@@ -39,6 +40,13 @@ from .pipeline_output import StableDiffusionPipelineOutput
from .safety_checker import StableDiffusionSafetyChecker
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
@@ -1036,6 +1044,9 @@ class StableDiffusionPipeline(
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if XLA_AVAILABLE:
xm.mark_step()
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
0

View File

@@ -38,7 +38,20 @@ class BatchedBrownianTree:
except TypeError:
seed = [seed]
self.batched = False
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
self.trees = [
torchsde.BrownianInterval(
t0=t0,
t1=t1,
size=w0.shape,
dtype=w0.dtype,
device=w0.device,
entropy=s,
tol=1e-6,
pool_size=24,
halfway_tree=True,
)
for s in seed
]
@staticmethod
def sort(a, b):

View File

@@ -18,11 +18,11 @@ from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@unittest.skipIf(torch_device == "mps", "Flux has a float64 operation which is not supported in MPS.")
class FluxImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = FluxImg2ImgPipeline
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
batch_params = frozenset(["prompt"])
test_xformers_attention = False
def get_dummy_components(self):
torch.manual_seed(0)

View File

@@ -18,11 +18,11 @@ from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@unittest.skipIf(torch_device == "mps", "Flux has a float64 operation which is not supported in MPS.")
class FluxInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = FluxInpaintPipeline
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
batch_params = frozenset(["prompt"])
test_xformers_attention = False
def get_dummy_components(self):
torch.manual_seed(0)