mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
style
This commit is contained in:
@@ -603,7 +603,7 @@ class ResnetBlockBigGANpp(nn.Module):
|
||||
self.Dropout_0 = nn.Dropout(dropout)
|
||||
self.Conv_1 = conv2d(out_ch, out_ch, init_scale=init_scale, kernel_size=3, padding=1)
|
||||
if in_ch != out_ch or up or down:
|
||||
#1x1 convolution with DDPM initialization.
|
||||
# 1x1 convolution with DDPM initialization.
|
||||
self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0)
|
||||
|
||||
self.skip_rescale = skip_rescale
|
||||
@@ -757,9 +757,7 @@ class RearrangeDim(nn.Module):
|
||||
|
||||
def conv2d(in_planes, out_planes, kernel_size=3, stride=1, bias=True, init_scale=1.0, padding=1):
|
||||
"""nXn convolution with DDPM initialization."""
|
||||
conv = nn.Conv2d(
|
||||
in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias
|
||||
)
|
||||
conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)
|
||||
conv.weight.data = variance_scaling(init_scale)(conv.weight.data.shape)
|
||||
nn.init.zeros_(conv.bias)
|
||||
return conv
|
||||
|
||||
@@ -289,9 +289,7 @@ def downsample_2d(x, k=None, factor=2, gain=1):
|
||||
|
||||
def conv2d(in_planes, out_planes, kernel_size=3, stride=1, bias=True, init_scale=1.0, padding=1):
|
||||
"""nXn convolution with DDPM initialization."""
|
||||
conv = nn.Conv2d(
|
||||
in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias
|
||||
)
|
||||
conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)
|
||||
conv.weight.data = variance_scaling(init_scale)(conv.weight.data.shape)
|
||||
nn.init.zeros_(conv.bias)
|
||||
return conv
|
||||
@@ -336,7 +334,7 @@ class Combine(nn.Module):
|
||||
|
||||
def __init__(self, dim1, dim2, method="cat"):
|
||||
super().__init__()
|
||||
#1x1 convolution with DDPM initialization.
|
||||
# 1x1 convolution with DDPM initialization.
|
||||
self.Conv_0 = conv2d(dim1, dim2, kernel_size=1, padding=0)
|
||||
self.method = method
|
||||
|
||||
@@ -602,7 +600,9 @@ class NCSNpp(ModelMixin, ConfigMixin):
|
||||
else:
|
||||
if progressive == "output_skip":
|
||||
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6))
|
||||
modules.append(conv2d(in_ch, channels, bias=True, init_scale=init_scale, kernel_size=3, padding=1))
|
||||
modules.append(
|
||||
conv2d(in_ch, channels, bias=True, init_scale=init_scale, kernel_size=3, padding=1)
|
||||
)
|
||||
pyramid_ch = channels
|
||||
elif progressive == "residual":
|
||||
modules.append(pyramid_upsample(in_ch=pyramid_ch, out_ch=in_ch))
|
||||
|
||||
Reference in New Issue
Block a user