1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

Add WebUI format support to Advanced Training Script (#6403)

* Add WebUI format support to Advanced Training Script

* style

---------

Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>
This commit is contained in:
apolinário
2023-12-30 08:45:49 -06:00
committed by GitHub
parent 0b63ad5ad5
commit 1622265e13

View File

@@ -20,6 +20,7 @@ import itertools
import logging
import math
import os
import re
import shutil
import warnings
from pathlib import Path
@@ -41,7 +42,7 @@ from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
from PIL import Image
from PIL.ImageOps import exif_transpose
from safetensors.torch import save_file
from safetensors.torch import load_file, save_file
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
@@ -58,7 +59,13 @@ from diffusers import (
from diffusers.loaders import LoraLoaderMixin
from diffusers.optimization import get_scheduler
from diffusers.training_utils import compute_snr
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available
from diffusers.utils import (
check_min_version,
convert_all_state_dict_to_peft,
convert_state_dict_to_diffusers,
convert_state_dict_to_kohya,
is_wandb_available,
)
from diffusers.utils.import_utils import is_xformers_available
@@ -93,10 +100,17 @@ def save_model_card(
img_str += f"""
- text: '{instance_prompt}'
"""
embeddings_filename = f"{repo_folder}_emb"
instance_prompt_webui = re.sub(r"<s\d+>", "", re.sub(r"<s\d+>", embeddings_filename, instance_prompt, count=1))
ti_keys = ", ".join(f'"{match}"' for match in re.findall(r"<s\d+>", instance_prompt))
if instance_prompt_webui != embeddings_filename:
instance_prompt_sentence = f"For example, `{instance_prompt_webui}`"
else:
instance_prompt_sentence = ""
trigger_str = f"You should use {instance_prompt} to trigger the image generation."
diffusers_imports_pivotal = ""
diffusers_example_pivotal = ""
webui_example_pivotal = ""
if train_text_encoder_ti:
trigger_str = (
"To trigger image generation of trained concept(or concepts) replace each concept identifier "
@@ -105,11 +119,16 @@ def save_model_card(
diffusers_imports_pivotal = """from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
"""
diffusers_example_pivotal = f"""embedding_path = hf_hub_download(repo_id='{repo_id}', filename="embeddings.safetensors", repo_type="model")
diffusers_example_pivotal = f"""embedding_path = hf_hub_download(repo_id='{repo_id}', filename='{embeddings_filename}.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[{ti_keys}], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=[{ti_keys}], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
"""
webui_example_pivotal = f"""- *Embeddings*: download **[`{embeddings_filename}.safetensors` here 💾](/{repo_id}/blob/main/{embeddings_filename}.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `{embeddings_filename}` to your prompt. {instance_prompt_sentence}
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
"""
if token_abstraction_dict:
for key, value in token_abstraction_dict.items():
tokens = "".join(value)
@@ -141,9 +160,14 @@ license: openrail++
### These are {repo_id} LoRA adaption weights for {base_model}.
## Trigger words
## Download model
{trigger_str}
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`{repo_folder}.safetensors` here 💾](/{repo_id}/blob/main/{repo_folder}.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:{repo_folder}:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
{webui_example_pivotal}
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
@@ -159,16 +183,12 @@ image = pipeline('{validation_prompt if validation_prompt else instance_prompt}'
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Download model
## Trigger words
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- Download the LoRA *.safetensors [here](/{repo_id}/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder.
- Download the text embeddings *.safetensors [here](/{repo_id}/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder.
All [Files & versions](/{repo_id}/tree/main).
{trigger_str}
## Details
All [Files & versions](/{repo_id}/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
@@ -2035,8 +2055,15 @@ def main(args):
if args.train_text_encoder_ti:
embedding_handler.save_embeddings(
f"{args.output_dir}/embeddings.safetensors",
f"{args.output_dir}/{args.output_dir}_emb.safetensors",
)
# Conver to WebUI format
lora_state_dict = load_file(f"{args.output_dir}/pytorch_lora_weights.safetensors")
peft_state_dict = convert_all_state_dict_to_peft(lora_state_dict)
kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict)
save_file(kohya_state_dict, f"{args.output_dir}/{args.output_dir}.safetensors")
save_model_card(
model_id if not args.push_to_hub else repo_id,
images=images,