mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
test
This commit is contained in:
@@ -660,11 +660,10 @@ class MochiPipeline(DiffusionPipeline):
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||
|
||||
print(t)
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
timestep=1000 - timestep,
|
||||
timestep=timestep,
|
||||
encoder_attention_mask=prompt_attention_mask,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
@@ -205,9 +205,15 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
||||
timesteps = sigmas * self.config.num_train_timesteps
|
||||
|
||||
self.timesteps = timesteps.to(device=device)
|
||||
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
||||
if self.config.invert_sigmas:
|
||||
sigmas = 1.0 - sigmas
|
||||
timesteps = sigmas * self.config.num_train_timesteps
|
||||
sigmas = torch.cat([sigmas, torch.ones(1, device=sigmas.device)])
|
||||
else:
|
||||
sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
||||
|
||||
self.timesteps = timesteps.to(device=device)
|
||||
self.sigmas = sigmas
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
|
||||
@@ -295,10 +301,6 @@ class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
sigma = self.sigmas[self.step_index]
|
||||
sigma_next = self.sigmas[self.step_index + 1]
|
||||
|
||||
if self.config.invert_sigmas:
|
||||
print("inverting")
|
||||
sigma, sigma_next = sigma_next, sigma
|
||||
|
||||
prev_sample = sample + (sigma_next - sigma) * model_output
|
||||
|
||||
# Cast sample back to model compatible dtype
|
||||
|
||||
Reference in New Issue
Block a user