1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00

[Pipeline download] Improve pipeline download for index and passed co… (#2980)

* [Pipeline download] Improve pipeline download for index and passed components

* correct

* add more tests

* up
This commit is contained in:
Patrick von Platen
2023-04-06 01:31:09 +02:00
committed by Daniel Gu
parent fe03d5bce4
commit 0aa92a53ad
2 changed files with 223 additions and 40 deletions

View File

@@ -134,7 +134,7 @@ class AudioPipelineOutput(BaseOutput):
audios: np.ndarray
def is_safetensors_compatible(filenames, variant=None) -> bool:
def is_safetensors_compatible(filenames, variant=None, passed_components=None) -> bool:
"""
Checking for safetensors compatibility:
- By default, all models are saved with the default pytorch serialization, so we use the list of default pytorch
@@ -150,9 +150,14 @@ def is_safetensors_compatible(filenames, variant=None) -> bool:
sf_filenames = set()
passed_components = passed_components or []
for filename in filenames:
_, extension = os.path.splitext(filename)
if len(filename.split("/")) == 2 and filename.split("/")[0] in passed_components:
continue
if extension == ".bin":
pt_filenames.append(filename)
elif extension == ".safetensors":
@@ -163,10 +168,8 @@ def is_safetensors_compatible(filenames, variant=None) -> bool:
path, filename = os.path.split(filename)
filename, extension = os.path.splitext(filename)
if filename == "pytorch_model":
filename = "model"
elif filename == f"pytorch_model.{variant}":
filename = f"model.{variant}"
if filename.startswith("pytorch_model"):
filename = filename.replace("pytorch_model", "model")
else:
filename = filename
@@ -196,24 +199,51 @@ def variant_compatible_siblings(filenames, variant=None) -> Union[List[os.PathLi
weight_prefixes = [w.split(".")[0] for w in weight_names]
# .bin, .safetensors, ...
weight_suffixs = [w.split(".")[-1] for w in weight_names]
variant_file_regex = (
re.compile(f"({'|'.join(weight_prefixes)})(.{variant}.)({'|'.join(weight_suffixs)})")
if variant is not None
else None
)
non_variant_file_regex = re.compile(f"{'|'.join(weight_names)}")
# -00001-of-00002
transformers_index_format = "\d{5}-of-\d{5}"
if variant is not None:
variant_filenames = {f for f in filenames if variant_file_regex.match(f.split("/")[-1]) is not None}
# `diffusion_pytorch_model.fp16.bin` as well as `model.fp16-00001-of-00002.safetenstors`
variant_file_re = re.compile(
f"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
)
# `text_encoder/pytorch_model.bin.index.fp16.json`
variant_index_re = re.compile(
f"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.{variant}\.json$"
)
# `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetenstors`
non_variant_file_re = re.compile(
f"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
)
# `text_encoder/pytorch_model.bin.index.json`
non_variant_index_re = re.compile(f"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.json")
if variant is not None:
variant_weights = {f for f in filenames if variant_file_re.match(f.split("/")[-1]) is not None}
variant_indexes = {f for f in filenames if variant_index_re.match(f.split("/")[-1]) is not None}
variant_filenames = variant_weights | variant_indexes
else:
variant_filenames = set()
non_variant_filenames = {f for f in filenames if non_variant_file_regex.match(f.split("/")[-1]) is not None}
non_variant_weights = {f for f in filenames if non_variant_file_re.match(f.split("/")[-1]) is not None}
non_variant_indexes = {f for f in filenames if non_variant_index_re.match(f.split("/")[-1]) is not None}
non_variant_filenames = non_variant_weights | non_variant_indexes
# all variant filenames will be used by default
usable_filenames = set(variant_filenames)
def convert_to_variant(filename):
if "index" in filename:
variant_filename = filename.replace("index", f"index.{variant}")
elif re.compile(f"^(.*?){transformers_index_format}").match(filename) is not None:
variant_filename = f"{filename.split('-')[0]}.{variant}-{'-'.join(filename.split('-')[1:])}"
else:
variant_filename = f"{filename.split('.')[0]}.{variant}.{filename.split('.')[1]}"
return variant_filename
for f in non_variant_filenames:
variant_filename = f"{f.split('.')[0]}.{variant}.{f.split('.')[1]}"
variant_filename = convert_to_variant(f)
if variant_filename not in usable_filenames:
usable_filenames.add(f)
@@ -292,6 +322,27 @@ def get_class_obj_and_candidates(library_name, class_name, importable_classes, p
return class_obj, class_candidates
def _get_pipeline_class(class_obj, config, custom_pipeline=None, cache_dir=None, revision=None):
if custom_pipeline is not None:
if custom_pipeline.endswith(".py"):
path = Path(custom_pipeline)
# decompose into folder & file
file_name = path.name
custom_pipeline = path.parent.absolute()
else:
file_name = CUSTOM_PIPELINE_FILE_NAME
return get_class_from_dynamic_module(
custom_pipeline, module_file=file_name, cache_dir=cache_dir, revision=revision
)
if class_obj != DiffusionPipeline:
return class_obj
diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])
return getattr(diffusers_module, config["_class_name"])
def load_sub_model(
library_name: str,
class_name: str,
@@ -779,7 +830,7 @@ class DiffusionPipeline(ConfigMixin):
device_map = kwargs.pop("device_map", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
variant = kwargs.pop("variant", None)
kwargs.pop("use_safetensors", None if is_safetensors_available() else False)
use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)
# 1. Download the checkpoints and configs
# use snapshot download here to get it working from from_pretrained
@@ -794,8 +845,11 @@ class DiffusionPipeline(ConfigMixin):
use_auth_token=use_auth_token,
revision=revision,
from_flax=from_flax,
use_safetensors=use_safetensors,
custom_pipeline=custom_pipeline,
custom_revision=custom_revision,
variant=variant,
**kwargs,
)
else:
cached_folder = pretrained_model_name_or_path
@@ -810,29 +864,17 @@ class DiffusionPipeline(ConfigMixin):
for folder in os.listdir(cached_folder):
folder_path = os.path.join(cached_folder, folder)
is_folder = os.path.isdir(folder_path) and folder in config_dict
variant_exists = is_folder and any(path.split(".")[1] == variant for path in os.listdir(folder_path))
variant_exists = is_folder and any(
p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)
)
if variant_exists:
model_variants[folder] = variant
# 3. Load the pipeline class, if using custom module then load it from the hub
# if we load from explicit class, let's use it
if custom_pipeline is not None:
if custom_pipeline.endswith(".py"):
path = Path(custom_pipeline)
# decompose into folder & file
file_name = path.name
custom_pipeline = path.parent.absolute()
else:
file_name = CUSTOM_PIPELINE_FILE_NAME
pipeline_class = get_class_from_dynamic_module(
custom_pipeline, module_file=file_name, cache_dir=cache_dir, revision=custom_revision
)
elif cls != DiffusionPipeline:
pipeline_class = cls
else:
diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
pipeline_class = getattr(diffusers_module, config_dict["_class_name"])
pipeline_class = _get_pipeline_class(
cls, config_dict, custom_pipeline=custom_pipeline, cache_dir=cache_dir, revision=custom_revision
)
# DEPRECATED: To be removed in 1.0.0
if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
@@ -1095,6 +1137,7 @@ class DiffusionPipeline(ConfigMixin):
revision = kwargs.pop("revision", None)
from_flax = kwargs.pop("from_flax", False)
custom_pipeline = kwargs.pop("custom_pipeline", None)
custom_revision = kwargs.pop("custom_revision", None)
variant = kwargs.pop("variant", None)
use_safetensors = kwargs.pop("use_safetensors", None)
@@ -1153,7 +1196,7 @@ class DiffusionPipeline(ConfigMixin):
# this enables downloading schedulers, tokenizers, ...
allow_patterns += [os.path.join(k, "*") for k in folder_names if k not in model_folder_names]
# also allow downloading config.json files with the model
allow_patterns += [os.path.join(k, "*.json") for k in model_folder_names]
allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
allow_patterns += [
SCHEDULER_CONFIG_NAME,
@@ -1162,17 +1205,28 @@ class DiffusionPipeline(ConfigMixin):
CUSTOM_PIPELINE_FILE_NAME,
]
# retrieve passed components that should not be downloaded
pipeline_class = _get_pipeline_class(
cls, config_dict, custom_pipeline=custom_pipeline, cache_dir=cache_dir, revision=custom_revision
)
expected_components, _ = cls._get_signature_keys(pipeline_class)
passed_components = [k for k in expected_components if k in kwargs]
if (
use_safetensors
and not allow_pickle
and not is_safetensors_compatible(model_filenames, variant=variant)
and not is_safetensors_compatible(
model_filenames, variant=variant, passed_components=passed_components
)
):
raise EnvironmentError(
f"Could not found the necessary `safetensors` weights in {model_filenames} (variant={variant})"
)
if from_flax:
ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"]
elif use_safetensors and is_safetensors_compatible(model_filenames, variant=variant):
elif use_safetensors and is_safetensors_compatible(
model_filenames, variant=variant, passed_components=passed_components
):
ignore_patterns = ["*.bin", "*.msgpack"]
safetensors_variant_filenames = {f for f in variant_filenames if f.endswith(".safetensors")}
@@ -1194,6 +1248,13 @@ class DiffusionPipeline(ConfigMixin):
f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
)
# Don't download any objects that are passed
allow_patterns = [
p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
]
# Don't download index files of forbidden patterns either
ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

View File

@@ -78,9 +78,7 @@ class DownloadTests(unittest.TestCase):
with tempfile.TemporaryDirectory() as tmpdirname:
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe", cache_dir=tmpdirname)
download_requests = [r.method for r in m.request_history]
assert download_requests.count("HEAD") == 15, "15 calls to files"
@@ -101,6 +99,55 @@ class DownloadTests(unittest.TestCase):
len(cache_requests) == 2
), "We should call only `model_info` to check for _commit hash and `send_telemetry`"
def test_less_downloads_passed_object(self):
with tempfile.TemporaryDirectory() as tmpdirname:
cached_folder = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
# make sure safety checker is not downloaded
assert "safety_checker" not in os.listdir(cached_folder)
# make sure rest is downloaded
assert "unet" in os.listdir(cached_folder)
assert "tokenizer" in os.listdir(cached_folder)
assert "vae" in os.listdir(cached_folder)
assert "model_index.json" in os.listdir(cached_folder)
assert "scheduler" in os.listdir(cached_folder)
assert "feature_extractor" in os.listdir(cached_folder)
def test_less_downloads_passed_object_calls(self):
# TODO: For some reason this test fails on MPS where no HEAD call is made.
if torch_device == "mps":
return
with tempfile.TemporaryDirectory() as tmpdirname:
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
download_requests = [r.method for r in m.request_history]
# 15 - 2 because no call to config or model file for `safety_checker`
assert download_requests.count("HEAD") == 13, "13 calls to files"
# 17 - 2 because no call to config or model file for `safety_checker`
assert download_requests.count("GET") == 15, "13 calls to files + model_info + model_index.json"
assert (
len(download_requests) == 28
), "2 calls per file (13 files) + send_telemetry, model_info and model_index.json"
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
cache_requests = [r.method for r in m.request_history]
assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
assert cache_requests.count("GET") == 1, "model info is only GET"
assert (
len(cache_requests) == 2
), "We should call only `model_info` to check for _commit hash and `send_telemetry`"
def test_download_only_pytorch(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
@@ -165,6 +212,54 @@ class DownloadTests(unittest.TestCase):
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f.endswith(".bin") for f in files)
def test_download_safetensors_index(self):
for variant in ["fp16", None]:
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
cache_dir=tmpdirname,
use_safetensors=True,
variant=variant,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a safetensors file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
if variant is None:
assert not any("fp16" in f for f in files)
else:
model_files = [f for f in files if "safetensors" in f]
assert all("fp16" in f for f in model_files)
assert len([f for f in files if ".safetensors" in f]) == 8
assert not any(".bin" in f for f in files)
def test_download_bin_index(self):
for variant in ["fp16", None]:
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
cache_dir=tmpdirname,
use_safetensors=False,
variant=variant,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a safetensors file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
if variant is None:
assert not any("fp16" in f for f in files)
else:
model_files = [f for f in files if "bin" in f]
assert all("fp16" in f for f in model_files)
assert len([f for f in files if ".bin" in f]) == 8
assert not any(".safetensors" in f for f in files)
def test_download_no_safety_checker(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
@@ -362,6 +457,33 @@ class DownloadTests(unittest.TestCase):
diffusers.utils.import_utils._safetensors_available = True
def test_local_save_load_index(self):
prompt = "hello"
for variant in [None, "fp16"]:
for use_safe in [True, False]:
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
variant=variant,
use_safetensors=use_safe,
safety_checker=None,
)
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(
tmpdirname, safe_serialization=use_safe, variant=variant
)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_text_inversion_download(self):
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None