mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[feat] add load_lora_adapter() for compatible models (#9712)
* add first draft. * fix * updates. * updates. * updates * updates * updates. * fix-copies * lora constants. * add tests * Apply suggestions from code review Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com> * docstrings. --------- Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
This commit is contained in:
@@ -51,6 +51,9 @@ if is_accelerate_available():
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
|
||||
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
|
||||
|
||||
|
||||
def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None):
|
||||
"""
|
||||
@@ -181,6 +184,119 @@ def _remove_text_encoder_monkey_patch(text_encoder):
|
||||
text_encoder._hf_peft_config_loaded = None
|
||||
|
||||
|
||||
def _fetch_state_dict(
|
||||
pretrained_model_name_or_path_or_dict,
|
||||
weight_name,
|
||||
use_safetensors,
|
||||
local_files_only,
|
||||
cache_dir,
|
||||
force_download,
|
||||
proxies,
|
||||
token,
|
||||
revision,
|
||||
subfolder,
|
||||
user_agent,
|
||||
allow_pickle,
|
||||
):
|
||||
model_file = None
|
||||
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
||||
# Let's first try to load .safetensors weights
|
||||
if (use_safetensors and weight_name is None) or (
|
||||
weight_name is not None and weight_name.endswith(".safetensors")
|
||||
):
|
||||
try:
|
||||
# Here we're relaxing the loading check to enable more Inference API
|
||||
# friendliness where sometimes, it's not at all possible to automatically
|
||||
# determine `weight_name`.
|
||||
if weight_name is None:
|
||||
weight_name = _best_guess_weight_name(
|
||||
pretrained_model_name_or_path_or_dict,
|
||||
file_extension=".safetensors",
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
model_file = _get_model_file(
|
||||
pretrained_model_name_or_path_or_dict,
|
||||
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
)
|
||||
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
||||
except (IOError, safetensors.SafetensorError) as e:
|
||||
if not allow_pickle:
|
||||
raise e
|
||||
# try loading non-safetensors weights
|
||||
model_file = None
|
||||
pass
|
||||
|
||||
if model_file is None:
|
||||
if weight_name is None:
|
||||
weight_name = _best_guess_weight_name(
|
||||
pretrained_model_name_or_path_or_dict, file_extension=".bin", local_files_only=local_files_only
|
||||
)
|
||||
model_file = _get_model_file(
|
||||
pretrained_model_name_or_path_or_dict,
|
||||
weights_name=weight_name or LORA_WEIGHT_NAME,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
)
|
||||
state_dict = load_state_dict(model_file)
|
||||
else:
|
||||
state_dict = pretrained_model_name_or_path_or_dict
|
||||
|
||||
return state_dict
|
||||
|
||||
|
||||
def _best_guess_weight_name(
|
||||
pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=False
|
||||
):
|
||||
if local_files_only or HF_HUB_OFFLINE:
|
||||
raise ValueError("When using the offline mode, you must specify a `weight_name`.")
|
||||
|
||||
targeted_files = []
|
||||
|
||||
if os.path.isfile(pretrained_model_name_or_path_or_dict):
|
||||
return
|
||||
elif os.path.isdir(pretrained_model_name_or_path_or_dict):
|
||||
targeted_files = [f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)]
|
||||
else:
|
||||
files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
|
||||
targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
|
||||
if len(targeted_files) == 0:
|
||||
return
|
||||
|
||||
# "scheduler" does not correspond to a LoRA checkpoint.
|
||||
# "optimizer" does not correspond to a LoRA checkpoint
|
||||
# only top-level checkpoints are considered and not the other ones, hence "checkpoint".
|
||||
unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
|
||||
targeted_files = list(
|
||||
filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
|
||||
)
|
||||
|
||||
if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files):
|
||||
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files))
|
||||
elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files):
|
||||
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files))
|
||||
|
||||
if len(targeted_files) > 1:
|
||||
raise ValueError(
|
||||
f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}."
|
||||
)
|
||||
weight_name = targeted_files[0]
|
||||
return weight_name
|
||||
|
||||
|
||||
class LoraBaseMixin:
|
||||
"""Utility class for handling LoRAs."""
|
||||
|
||||
@@ -234,124 +350,16 @@ class LoraBaseMixin:
|
||||
return (is_model_cpu_offload, is_sequential_cpu_offload)
|
||||
|
||||
@classmethod
|
||||
def _fetch_state_dict(
|
||||
cls,
|
||||
pretrained_model_name_or_path_or_dict,
|
||||
weight_name,
|
||||
use_safetensors,
|
||||
local_files_only,
|
||||
cache_dir,
|
||||
force_download,
|
||||
proxies,
|
||||
token,
|
||||
revision,
|
||||
subfolder,
|
||||
user_agent,
|
||||
allow_pickle,
|
||||
):
|
||||
from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE
|
||||
|
||||
model_file = None
|
||||
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
||||
# Let's first try to load .safetensors weights
|
||||
if (use_safetensors and weight_name is None) or (
|
||||
weight_name is not None and weight_name.endswith(".safetensors")
|
||||
):
|
||||
try:
|
||||
# Here we're relaxing the loading check to enable more Inference API
|
||||
# friendliness where sometimes, it's not at all possible to automatically
|
||||
# determine `weight_name`.
|
||||
if weight_name is None:
|
||||
weight_name = cls._best_guess_weight_name(
|
||||
pretrained_model_name_or_path_or_dict,
|
||||
file_extension=".safetensors",
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
model_file = _get_model_file(
|
||||
pretrained_model_name_or_path_or_dict,
|
||||
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
)
|
||||
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
||||
except (IOError, safetensors.SafetensorError) as e:
|
||||
if not allow_pickle:
|
||||
raise e
|
||||
# try loading non-safetensors weights
|
||||
model_file = None
|
||||
pass
|
||||
|
||||
if model_file is None:
|
||||
if weight_name is None:
|
||||
weight_name = cls._best_guess_weight_name(
|
||||
pretrained_model_name_or_path_or_dict, file_extension=".bin", local_files_only=local_files_only
|
||||
)
|
||||
model_file = _get_model_file(
|
||||
pretrained_model_name_or_path_or_dict,
|
||||
weights_name=weight_name or LORA_WEIGHT_NAME,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
)
|
||||
state_dict = load_state_dict(model_file)
|
||||
else:
|
||||
state_dict = pretrained_model_name_or_path_or_dict
|
||||
|
||||
return state_dict
|
||||
def _fetch_state_dict(cls, *args, **kwargs):
|
||||
deprecation_message = f"Using the `_fetch_state_dict()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _fetch_state_dict`."
|
||||
deprecate("_fetch_state_dict", "0.35.0", deprecation_message)
|
||||
return _fetch_state_dict(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def _best_guess_weight_name(
|
||||
cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=False
|
||||
):
|
||||
from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE
|
||||
|
||||
if local_files_only or HF_HUB_OFFLINE:
|
||||
raise ValueError("When using the offline mode, you must specify a `weight_name`.")
|
||||
|
||||
targeted_files = []
|
||||
|
||||
if os.path.isfile(pretrained_model_name_or_path_or_dict):
|
||||
return
|
||||
elif os.path.isdir(pretrained_model_name_or_path_or_dict):
|
||||
targeted_files = [
|
||||
f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
|
||||
]
|
||||
else:
|
||||
files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
|
||||
targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
|
||||
if len(targeted_files) == 0:
|
||||
return
|
||||
|
||||
# "scheduler" does not correspond to a LoRA checkpoint.
|
||||
# "optimizer" does not correspond to a LoRA checkpoint
|
||||
# only top-level checkpoints are considered and not the other ones, hence "checkpoint".
|
||||
unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
|
||||
targeted_files = list(
|
||||
filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
|
||||
)
|
||||
|
||||
if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files):
|
||||
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files))
|
||||
elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files):
|
||||
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files))
|
||||
|
||||
if len(targeted_files) > 1:
|
||||
raise ValueError(
|
||||
f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}."
|
||||
)
|
||||
weight_name = targeted_files[0]
|
||||
return weight_name
|
||||
def _best_guess_weight_name(cls, *args, **kwargs):
|
||||
deprecation_message = f"Using the `_best_guess_weight_name()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _best_guess_weight_name`."
|
||||
deprecate("_best_guess_weight_name", "0.35.0", deprecation_message)
|
||||
return _best_guess_weight_name(*args, **kwargs)
|
||||
|
||||
def unload_lora_weights(self):
|
||||
"""
|
||||
@@ -725,8 +733,6 @@ class LoraBaseMixin:
|
||||
save_function: Callable,
|
||||
safe_serialization: bool,
|
||||
):
|
||||
from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE
|
||||
|
||||
if os.path.isfile(save_directory):
|
||||
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
||||
return
|
||||
|
||||
@@ -21,7 +21,6 @@ from ..utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
convert_state_dict_to_diffusers,
|
||||
convert_state_dict_to_peft,
|
||||
convert_unet_state_dict_to_peft,
|
||||
deprecate,
|
||||
get_adapter_name,
|
||||
get_peft_kwargs,
|
||||
@@ -33,7 +32,7 @@ from ..utils import (
|
||||
logging,
|
||||
scale_lora_layers,
|
||||
)
|
||||
from .lora_base import LoraBaseMixin
|
||||
from .lora_base import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE, LoraBaseMixin, _fetch_state_dict # noqa
|
||||
from .lora_conversion_utils import (
|
||||
_convert_kohya_flux_lora_to_diffusers,
|
||||
_convert_non_diffusers_lora_to_diffusers,
|
||||
@@ -62,9 +61,6 @@ TEXT_ENCODER_NAME = "text_encoder"
|
||||
UNET_NAME = "unet"
|
||||
TRANSFORMER_NAME = "transformer"
|
||||
|
||||
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
|
||||
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
|
||||
|
||||
|
||||
class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
|
||||
r"""
|
||||
@@ -222,7 +218,7 @@ class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
|
||||
"framework": "pytorch",
|
||||
}
|
||||
|
||||
state_dict = cls._fetch_state_dict(
|
||||
state_dict = _fetch_state_dict(
|
||||
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
|
||||
weight_name=weight_name,
|
||||
use_safetensors=use_safetensors,
|
||||
@@ -282,7 +278,9 @@ class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading only loading the pretrained LoRA weights and not initializing the random weights.
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
@@ -341,7 +339,9 @@ class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
@@ -601,7 +601,9 @@ class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
kwargs (`dict`, *optional*):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
|
||||
"""
|
||||
@@ -744,7 +746,7 @@ class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
|
||||
"framework": "pytorch",
|
||||
}
|
||||
|
||||
state_dict = cls._fetch_state_dict(
|
||||
state_dict = _fetch_state_dict(
|
||||
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
|
||||
weight_name=weight_name,
|
||||
use_safetensors=use_safetensors,
|
||||
@@ -805,7 +807,9 @@ class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading only loading the pretrained LoRA weights and not initializing the random weights.
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
@@ -865,7 +869,9 @@ class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
@@ -1182,7 +1188,7 @@ class SD3LoraLoaderMixin(LoraBaseMixin):
|
||||
"framework": "pytorch",
|
||||
}
|
||||
|
||||
state_dict = cls._fetch_state_dict(
|
||||
state_dict = _fetch_state_dict(
|
||||
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
|
||||
weight_name=weight_name,
|
||||
use_safetensors=use_safetensors,
|
||||
@@ -1226,7 +1232,9 @@ class SD3LoraLoaderMixin(LoraBaseMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
kwargs (`dict`, *optional*):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
|
||||
"""
|
||||
@@ -1250,13 +1258,17 @@ class SD3LoraLoaderMixin(LoraBaseMixin):
|
||||
if not is_correct_format:
|
||||
raise ValueError("Invalid LoRA checkpoint.")
|
||||
|
||||
self.load_lora_into_transformer(
|
||||
state_dict,
|
||||
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
|
||||
adapter_name=adapter_name,
|
||||
_pipeline=self,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
transformer_state_dict = {k: v for k, v in state_dict.items() if "transformer." in k}
|
||||
if len(transformer_state_dict) > 0:
|
||||
self.load_lora_into_transformer(
|
||||
state_dict,
|
||||
transformer=getattr(self, self.transformer_name)
|
||||
if not hasattr(self, "transformer")
|
||||
else self.transformer,
|
||||
adapter_name=adapter_name,
|
||||
_pipeline=self,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
|
||||
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
|
||||
if len(text_encoder_state_dict) > 0:
|
||||
@@ -1301,94 +1313,24 @@ class SD3LoraLoaderMixin(LoraBaseMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
|
||||
raise ValueError(
|
||||
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
||||
)
|
||||
|
||||
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
||||
|
||||
keys = list(state_dict.keys())
|
||||
|
||||
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
|
||||
state_dict = {
|
||||
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
|
||||
}
|
||||
|
||||
if len(state_dict.keys()) > 0:
|
||||
# check with first key if is not in peft format
|
||||
first_key = next(iter(state_dict.keys()))
|
||||
if "lora_A" not in first_key:
|
||||
state_dict = convert_unet_state_dict_to_peft(state_dict)
|
||||
|
||||
if adapter_name in getattr(transformer, "peft_config", {}):
|
||||
raise ValueError(
|
||||
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
|
||||
)
|
||||
|
||||
rank = {}
|
||||
for key, val in state_dict.items():
|
||||
if "lora_B" in key:
|
||||
rank[key] = val.shape[1]
|
||||
|
||||
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict)
|
||||
if "use_dora" in lora_config_kwargs:
|
||||
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"):
|
||||
raise ValueError(
|
||||
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
||||
)
|
||||
else:
|
||||
lora_config_kwargs.pop("use_dora")
|
||||
lora_config = LoraConfig(**lora_config_kwargs)
|
||||
|
||||
# adapter_name
|
||||
if adapter_name is None:
|
||||
adapter_name = get_adapter_name(transformer)
|
||||
|
||||
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
||||
# otherwise loading LoRA weights will lead to an error
|
||||
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
|
||||
|
||||
peft_kwargs = {}
|
||||
if is_peft_version(">=", "0.13.1"):
|
||||
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
|
||||
|
||||
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name, **peft_kwargs)
|
||||
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name, **peft_kwargs)
|
||||
|
||||
warn_msg = ""
|
||||
if incompatible_keys is not None:
|
||||
# Check only for unexpected keys.
|
||||
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
||||
if unexpected_keys:
|
||||
lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k]
|
||||
if lora_unexpected_keys:
|
||||
warn_msg = (
|
||||
f"Loading adapter weights from state_dict led to unexpected keys found in the model:"
|
||||
f" {', '.join(lora_unexpected_keys)}. "
|
||||
)
|
||||
|
||||
# Filter missing keys specific to the current adapter.
|
||||
missing_keys = getattr(incompatible_keys, "missing_keys", None)
|
||||
if missing_keys:
|
||||
lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k]
|
||||
if lora_missing_keys:
|
||||
warn_msg += (
|
||||
f"Loading adapter weights from state_dict led to missing keys in the model:"
|
||||
f" {', '.join(lora_missing_keys)}."
|
||||
)
|
||||
|
||||
if warn_msg:
|
||||
logger.warning(warn_msg)
|
||||
|
||||
# Offload back.
|
||||
if is_model_cpu_offload:
|
||||
_pipeline.enable_model_cpu_offload()
|
||||
elif is_sequential_cpu_offload:
|
||||
_pipeline.enable_sequential_cpu_offload()
|
||||
# Unsafe code />
|
||||
# Load the layers corresponding to transformer.
|
||||
logger.info(f"Loading {cls.transformer_name}.")
|
||||
transformer.load_lora_adapter(
|
||||
state_dict,
|
||||
network_alphas=None,
|
||||
adapter_name=adapter_name,
|
||||
_pipeline=_pipeline,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
|
||||
@@ -1424,7 +1366,9 @@ class SD3LoraLoaderMixin(LoraBaseMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
@@ -1742,7 +1686,7 @@ class FluxLoraLoaderMixin(LoraBaseMixin):
|
||||
"framework": "pytorch",
|
||||
}
|
||||
|
||||
state_dict = cls._fetch_state_dict(
|
||||
state_dict = _fetch_state_dict(
|
||||
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
|
||||
weight_name=weight_name,
|
||||
use_safetensors=use_safetensors,
|
||||
@@ -1819,7 +1763,9 @@ class FluxLoraLoaderMixin(LoraBaseMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
`Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
@@ -1843,14 +1789,18 @@ class FluxLoraLoaderMixin(LoraBaseMixin):
|
||||
if not is_correct_format:
|
||||
raise ValueError("Invalid LoRA checkpoint.")
|
||||
|
||||
self.load_lora_into_transformer(
|
||||
state_dict,
|
||||
network_alphas=network_alphas,
|
||||
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
|
||||
adapter_name=adapter_name,
|
||||
_pipeline=self,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
transformer_state_dict = {k: v for k, v in state_dict.items() if "transformer." in k}
|
||||
if len(transformer_state_dict) > 0:
|
||||
self.load_lora_into_transformer(
|
||||
state_dict,
|
||||
network_alphas=network_alphas,
|
||||
transformer=getattr(self, self.transformer_name)
|
||||
if not hasattr(self, "transformer")
|
||||
else self.transformer,
|
||||
adapter_name=adapter_name,
|
||||
_pipeline=self,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
|
||||
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
|
||||
if len(text_encoder_state_dict) > 0:
|
||||
@@ -1881,104 +1831,32 @@ class FluxLoraLoaderMixin(LoraBaseMixin):
|
||||
The value of the network alpha used for stable learning and preventing underflow. This value has the
|
||||
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
|
||||
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
|
||||
transformer (`SD3Transformer2DModel`):
|
||||
transformer (`FluxTransformer2DModel`):
|
||||
The Transformer model to load the LoRA layers into.
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
|
||||
raise ValueError(
|
||||
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
||||
)
|
||||
|
||||
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
||||
|
||||
# Load the layers corresponding to transformer.
|
||||
keys = list(state_dict.keys())
|
||||
|
||||
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
|
||||
state_dict = {
|
||||
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
|
||||
}
|
||||
|
||||
if len(state_dict.keys()) > 0:
|
||||
# check with first key if is not in peft format
|
||||
first_key = next(iter(state_dict.keys()))
|
||||
if "lora_A" not in first_key:
|
||||
state_dict = convert_unet_state_dict_to_peft(state_dict)
|
||||
|
||||
if adapter_name in getattr(transformer, "peft_config", {}):
|
||||
raise ValueError(
|
||||
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
|
||||
)
|
||||
|
||||
rank = {}
|
||||
for key, val in state_dict.items():
|
||||
if "lora_B" in key:
|
||||
rank[key] = val.shape[1]
|
||||
|
||||
if network_alphas is not None and len(network_alphas) >= 1:
|
||||
prefix = cls.transformer_name
|
||||
alpha_keys = [k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix]
|
||||
network_alphas = {k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys}
|
||||
|
||||
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=network_alphas, peft_state_dict=state_dict)
|
||||
if "use_dora" in lora_config_kwargs:
|
||||
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"):
|
||||
raise ValueError(
|
||||
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
||||
)
|
||||
else:
|
||||
lora_config_kwargs.pop("use_dora")
|
||||
lora_config = LoraConfig(**lora_config_kwargs)
|
||||
|
||||
# adapter_name
|
||||
if adapter_name is None:
|
||||
adapter_name = get_adapter_name(transformer)
|
||||
|
||||
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
||||
# otherwise loading LoRA weights will lead to an error
|
||||
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
|
||||
|
||||
peft_kwargs = {}
|
||||
if is_peft_version(">=", "0.13.1"):
|
||||
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
|
||||
|
||||
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name, **peft_kwargs)
|
||||
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name, **peft_kwargs)
|
||||
|
||||
warn_msg = ""
|
||||
if incompatible_keys is not None:
|
||||
# Check only for unexpected keys.
|
||||
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
||||
if unexpected_keys:
|
||||
lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k]
|
||||
if lora_unexpected_keys:
|
||||
warn_msg = (
|
||||
f"Loading adapter weights from state_dict led to unexpected keys found in the model:"
|
||||
f" {', '.join(lora_unexpected_keys)}. "
|
||||
)
|
||||
|
||||
# Filter missing keys specific to the current adapter.
|
||||
missing_keys = getattr(incompatible_keys, "missing_keys", None)
|
||||
if missing_keys:
|
||||
lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k]
|
||||
if lora_missing_keys:
|
||||
warn_msg += (
|
||||
f"Loading adapter weights from state_dict led to missing keys in the model:"
|
||||
f" {', '.join(lora_missing_keys)}."
|
||||
)
|
||||
|
||||
if warn_msg:
|
||||
logger.warning(warn_msg)
|
||||
|
||||
# Offload back.
|
||||
if is_model_cpu_offload:
|
||||
_pipeline.enable_model_cpu_offload()
|
||||
elif is_sequential_cpu_offload:
|
||||
_pipeline.enable_sequential_cpu_offload()
|
||||
# Unsafe code />
|
||||
transformer_present = any(key.startswith(cls.transformer_name) for key in keys)
|
||||
if transformer_present:
|
||||
logger.info(f"Loading {cls.transformer_name}.")
|
||||
transformer.load_lora_adapter(
|
||||
state_dict,
|
||||
network_alphas=network_alphas,
|
||||
adapter_name=adapter_name,
|
||||
_pipeline=_pipeline,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
|
||||
@@ -2014,7 +1892,9 @@ class FluxLoraLoaderMixin(LoraBaseMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
@@ -2242,7 +2122,10 @@ class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
|
||||
text_encoder_name = TEXT_ENCODER_NAME
|
||||
|
||||
@classmethod
|
||||
def load_lora_into_transformer(cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None):
|
||||
# Copied from diffusers.loaders.lora_pipeline.FluxLoraLoaderMixin.load_lora_into_transformer with FluxTransformer2DModel->UVit2DModel
|
||||
def load_lora_into_transformer(
|
||||
cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
|
||||
):
|
||||
"""
|
||||
This will load the LoRA layers specified in `state_dict` into `transformer`.
|
||||
|
||||
@@ -2255,93 +2138,32 @@ class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
|
||||
The value of the network alpha used for stable learning and preventing underflow. This value has the
|
||||
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
|
||||
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
|
||||
unet (`UNet2DConditionModel`):
|
||||
The UNet model to load the LoRA layers into.
|
||||
transformer (`UVit2DModel`):
|
||||
The Transformer model to load the LoRA layers into.
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
|
||||
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
||||
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
|
||||
raise ValueError(
|
||||
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
||||
)
|
||||
|
||||
# Load the layers corresponding to transformer.
|
||||
keys = list(state_dict.keys())
|
||||
|
||||
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
|
||||
state_dict = {
|
||||
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
|
||||
}
|
||||
|
||||
if network_alphas is not None:
|
||||
alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.transformer_name)]
|
||||
network_alphas = {
|
||||
k.replace(f"{cls.transformer_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
|
||||
}
|
||||
|
||||
if len(state_dict.keys()) > 0:
|
||||
if adapter_name in getattr(transformer, "peft_config", {}):
|
||||
raise ValueError(
|
||||
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
|
||||
)
|
||||
|
||||
rank = {}
|
||||
for key, val in state_dict.items():
|
||||
if "lora_B" in key:
|
||||
rank[key] = val.shape[1]
|
||||
|
||||
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict)
|
||||
if "use_dora" in lora_config_kwargs:
|
||||
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"):
|
||||
raise ValueError(
|
||||
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
||||
)
|
||||
else:
|
||||
lora_config_kwargs.pop("use_dora")
|
||||
lora_config = LoraConfig(**lora_config_kwargs)
|
||||
|
||||
# adapter_name
|
||||
if adapter_name is None:
|
||||
adapter_name = get_adapter_name(transformer)
|
||||
|
||||
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
||||
# otherwise loading LoRA weights will lead to an error
|
||||
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
|
||||
|
||||
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name)
|
||||
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name)
|
||||
|
||||
warn_msg = ""
|
||||
if incompatible_keys is not None:
|
||||
# Check only for unexpected keys.
|
||||
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
||||
if unexpected_keys:
|
||||
lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k]
|
||||
if lora_unexpected_keys:
|
||||
warn_msg = (
|
||||
f"Loading adapter weights from state_dict led to unexpected keys found in the model:"
|
||||
f" {', '.join(lora_unexpected_keys)}. "
|
||||
)
|
||||
|
||||
# Filter missing keys specific to the current adapter.
|
||||
missing_keys = getattr(incompatible_keys, "missing_keys", None)
|
||||
if missing_keys:
|
||||
lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k]
|
||||
if lora_missing_keys:
|
||||
warn_msg += (
|
||||
f"Loading adapter weights from state_dict led to missing keys in the model:"
|
||||
f" {', '.join(lora_missing_keys)}."
|
||||
)
|
||||
|
||||
if warn_msg:
|
||||
logger.warning(warn_msg)
|
||||
|
||||
# Offload back.
|
||||
if is_model_cpu_offload:
|
||||
_pipeline.enable_model_cpu_offload()
|
||||
elif is_sequential_cpu_offload:
|
||||
_pipeline.enable_sequential_cpu_offload()
|
||||
# Unsafe code />
|
||||
transformer_present = any(key.startswith(cls.transformer_name) for key in keys)
|
||||
if transformer_present:
|
||||
logger.info(f"Loading {cls.transformer_name}.")
|
||||
transformer.load_lora_adapter(
|
||||
state_dict,
|
||||
network_alphas=network_alphas,
|
||||
adapter_name=adapter_name,
|
||||
_pipeline=_pipeline,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
|
||||
@@ -2377,7 +2199,9 @@ class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
raise ValueError("PEFT backend is required for this method.")
|
||||
@@ -2619,7 +2443,7 @@ class CogVideoXLoraLoaderMixin(LoraBaseMixin):
|
||||
"framework": "pytorch",
|
||||
}
|
||||
|
||||
state_dict = cls._fetch_state_dict(
|
||||
state_dict = _fetch_state_dict(
|
||||
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
|
||||
weight_name=weight_name,
|
||||
use_safetensors=use_safetensors,
|
||||
@@ -2658,7 +2482,9 @@ class CogVideoXLoraLoaderMixin(LoraBaseMixin):
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
kwargs (`dict`, *optional*):
|
||||
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
|
||||
"""
|
||||
@@ -2691,7 +2517,7 @@ class CogVideoXLoraLoaderMixin(LoraBaseMixin):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer
|
||||
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogVideoXTransformer3DModel
|
||||
def load_lora_into_transformer(
|
||||
cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
|
||||
):
|
||||
@@ -2703,99 +2529,29 @@ class CogVideoXLoraLoaderMixin(LoraBaseMixin):
|
||||
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
|
||||
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
|
||||
encoder lora layers.
|
||||
transformer (`SD3Transformer2DModel`):
|
||||
transformer (`CogVideoXTransformer3DModel`):
|
||||
The Transformer model to load the LoRA layers into.
|
||||
adapter_name (`str`, *optional*):
|
||||
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
||||
`default_{i}` where i is the total number of adapters being loaded.
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights.:
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
|
||||
raise ValueError(
|
||||
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
||||
)
|
||||
|
||||
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
||||
|
||||
keys = list(state_dict.keys())
|
||||
|
||||
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
|
||||
state_dict = {
|
||||
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
|
||||
}
|
||||
|
||||
if len(state_dict.keys()) > 0:
|
||||
# check with first key if is not in peft format
|
||||
first_key = next(iter(state_dict.keys()))
|
||||
if "lora_A" not in first_key:
|
||||
state_dict = convert_unet_state_dict_to_peft(state_dict)
|
||||
|
||||
if adapter_name in getattr(transformer, "peft_config", {}):
|
||||
raise ValueError(
|
||||
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
|
||||
)
|
||||
|
||||
rank = {}
|
||||
for key, val in state_dict.items():
|
||||
if "lora_B" in key:
|
||||
rank[key] = val.shape[1]
|
||||
|
||||
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict)
|
||||
if "use_dora" in lora_config_kwargs:
|
||||
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"):
|
||||
raise ValueError(
|
||||
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
||||
)
|
||||
else:
|
||||
lora_config_kwargs.pop("use_dora")
|
||||
lora_config = LoraConfig(**lora_config_kwargs)
|
||||
|
||||
# adapter_name
|
||||
if adapter_name is None:
|
||||
adapter_name = get_adapter_name(transformer)
|
||||
|
||||
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
||||
# otherwise loading LoRA weights will lead to an error
|
||||
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
|
||||
|
||||
peft_kwargs = {}
|
||||
if is_peft_version(">=", "0.13.1"):
|
||||
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
|
||||
|
||||
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name, **peft_kwargs)
|
||||
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name, **peft_kwargs)
|
||||
|
||||
warn_msg = ""
|
||||
if incompatible_keys is not None:
|
||||
# Check only for unexpected keys.
|
||||
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
||||
if unexpected_keys:
|
||||
lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k]
|
||||
if lora_unexpected_keys:
|
||||
warn_msg = (
|
||||
f"Loading adapter weights from state_dict led to unexpected keys found in the model:"
|
||||
f" {', '.join(lora_unexpected_keys)}. "
|
||||
)
|
||||
|
||||
# Filter missing keys specific to the current adapter.
|
||||
missing_keys = getattr(incompatible_keys, "missing_keys", None)
|
||||
if missing_keys:
|
||||
lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k]
|
||||
if lora_missing_keys:
|
||||
warn_msg += (
|
||||
f"Loading adapter weights from state_dict led to missing keys in the model:"
|
||||
f" {', '.join(lora_missing_keys)}."
|
||||
)
|
||||
|
||||
if warn_msg:
|
||||
logger.warning(warn_msg)
|
||||
|
||||
# Offload back.
|
||||
if is_model_cpu_offload:
|
||||
_pipeline.enable_model_cpu_offload()
|
||||
elif is_sequential_cpu_offload:
|
||||
_pipeline.enable_sequential_cpu_offload()
|
||||
# Unsafe code />
|
||||
# Load the layers corresponding to transformer.
|
||||
logger.info(f"Loading {cls.transformer_name}.")
|
||||
transformer.load_lora_adapter(
|
||||
state_dict,
|
||||
network_alphas=None,
|
||||
adapter_name=adapter_name,
|
||||
_pipeline=_pipeline,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
# Adapted from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights without support for text encoder
|
||||
|
||||
@@ -16,18 +16,32 @@ import inspect
|
||||
from functools import partial
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
from ..utils import (
|
||||
MIN_PEFT_VERSION,
|
||||
USE_PEFT_BACKEND,
|
||||
check_peft_version,
|
||||
convert_unet_state_dict_to_peft,
|
||||
delete_adapter_layers,
|
||||
get_adapter_name,
|
||||
get_peft_kwargs,
|
||||
is_accelerate_available,
|
||||
is_peft_available,
|
||||
is_peft_version,
|
||||
logging,
|
||||
set_adapter_layers,
|
||||
set_weights_and_activate_adapters,
|
||||
)
|
||||
from .lora_base import _fetch_state_dict
|
||||
from .unet_loader_utils import _maybe_expand_lora_scales
|
||||
|
||||
|
||||
if is_accelerate_available():
|
||||
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_SET_ADAPTER_SCALE_FN_MAPPING = {
|
||||
"UNet2DConditionModel": _maybe_expand_lora_scales,
|
||||
"UNetMotionModel": _maybe_expand_lora_scales,
|
||||
@@ -53,6 +67,215 @@ class PeftAdapterMixin:
|
||||
|
||||
_hf_peft_config_loaded = False
|
||||
|
||||
@classmethod
|
||||
# Copied from diffusers.loaders.lora_base.LoraBaseMixin._optionally_disable_offloading
|
||||
def _optionally_disable_offloading(cls, _pipeline):
|
||||
"""
|
||||
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
|
||||
|
||||
Args:
|
||||
_pipeline (`DiffusionPipeline`):
|
||||
The pipeline to disable offloading for.
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
|
||||
"""
|
||||
is_model_cpu_offload = False
|
||||
is_sequential_cpu_offload = False
|
||||
|
||||
if _pipeline is not None and _pipeline.hf_device_map is None:
|
||||
for _, component in _pipeline.components.items():
|
||||
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
|
||||
if not is_model_cpu_offload:
|
||||
is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload)
|
||||
if not is_sequential_cpu_offload:
|
||||
is_sequential_cpu_offload = (
|
||||
isinstance(component._hf_hook, AlignDevicesHook)
|
||||
or hasattr(component._hf_hook, "hooks")
|
||||
and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)
|
||||
)
|
||||
|
||||
logger.info(
|
||||
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
|
||||
)
|
||||
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
|
||||
|
||||
return (is_model_cpu_offload, is_sequential_cpu_offload)
|
||||
|
||||
def load_lora_adapter(self, pretrained_model_name_or_path_or_dict, prefix="transformer", **kwargs):
|
||||
r"""
|
||||
Loads a LoRA adapter into the underlying model.
|
||||
|
||||
Parameters:
|
||||
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
||||
Can be either:
|
||||
|
||||
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
||||
the Hub.
|
||||
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
||||
with [`ModelMixin.save_pretrained`].
|
||||
- A [torch state
|
||||
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
||||
|
||||
prefix (`str`, *optional*): Prefix to filter the state dict.
|
||||
|
||||
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
||||
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
||||
is not used.
|
||||
force_download (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
||||
cached versions if they exist.
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
||||
allowed by Git.
|
||||
subfolder (`str`, *optional*, defaults to `""`):
|
||||
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
||||
network_alphas (`Dict[str, float]`):
|
||||
The value of the network alpha used for stable learning and preventing underflow. This value has the
|
||||
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
|
||||
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
|
||||
low_cpu_mem_usage (`bool`, *optional*):
|
||||
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
||||
weights.
|
||||
"""
|
||||
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
||||
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
subfolder = kwargs.pop("subfolder", None)
|
||||
weight_name = kwargs.pop("weight_name", None)
|
||||
use_safetensors = kwargs.pop("use_safetensors", None)
|
||||
adapter_name = kwargs.pop("adapter_name", None)
|
||||
network_alphas = kwargs.pop("network_alphas", None)
|
||||
_pipeline = kwargs.pop("_pipeline", None)
|
||||
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False)
|
||||
allow_pickle = False
|
||||
|
||||
if low_cpu_mem_usage and is_peft_version("<=", "0.13.0"):
|
||||
raise ValueError(
|
||||
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
||||
)
|
||||
|
||||
user_agent = {
|
||||
"file_type": "attn_procs_weights",
|
||||
"framework": "pytorch",
|
||||
}
|
||||
|
||||
state_dict = _fetch_state_dict(
|
||||
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
|
||||
weight_name=weight_name,
|
||||
use_safetensors=use_safetensors,
|
||||
local_files_only=local_files_only,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
allow_pickle=allow_pickle,
|
||||
)
|
||||
|
||||
keys = list(state_dict.keys())
|
||||
transformer_keys = [k for k in keys if k.startswith(prefix)]
|
||||
if len(transformer_keys) > 0:
|
||||
state_dict = {k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in transformer_keys}
|
||||
|
||||
if len(state_dict.keys()) > 0:
|
||||
# check with first key if is not in peft format
|
||||
first_key = next(iter(state_dict.keys()))
|
||||
if "lora_A" not in first_key:
|
||||
state_dict = convert_unet_state_dict_to_peft(state_dict)
|
||||
|
||||
if adapter_name in getattr(self, "peft_config", {}):
|
||||
raise ValueError(
|
||||
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
|
||||
)
|
||||
|
||||
rank = {}
|
||||
for key, val in state_dict.items():
|
||||
if "lora_B" in key:
|
||||
rank[key] = val.shape[1]
|
||||
|
||||
if network_alphas is not None and len(network_alphas) >= 1:
|
||||
alpha_keys = [k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix]
|
||||
network_alphas = {k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys}
|
||||
|
||||
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=network_alphas, peft_state_dict=state_dict)
|
||||
if "use_dora" in lora_config_kwargs:
|
||||
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"):
|
||||
raise ValueError(
|
||||
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
||||
)
|
||||
else:
|
||||
lora_config_kwargs.pop("use_dora")
|
||||
lora_config = LoraConfig(**lora_config_kwargs)
|
||||
|
||||
# adapter_name
|
||||
if adapter_name is None:
|
||||
adapter_name = get_adapter_name(self)
|
||||
|
||||
# <Unsafe code
|
||||
# We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
|
||||
# Now we remove any existing hooks to `_pipeline`.
|
||||
|
||||
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
||||
# otherwise loading LoRA weights will lead to an error
|
||||
is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline)
|
||||
|
||||
peft_kwargs = {}
|
||||
if is_peft_version(">=", "0.13.1"):
|
||||
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
|
||||
|
||||
inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs)
|
||||
incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs)
|
||||
|
||||
warn_msg = ""
|
||||
if incompatible_keys is not None:
|
||||
# Check only for unexpected keys.
|
||||
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
||||
if unexpected_keys:
|
||||
lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k]
|
||||
if lora_unexpected_keys:
|
||||
warn_msg = (
|
||||
f"Loading adapter weights from state_dict led to unexpected keys found in the model:"
|
||||
f" {', '.join(lora_unexpected_keys)}. "
|
||||
)
|
||||
|
||||
# Filter missing keys specific to the current adapter.
|
||||
missing_keys = getattr(incompatible_keys, "missing_keys", None)
|
||||
if missing_keys:
|
||||
lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k]
|
||||
if lora_missing_keys:
|
||||
warn_msg += (
|
||||
f"Loading adapter weights from state_dict led to missing keys in the model:"
|
||||
f" {', '.join(lora_missing_keys)}."
|
||||
)
|
||||
|
||||
if warn_msg:
|
||||
logger.warning(warn_msg)
|
||||
|
||||
# Offload back.
|
||||
if is_model_cpu_offload:
|
||||
_pipeline.enable_model_cpu_offload()
|
||||
elif is_sequential_cpu_offload:
|
||||
_pipeline.enable_sequential_cpu_offload()
|
||||
# Unsafe code />
|
||||
|
||||
def set_adapters(
|
||||
self,
|
||||
adapter_names: Union[List[str], str],
|
||||
|
||||
39
tests/lora/test_deprecated_utilities.py
Normal file
39
tests/lora/test_deprecated_utilities.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import os
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers.loaders.lora_base import LoraBaseMixin
|
||||
|
||||
|
||||
class UtilityMethodDeprecationTests(unittest.TestCase):
|
||||
def test_fetch_state_dict_cls_method_raises_warning(self):
|
||||
state_dict = torch.nn.Linear(3, 3).state_dict()
|
||||
with self.assertWarns(FutureWarning) as warning:
|
||||
_ = LoraBaseMixin._fetch_state_dict(
|
||||
state_dict,
|
||||
weight_name=None,
|
||||
use_safetensors=False,
|
||||
local_files_only=True,
|
||||
cache_dir=None,
|
||||
force_download=False,
|
||||
proxies=None,
|
||||
token=None,
|
||||
revision=None,
|
||||
subfolder=None,
|
||||
user_agent=None,
|
||||
allow_pickle=None,
|
||||
)
|
||||
warning_message = str(warning.warnings[0].message)
|
||||
assert "Using the `_fetch_state_dict()` method from" in warning_message
|
||||
|
||||
def test_best_guess_weight_name_cls_method_raises_warning(self):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
state_dict = torch.nn.Linear(3, 3).state_dict()
|
||||
torch.save(state_dict, os.path.join(tmpdir, "pytorch_lora_weights.bin"))
|
||||
|
||||
with self.assertWarns(FutureWarning) as warning:
|
||||
_ = LoraBaseMixin._best_guess_weight_name(pretrained_model_name_or_path_or_dict=tmpdir)
|
||||
warning_message = str(warning.warnings[0].message)
|
||||
assert "Using the `_best_guess_weight_name()` method from" in warning_message
|
||||
@@ -1787,7 +1787,7 @@ class PeftLoraLoaderMixinTests:
|
||||
logger = (
|
||||
logging.get_logger("diffusers.loaders.unet")
|
||||
if self.unet_kwargs is not None
|
||||
else logging.get_logger("diffusers.loaders.lora_pipeline")
|
||||
else logging.get_logger("diffusers.loaders.peft")
|
||||
)
|
||||
logger.setLevel(30)
|
||||
with CaptureLogger(logger) as cap_logger:
|
||||
@@ -1826,7 +1826,7 @@ class PeftLoraLoaderMixinTests:
|
||||
logger = (
|
||||
logging.get_logger("diffusers.loaders.unet")
|
||||
if self.unet_kwargs is not None
|
||||
else logging.get_logger("diffusers.loaders.lora_pipeline")
|
||||
else logging.get_logger("diffusers.loaders.peft")
|
||||
)
|
||||
logger.setLevel(30)
|
||||
with CaptureLogger(logger) as cap_logger:
|
||||
|
||||
Reference in New Issue
Block a user