mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
attn refactoring
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
import math
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
@@ -10,16 +11,24 @@ class AttentionBlock(nn.Module):
|
||||
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
|
||||
to the N-d case.
|
||||
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
||||
Uses three q, k, v linear layers to compute attention
|
||||
Uses three q, k, v linear layers to compute attention.
|
||||
|
||||
Parameters:
|
||||
channels (:obj:`int`): The number of channels in the input and output.
|
||||
num_head_channels (:obj:`int`, *optional*):
|
||||
The number of channels in each head. If None, then `num_heads` = 1.
|
||||
num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm.
|
||||
rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
|
||||
eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
num_head_channels=None,
|
||||
num_groups=32,
|
||||
rescale_output_factor=1.0,
|
||||
eps=1e-5,
|
||||
channels: int,
|
||||
num_head_channels: Optional[int] = None,
|
||||
num_groups: int = 32,
|
||||
rescale_output_factor: float = 1.0,
|
||||
eps: float = 1e-5,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
@@ -86,10 +95,26 @@ class AttentionBlock(nn.Module):
|
||||
class SpatialTransformer(nn.Module):
|
||||
"""
|
||||
Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
|
||||
standard transformer action. Finally, reshape to image
|
||||
standard transformer action. Finally, reshape to image.
|
||||
|
||||
Parameters:
|
||||
in_channels (:obj:`int`): The number of channels in the input and output.
|
||||
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
|
||||
d_head (:obj:`int`): The number of channels in each head.
|
||||
depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
||||
dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
||||
context_dim (:obj:`int`, *optional*): The number of context dimensions to use.
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
n_heads: int,
|
||||
d_head: int,
|
||||
depth: int = 1,
|
||||
dropout: float = 0.0,
|
||||
context_dim: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
self.d_head = d_head
|
||||
@@ -112,22 +137,44 @@ class SpatialTransformer(nn.Module):
|
||||
for block in self.transformer_blocks:
|
||||
block._set_attention_slice(slice_size)
|
||||
|
||||
def forward(self, x, context=None):
|
||||
def forward(self, hidden_states, context=None):
|
||||
# note: if no context is given, cross-attention defaults to self-attention
|
||||
b, c, h, w = x.shape
|
||||
x_in = x
|
||||
x = self.norm(x)
|
||||
x = self.proj_in(x)
|
||||
x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
|
||||
batch, channel, height, weight = hidden_states.shape
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm(hidden_states)
|
||||
hidden_states = self.proj_in(hidden_states)
|
||||
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, channel)
|
||||
for block in self.transformer_blocks:
|
||||
x = block(x, context=context)
|
||||
x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
|
||||
x = self.proj_out(x)
|
||||
return x + x_in
|
||||
hidden_states = block(hidden_states, context=context)
|
||||
hidden_states = hidden_states.reshape(batch, height, weight, channel).permute(0, 3, 1, 2)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
return hidden_states + residual
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True):
|
||||
r"""
|
||||
A basic Transformer block.
|
||||
|
||||
Parameters:
|
||||
dim (:obj:`int`): The number of channels in the input and output.
|
||||
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
|
||||
d_head (:obj:`int`): The number of channels in each head.
|
||||
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
||||
context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention.
|
||||
gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network.
|
||||
checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
n_heads: int,
|
||||
d_head: int,
|
||||
dropout=0.0,
|
||||
context_dim: Optional[int] = None,
|
||||
gated_ff: bool = True,
|
||||
checkpoint: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.attn1 = CrossAttention(
|
||||
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
||||
@@ -145,15 +192,30 @@ class BasicTransformerBlock(nn.Module):
|
||||
self.attn1._slice_size = slice_size
|
||||
self.attn2._slice_size = slice_size
|
||||
|
||||
def forward(self, x, context=None):
|
||||
x = self.attn1(self.norm1(x)) + x
|
||||
x = self.attn2(self.norm2(x), context=context) + x
|
||||
x = self.ff(self.norm3(x)) + x
|
||||
return x
|
||||
def forward(self, hidden_states, context=None):
|
||||
hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states
|
||||
hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states
|
||||
hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states
|
||||
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
||||
r"""
|
||||
A cross attention layer.
|
||||
|
||||
Parameters:
|
||||
query_dim (:obj:`int`): The number of channels in the query.
|
||||
context_dim (:obj:`int`, *optional*):
|
||||
The number of channels in the context. If not given, defaults to `query_dim`.
|
||||
heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
|
||||
dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head.
|
||||
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0
|
||||
):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = context_dim if context_dim is not None else query_dim
|
||||
@@ -174,52 +236,58 @@ class CrossAttention(nn.Module):
|
||||
def reshape_heads_to_batch_dim(self, tensor):
|
||||
batch_size, seq_len, dim = tensor.shape
|
||||
head_size = self.heads
|
||||
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
||||
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
||||
return tensor
|
||||
tensor2 = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
||||
tensor3 = tensor2.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
||||
return tensor3
|
||||
|
||||
def reshape_batch_dim_to_heads(self, tensor):
|
||||
batch_size, seq_len, dim = tensor.shape
|
||||
head_size = self.heads
|
||||
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
||||
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
||||
return tensor
|
||||
tensor2 = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
||||
tensor3 = tensor2.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
||||
return tensor3
|
||||
|
||||
def forward(self, x, context=None, mask=None):
|
||||
batch_size, sequence_length, dim = x.shape
|
||||
def forward(self, hidden_states, context=None, mask=None):
|
||||
batch_size, sequence_length, dim = hidden_states.shape
|
||||
|
||||
q = self.to_q(x)
|
||||
context = context if context is not None else x
|
||||
k = self.to_k(context)
|
||||
v = self.to_v(context)
|
||||
query = self.to_q(hidden_states)
|
||||
context = context if context is not None else hidden_states
|
||||
key = self.to_k(context)
|
||||
value = self.to_v(context)
|
||||
|
||||
q = self.reshape_heads_to_batch_dim(q)
|
||||
k = self.reshape_heads_to_batch_dim(k)
|
||||
v = self.reshape_heads_to_batch_dim(v)
|
||||
query = self.reshape_heads_to_batch_dim(query)
|
||||
key = self.reshape_heads_to_batch_dim(key)
|
||||
value = self.reshape_heads_to_batch_dim(value)
|
||||
|
||||
# TODO(PVP) - mask is currently never used. Remember to re-implement when used
|
||||
|
||||
# attention, what we cannot get enough of
|
||||
hidden_states = self._attention(q, k, v, sequence_length, dim)
|
||||
hidden_states = self._attention(query, key, value, sequence_length, dim)
|
||||
|
||||
return self.to_out(hidden_states)
|
||||
|
||||
def _attention(self, query, key, value, sequence_length, dim):
|
||||
batch_size_attention = query.shape[0]
|
||||
hidden_states = torch.zeros(
|
||||
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
|
||||
)
|
||||
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
|
||||
for i in range(hidden_states.shape[0] // slice_size):
|
||||
start_idx = i * slice_size
|
||||
end_idx = (i + 1) * slice_size
|
||||
attn_slice = (
|
||||
torch.einsum("b i d, b j d -> b i j", query[start_idx:end_idx], key[start_idx:end_idx]) * self.scale
|
||||
)
|
||||
attn_slice = attn_slice.softmax(dim=-1)
|
||||
attn_slice = torch.einsum("b i j, b j d -> b i d", attn_slice, value[start_idx:end_idx])
|
||||
# hidden_states = torch.zeros(
|
||||
# (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
|
||||
# )
|
||||
slice_size = self._slice_size if self._slice_size is not None else batch_size_attention
|
||||
# for i in range(hidden_states.shape[0] // slice_size):
|
||||
# start_idx = i * slice_size
|
||||
# end_idx = (i + 1) * slice_size
|
||||
# qslice = query[start_idx:end_idx]
|
||||
qslice = query
|
||||
# kslice = key[start_idx:end_idx].transpose(1, 2)
|
||||
kslice = key.transpose(1, 2)
|
||||
attn_slice = torch.matmul(qslice, kslice) * self.scale
|
||||
attn_slice = attn_slice.softmax(dim=-1)
|
||||
# vslice = value[start_idx:end_idx]
|
||||
vslice = value
|
||||
hidden_states = torch.matmul(attn_slice, vslice)
|
||||
|
||||
|
||||
# hidden_states = torch.cat(attn_slices, dim=0)
|
||||
|
||||
hidden_states[start_idx:end_idx] = attn_slice
|
||||
|
||||
# reshape hidden_states
|
||||
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
||||
@@ -227,7 +295,20 @@ class CrossAttention(nn.Module):
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
||||
r"""
|
||||
A feed-forward layer.
|
||||
|
||||
Parameters:
|
||||
dim (:obj:`int`): The number of channels in the input.
|
||||
dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
||||
mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
||||
glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation.
|
||||
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0
|
||||
):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = dim_out if dim_out is not None else dim
|
||||
@@ -235,16 +316,24 @@ class FeedForward(nn.Module):
|
||||
|
||||
self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
def forward(self, hidden_states):
|
||||
return self.net(hidden_states)
|
||||
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
r"""
|
||||
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
||||
|
||||
Parameters:
|
||||
dim_in (:obj:`int`): The number of channels in the input.
|
||||
dim_out (:obj:`int`): The number of channels in the output.
|
||||
"""
|
||||
|
||||
def __init__(self, dim_in: int, dim_out: int):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(dim_in, dim_out * 2)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
return x * F.gelu(gate)
|
||||
def forward(self, hidden_states):
|
||||
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
|
||||
return hidden_states * F.gelu(gate)
|
||||
|
||||
Reference in New Issue
Block a user