1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[LTX0.9.5] Refactor LTXConditionPipeline for text-only conditioning (#11174)

* Refactor `LTXConditionPipeline` to add text-only conditioning

* style

* up

* Refactor `LTXConditionPipeline` to streamline condition handling and improve clarity

* Improve condition checks

* Simplify latents handling based on conditioning type

* Refactor rope_interpolation_scale preparation for clarity and efficiency

* Update LTXConditionPipeline docstring to clarify supported input types

* Add LTX Video 0.9.5 model to documentation

* Clarify documentation to indicate support for text-only conditioning without passing `conditions`

* refactor: comment out unused parameters in LTXConditionPipeline

* fix: restore previously commented parameters in LTXConditionPipeline

* fix: remove unused parameters from LTXConditionPipeline

* refactor: remove unnecessary lines in LTXConditionPipeline
This commit is contained in:
Tolga Cangöz
2025-04-04 17:43:15 +03:00
committed by GitHub
parent 94f2c48d58
commit 13e48492f0
2 changed files with 126 additions and 112 deletions

View File

@@ -32,6 +32,7 @@ Available models:
|:-------------:|:-----------------:|
| [`LTX Video 0.9.0`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.safetensors) | `torch.bfloat16` |
| [`LTX Video 0.9.1`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) | `torch.bfloat16` |
| [`LTX Video 0.9.5`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.5.safetensors) | `torch.bfloat16` |
Note: The recommended dtype is for the transformer component. The VAE and text encoders can be either `torch.float32`, `torch.bfloat16` or `torch.float16` but the recommended dtype is `torch.bfloat16` as used in the original repository.

View File

@@ -14,7 +14,7 @@
import inspect
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import PIL.Image
import torch
@@ -75,6 +75,7 @@ EXAMPLE_DOC_STRING = """
>>> # Generate video
>>> generator = torch.Generator("cuda").manual_seed(0)
>>> # Text-only conditioning is also supported without the need to pass `conditions`
>>> video = pipe(
... conditions=[condition1, condition2],
... prompt=prompt,
@@ -223,7 +224,7 @@ def retrieve_latents(
class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
r"""
Pipeline for image-to-video generation.
Pipeline for text/image/video-to-video generation.
Reference: https://github.com/Lightricks/LTX-Video
@@ -482,9 +483,6 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
if conditions is not None and (image is not None or video is not None):
raise ValueError("If `conditions` is provided, `image` and `video` must not be provided.")
if conditions is None and (image is None and video is None):
raise ValueError("If `conditions` is not provided, `image` or `video` must be provided.")
if conditions is None:
if isinstance(image, list) and isinstance(frame_index, list) and len(image) != len(frame_index):
raise ValueError(
@@ -642,9 +640,9 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
def prepare_latents(
self,
conditions: List[torch.Tensor],
condition_strength: List[float],
condition_frame_index: List[int],
conditions: Optional[List[torch.Tensor]] = None,
condition_strength: Optional[List[float]] = None,
condition_frame_index: Optional[List[int]] = None,
batch_size: int = 1,
num_channels_latents: int = 128,
height: int = 512,
@@ -654,7 +652,7 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
generator: Optional[torch.Generator] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
num_latent_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
latent_height = height // self.vae_spatial_compression_ratio
latent_width = width // self.vae_spatial_compression_ratio
@@ -662,77 +660,80 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
condition_latent_frames_mask = torch.zeros((batch_size, num_latent_frames), device=device, dtype=torch.float32)
if len(conditions) > 0:
condition_latent_frames_mask = torch.zeros(
(batch_size, num_latent_frames), device=device, dtype=torch.float32
)
extra_conditioning_latents = []
extra_conditioning_video_ids = []
extra_conditioning_mask = []
extra_conditioning_num_latents = 0
for data, strength, frame_index in zip(conditions, condition_strength, condition_frame_index):
condition_latents = retrieve_latents(self.vae.encode(data), generator=generator)
condition_latents = self._normalize_latents(
condition_latents, self.vae.latents_mean, self.vae.latents_std
).to(device, dtype=dtype)
extra_conditioning_latents = []
extra_conditioning_video_ids = []
extra_conditioning_mask = []
extra_conditioning_num_latents = 0
for data, strength, frame_index in zip(conditions, condition_strength, condition_frame_index):
condition_latents = retrieve_latents(self.vae.encode(data), generator=generator)
condition_latents = self._normalize_latents(
condition_latents, self.vae.latents_mean, self.vae.latents_std
).to(device, dtype=dtype)
num_data_frames = data.size(2)
num_cond_frames = condition_latents.size(2)
num_data_frames = data.size(2)
num_cond_frames = condition_latents.size(2)
if frame_index == 0:
latents[:, :, :num_cond_frames] = torch.lerp(
latents[:, :, :num_cond_frames], condition_latents, strength
)
condition_latent_frames_mask[:, :num_cond_frames] = strength
if frame_index == 0:
latents[:, :, :num_cond_frames] = torch.lerp(
latents[:, :, :num_cond_frames], condition_latents, strength
)
condition_latent_frames_mask[:, :num_cond_frames] = strength
else:
if num_data_frames > 1:
if num_cond_frames < num_prefix_latent_frames:
raise ValueError(
f"Number of latent frames must be at least {num_prefix_latent_frames} but got {num_data_frames}."
)
else:
if num_data_frames > 1:
if num_cond_frames < num_prefix_latent_frames:
raise ValueError(
f"Number of latent frames must be at least {num_prefix_latent_frames} but got {num_data_frames}."
)
if num_cond_frames > num_prefix_latent_frames:
start_frame = frame_index // self.vae_temporal_compression_ratio + num_prefix_latent_frames
end_frame = start_frame + num_cond_frames - num_prefix_latent_frames
latents[:, :, start_frame:end_frame] = torch.lerp(
latents[:, :, start_frame:end_frame],
condition_latents[:, :, num_prefix_latent_frames:],
strength,
)
condition_latent_frames_mask[:, start_frame:end_frame] = strength
condition_latents = condition_latents[:, :, :num_prefix_latent_frames]
if num_cond_frames > num_prefix_latent_frames:
start_frame = frame_index // self.vae_temporal_compression_ratio + num_prefix_latent_frames
end_frame = start_frame + num_cond_frames - num_prefix_latent_frames
latents[:, :, start_frame:end_frame] = torch.lerp(
latents[:, :, start_frame:end_frame],
condition_latents[:, :, num_prefix_latent_frames:],
strength,
)
condition_latent_frames_mask[:, start_frame:end_frame] = strength
condition_latents = condition_latents[:, :, :num_prefix_latent_frames]
noise = randn_tensor(condition_latents.shape, generator=generator, device=device, dtype=dtype)
condition_latents = torch.lerp(noise, condition_latents, strength)
noise = randn_tensor(condition_latents.shape, generator=generator, device=device, dtype=dtype)
condition_latents = torch.lerp(noise, condition_latents, strength)
condition_video_ids = self._prepare_video_ids(
batch_size,
condition_latents.size(2),
latent_height,
latent_width,
patch_size=self.transformer_spatial_patch_size,
patch_size_t=self.transformer_temporal_patch_size,
device=device,
)
condition_video_ids = self._scale_video_ids(
condition_video_ids,
scale_factor=self.vae_spatial_compression_ratio,
scale_factor_t=self.vae_temporal_compression_ratio,
frame_index=frame_index,
device=device,
)
condition_latents = self._pack_latents(
condition_latents,
self.transformer_spatial_patch_size,
self.transformer_temporal_patch_size,
)
condition_conditioning_mask = torch.full(
condition_latents.shape[:2], strength, device=device, dtype=dtype
)
condition_video_ids = self._prepare_video_ids(
batch_size,
condition_latents.size(2),
latent_height,
latent_width,
patch_size=self.transformer_spatial_patch_size,
patch_size_t=self.transformer_temporal_patch_size,
device=device,
)
condition_video_ids = self._scale_video_ids(
condition_video_ids,
scale_factor=self.vae_spatial_compression_ratio,
scale_factor_t=self.vae_temporal_compression_ratio,
frame_index=frame_index,
device=device,
)
condition_latents = self._pack_latents(
condition_latents,
self.transformer_spatial_patch_size,
self.transformer_temporal_patch_size,
)
condition_conditioning_mask = torch.full(
condition_latents.shape[:2], strength, device=device, dtype=dtype
)
extra_conditioning_latents.append(condition_latents)
extra_conditioning_video_ids.append(condition_video_ids)
extra_conditioning_mask.append(condition_conditioning_mask)
extra_conditioning_num_latents += condition_latents.size(1)
extra_conditioning_latents.append(condition_latents)
extra_conditioning_video_ids.append(condition_video_ids)
extra_conditioning_mask.append(condition_conditioning_mask)
extra_conditioning_num_latents += condition_latents.size(1)
video_ids = self._prepare_video_ids(
batch_size,
@@ -743,7 +744,10 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
patch_size=self.transformer_spatial_patch_size,
device=device,
)
conditioning_mask = condition_latent_frames_mask.gather(1, video_ids[:, 0])
if len(conditions) > 0:
conditioning_mask = condition_latent_frames_mask.gather(1, video_ids[:, 0])
else:
conditioning_mask, extra_conditioning_num_latents = None, 0
video_ids = self._scale_video_ids(
video_ids,
scale_factor=self.vae_spatial_compression_ratio,
@@ -755,7 +759,7 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
)
if len(extra_conditioning_latents) > 0:
if len(conditions) > 0 and len(extra_conditioning_latents) > 0:
latents = torch.cat([*extra_conditioning_latents, latents], dim=1)
video_ids = torch.cat([*extra_conditioning_video_ids, video_ids], dim=2)
conditioning_mask = torch.cat([*extra_conditioning_mask, conditioning_mask], dim=1)
@@ -955,7 +959,7 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
frame_index = [condition.frame_index for condition in conditions]
image = [condition.image for condition in conditions]
video = [condition.video for condition in conditions]
else:
elif image is not None or video is not None:
if not isinstance(image, list):
image = [image]
num_conditions = 1
@@ -999,32 +1003,34 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
vae_dtype = self.vae.dtype
conditioning_tensors = []
for condition_image, condition_video, condition_frame_index, condition_strength in zip(
image, video, frame_index, strength
):
if condition_image is not None:
condition_tensor = (
self.video_processor.preprocess(condition_image, height, width)
.unsqueeze(2)
.to(device, dtype=vae_dtype)
)
elif condition_video is not None:
condition_tensor = self.video_processor.preprocess_video(condition_video, height, width)
num_frames_input = condition_tensor.size(2)
num_frames_output = self.trim_conditioning_sequence(
condition_frame_index, num_frames_input, num_frames
)
condition_tensor = condition_tensor[:, :, :num_frames_output]
condition_tensor = condition_tensor.to(device, dtype=vae_dtype)
else:
raise ValueError("Either `image` or `video` must be provided in the `LTXVideoCondition`.")
is_conditioning_image_or_video = image is not None or video is not None
if is_conditioning_image_or_video:
for condition_image, condition_video, condition_frame_index, condition_strength in zip(
image, video, frame_index, strength
):
if condition_image is not None:
condition_tensor = (
self.video_processor.preprocess(condition_image, height, width)
.unsqueeze(2)
.to(device, dtype=vae_dtype)
)
elif condition_video is not None:
condition_tensor = self.video_processor.preprocess_video(condition_video, height, width)
num_frames_input = condition_tensor.size(2)
num_frames_output = self.trim_conditioning_sequence(
condition_frame_index, num_frames_input, num_frames
)
condition_tensor = condition_tensor[:, :, :num_frames_output]
condition_tensor = condition_tensor.to(device, dtype=vae_dtype)
else:
raise ValueError("Either `image` or `video` must be provided for conditioning.")
if condition_tensor.size(2) % self.vae_temporal_compression_ratio != 1:
raise ValueError(
f"Number of frames in the video must be of the form (k * {self.vae_temporal_compression_ratio} + 1) "
f"but got {condition_tensor.size(2)} frames."
)
conditioning_tensors.append(condition_tensor)
if condition_tensor.size(2) % self.vae_temporal_compression_ratio != 1:
raise ValueError(
f"Number of frames in the video must be of the form (k * {self.vae_temporal_compression_ratio} + 1) "
f"but got {condition_tensor.size(2)} frames."
)
conditioning_tensors.append(condition_tensor)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
@@ -1045,7 +1051,7 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
video_coords = video_coords.float()
video_coords[:, 0] = video_coords[:, 0] * (1.0 / frame_rate)
init_latents = latents.clone()
init_latents = latents.clone() if is_conditioning_image_or_video else None
if self.do_classifier_free_guidance:
video_coords = torch.cat([video_coords, video_coords], dim=0)
@@ -1065,7 +1071,7 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# 7. Denoising loop
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
@@ -1073,7 +1079,7 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
self._current_timestep = t
if image_cond_noise_scale > 0:
if image_cond_noise_scale > 0 and init_latents is not None:
# Add timestep-dependent noise to the hard-conditioning latents
# This helps with motion continuity, especially when conditioned on a single frame
latents = self.add_noise_to_image_conditioning_latents(
@@ -1086,16 +1092,18 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
)
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
conditioning_mask_model_input = (
torch.cat([conditioning_mask, conditioning_mask])
if self.do_classifier_free_guidance
else conditioning_mask
)
if is_conditioning_image_or_video:
conditioning_mask_model_input = (
torch.cat([conditioning_mask, conditioning_mask])
if self.do_classifier_free_guidance
else conditioning_mask
)
latent_model_input = latent_model_input.to(prompt_embeds.dtype)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0]).unsqueeze(-1).float()
timestep = torch.min(timestep, (1 - conditioning_mask_model_input) * 1000.0)
if is_conditioning_image_or_video:
timestep = torch.min(timestep, (1 - conditioning_mask_model_input) * 1000.0)
noise_pred = self.transformer(
hidden_states=latent_model_input,
@@ -1115,8 +1123,11 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
denoised_latents = self.scheduler.step(
-noise_pred, t, latents, per_token_timesteps=timestep, return_dict=False
)[0]
tokens_to_denoise_mask = (t / 1000 - 1e-6 < (1.0 - conditioning_mask)).unsqueeze(-1)
latents = torch.where(tokens_to_denoise_mask, denoised_latents, latents)
if is_conditioning_image_or_video:
tokens_to_denoise_mask = (t / 1000 - 1e-6 < (1.0 - conditioning_mask)).unsqueeze(-1)
latents = torch.where(tokens_to_denoise_mask, denoised_latents, latents)
else:
latents = denoised_latents
if callback_on_step_end is not None:
callback_kwargs = {}
@@ -1134,7 +1145,9 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
if XLA_AVAILABLE:
xm.mark_step()
latents = latents[:, extra_conditioning_num_latents:]
if is_conditioning_image_or_video:
latents = latents[:, extra_conditioning_num_latents:]
latents = self._unpack_latents(
latents,
latent_num_frames,