mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
make style
This commit is contained in:
@@ -131,4 +131,4 @@ TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS = frozenset(["input_tokens"])
|
||||
VIDEO_TO_VIDEO_BATCH_PARAMS = frozenset(["prompt", "negative_prompt", "video"])
|
||||
|
||||
# callback params
|
||||
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS = frozenset(["prompt_embeds"])
|
||||
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS = frozenset(["prompt_embeds"])
|
||||
|
||||
@@ -13,43 +13,28 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import copy
|
||||
import gc
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
||||
|
||||
from diffusers import (
|
||||
ModularPipeline,
|
||||
ComponentSpec,
|
||||
ComponentsManager,
|
||||
AutoencoderKL,
|
||||
DDIMScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
LCMScheduler,
|
||||
StableDiffusionXLImg2ImgPipeline,
|
||||
ModularPipeline,
|
||||
StableDiffusionXLPipeline,
|
||||
UNet2DConditionModel,
|
||||
UniPCMultistepScheduler,
|
||||
)
|
||||
from diffusers.utils.testing_utils import (
|
||||
backend_empty_cache,
|
||||
enable_full_determinism,
|
||||
load_image,
|
||||
numpy_cosine_similarity_distance,
|
||||
require_torch_accelerator,
|
||||
slow,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..pipeline_params import (
|
||||
IMAGE_INPAINTING_BATCH_PARAMS,
|
||||
IMAGE_INPAINTING_PARAMS,
|
||||
TEXT_TO_IMAGE_BATCH_PARAMS,
|
||||
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
||||
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
||||
TEXT_TO_IMAGE_PARAMS,
|
||||
)
|
||||
@@ -143,12 +128,16 @@ class StableDiffusionXLModularPipelineFastTests(
|
||||
@require_torch_accelerator
|
||||
def test_stable_diffusion_xl_offloads(self):
|
||||
pipes = []
|
||||
sd_pipe = ModularPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe",).to(torch_device)
|
||||
sd_pipe = ModularPipeline.from_pretrained(
|
||||
"hf-internal-testing/tiny-sd-pipe",
|
||||
).to(torch_device)
|
||||
pipes.append(sd_pipe)
|
||||
|
||||
cm = ComponentsManager()
|
||||
cm.enable_auto_cpu_offload(device=torch_device)
|
||||
sd_pipe = ModularPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe", components_manager=cm).to(torch_device)
|
||||
sd_pipe = ModularPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe", components_manager=cm).to(
|
||||
torch_device
|
||||
)
|
||||
pipes.append(sd_pipe)
|
||||
|
||||
image_slices = []
|
||||
@@ -253,4 +242,4 @@ class StableDiffusionXLModularPipelineFastTests(
|
||||
|
||||
image_slices.append(image[0, -3:, -3:, -1].flatten())
|
||||
|
||||
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
|
||||
Reference in New Issue
Block a user