mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
correct merge
This commit is contained in:
85
README.md
85
README.md
@@ -31,7 +31,7 @@ cd diffusers && pip install -e .
|
||||
It could become a central place for all kinds of models, schedulers, training utils and processors that one can mix and match for one's own use case.
|
||||
Both models and schedulers should be load- and saveable from the Hub.
|
||||
|
||||
**Example for [DDPM](https://arxiv.org/abs/2006.11239):**
|
||||
#### **Example for [DDPM](https://arxiv.org/abs/2006.11239):**
|
||||
|
||||
```python
|
||||
import torch
|
||||
@@ -45,29 +45,29 @@ torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# 1. Load models
|
||||
noise_scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
|
||||
model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
|
||||
unet = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
|
||||
|
||||
# 2. Sample gaussian noise
|
||||
image = noise_scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)
|
||||
image = noise_scheduler.sample_noise((1, unet.in_channels, unet.resolution, unet.resolution), device=torch_device, generator=generator)
|
||||
|
||||
# 3. Denoise
|
||||
num_prediction_steps = len(noise_scheduler)
|
||||
for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
|
||||
# predict noise residual
|
||||
with torch.no_grad():
|
||||
residual = unet(image, t)
|
||||
# predict noise residual
|
||||
with torch.no_grad():
|
||||
residual = unet(image, t)
|
||||
|
||||
# predict previous mean of image x_t-1
|
||||
pred_prev_image = noise_scheduler.compute_prev_image_step(residual, image, t)
|
||||
# predict previous mean of image x_t-1
|
||||
pred_prev_image = noise_scheduler.step(residual, image, t)
|
||||
|
||||
# optionally sample variance
|
||||
variance = 0
|
||||
if t > 0:
|
||||
noise = noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
|
||||
variance = noise_scheduler.get_variance(t).sqrt() * noise
|
||||
# optionally sample variance
|
||||
variance = 0
|
||||
if t > 0:
|
||||
noise = noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
|
||||
variance = noise_scheduler.get_variance(t).sqrt() * noise
|
||||
|
||||
# set current image to prev_image: x_t -> x_t-1
|
||||
image = pred_prev_image + variance
|
||||
# set current image to prev_image: x_t -> x_t-1
|
||||
image = pred_prev_image + variance
|
||||
|
||||
# 5. process image to PIL
|
||||
image_processed = image.cpu().permute(0, 2, 3, 1)
|
||||
@@ -79,7 +79,7 @@ image_pil = PIL.Image.fromarray(image_processed[0])
|
||||
image_pil.save("test.png")
|
||||
```
|
||||
|
||||
**Example for [DDIM](https://arxiv.org/abs/2010.02502):**
|
||||
#### **Example for [DDIM](https://arxiv.org/abs/2010.02502):**
|
||||
|
||||
```python
|
||||
import torch
|
||||
@@ -93,31 +93,32 @@ torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# 1. Load models
|
||||
noise_scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq")
|
||||
model = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)
|
||||
unet = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)
|
||||
|
||||
# 2. Sample gaussian noise
|
||||
image = noise_scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)
|
||||
image = noise_scheduler.sample_noise((1, unet.in_channels, unet.resolution, unet.resolution), device=torch_device, generator=generator)
|
||||
|
||||
# 3. Denoise
|
||||
num_inference_steps = 50
|
||||
eta = 0.0 # <- deterministic sampling
|
||||
|
||||
for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
|
||||
# 1. predict noise residual
|
||||
with torch.no_grad():
|
||||
residual = unet(image, inference_step_times[t])
|
||||
# 1. predict noise residual
|
||||
orig_t = noise_scheduler.get_orig_t(t, num_inference_steps)
|
||||
with torch.no_grad():
|
||||
residual = unet(image, orig_t)
|
||||
|
||||
# 2. predict previous mean of image x_t-1
|
||||
pred_prev_image = noise_scheduler.compute_prev_image_step(residual, image, t, num_inference_steps, eta)
|
||||
# 2. predict previous mean of image x_t-1
|
||||
pred_prev_image = noise_scheduler.step(residual, image, t, num_inference_steps, eta)
|
||||
|
||||
# 3. optionally sample variance
|
||||
variance = 0
|
||||
if eta > 0:
|
||||
noise = noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
|
||||
variance = noise_scheduler.get_variance(t).sqrt() * eta * noise
|
||||
# 3. optionally sample variance
|
||||
variance = 0
|
||||
if eta > 0:
|
||||
noise = noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
|
||||
variance = noise_scheduler.get_variance(t).sqrt() * eta * noise
|
||||
|
||||
# 4. set current image to prev_image: x_t -> x_t-1
|
||||
image = pred_prev_image + variance
|
||||
# 4. set current image to prev_image: x_t -> x_t-1
|
||||
image = pred_prev_image + variance
|
||||
|
||||
# 5. process image to PIL
|
||||
image_processed = image.cpu().permute(0, 2, 3, 1)
|
||||
@@ -132,7 +133,7 @@ image_pil.save("test.png")
|
||||
### 2. `diffusers` as a collection of most important Diffusion systems (GLIDE, Dalle, ...)
|
||||
`models` directory in repository hosts the complete code necessary for running a diffusion system as well as to train it. A `DiffusionPipeline` class allows to easily run the diffusion model in inference:
|
||||
|
||||
**Example image generation with DDPM**
|
||||
#### **Example image generation with DDPM**
|
||||
|
||||
```python
|
||||
from diffusers import DiffusionPipeline
|
||||
@@ -155,6 +156,28 @@ image_pil = PIL.Image.fromarray(image_processed[0])
|
||||
image_pil.save("test.png")
|
||||
```
|
||||
|
||||
**Text to Image generation with Latent Diffusion**
|
||||
|
||||
```python
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large")
|
||||
|
||||
generator = torch.Generator()
|
||||
generator = generator.manual_seed(6694729458485568)
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
image = ldm([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50)
|
||||
|
||||
image_processed = image.cpu().permute(0, 2, 3, 1)
|
||||
image_processed = image_processed * 255.
|
||||
image_processed = image_processed.numpy().astype(np.uint8)
|
||||
image_pil = PIL.Image.fromarray(image_processed[0])
|
||||
|
||||
# save image
|
||||
image_pil.save("test.png")
|
||||
```
|
||||
|
||||
## Library structure:
|
||||
|
||||
```
|
||||
|
||||
146
src/diffusers/pipelines/configuration_ldmbert.py
Normal file
146
src/diffusers/pipelines/configuration_ldmbert.py
Normal file
@@ -0,0 +1,146 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" LDMBERT model configuration"""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
LDMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"ldm-bert": "https://huggingface.co/ldm-bert/resolve/main/config.json",
|
||||
}
|
||||
|
||||
|
||||
class LDMBertConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`LDMBertModel`]. It is used to instantiate a
|
||||
LDMBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||||
with the defaults will yield a similar configuration to that of the LDMBERT
|
||||
[facebook/ldmbert-large](https://huggingface.co/facebook/ldmbert-large) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 50265):
|
||||
Vocabulary size of the LDMBERT model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`LDMBertModel`] or [`TFLDMBertModel`].
|
||||
d_model (`int`, *optional*, defaults to 1024):
|
||||
Dimensionality of the layers and the pooler layer.
|
||||
encoder_layers (`int`, *optional*, defaults to 12):
|
||||
Number of encoder layers.
|
||||
decoder_layers (`int`, *optional*, defaults to 12):
|
||||
Number of decoder layers.
|
||||
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
||||
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
||||
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
||||
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
||||
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||||
dropout (`float`, *optional*, defaults to 0.1):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
activation_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for activations inside the fully connected layer.
|
||||
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for classifier.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
init_std (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
encoder_layerdrop: (`float`, *optional*, defaults to 0.0):
|
||||
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
||||
for more details.
|
||||
decoder_layerdrop: (`float`, *optional*, defaults to 0.0):
|
||||
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
||||
for more details.
|
||||
scale_embedding (`bool`, *optional*, defaults to `False`):
|
||||
Scale embeddings by diving by sqrt(d_model).
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models).
|
||||
num_labels: (`int`, *optional*, defaults to 3):
|
||||
The number of labels to use in [`LDMBertForSequenceClassification`].
|
||||
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
||||
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
||||
`eos_token_id`.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import LDMBertModel, LDMBertConfig
|
||||
|
||||
>>> # Initializing a LDMBERT facebook/ldmbert-large style configuration
|
||||
>>> configuration = LDMBertConfig()
|
||||
|
||||
>>> # Initializing a model from the facebook/ldmbert-large style configuration
|
||||
>>> model = LDMBertModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
model_type = "ldmbert"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=30522,
|
||||
max_position_embeddings=77,
|
||||
encoder_layers=32,
|
||||
encoder_ffn_dim=5120,
|
||||
encoder_attention_heads=8,
|
||||
head_dim=64,
|
||||
encoder_layerdrop=0.0,
|
||||
activation_function="gelu",
|
||||
d_model=1280,
|
||||
dropout=0.1,
|
||||
attention_dropout=0.0,
|
||||
activation_dropout=0.0,
|
||||
init_std=0.02,
|
||||
classifier_dropout=0.0,
|
||||
scale_embedding=False,
|
||||
use_cache=True,
|
||||
pad_token_id=0,
|
||||
**kwargs
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.d_model = d_model
|
||||
self.encoder_ffn_dim = encoder_ffn_dim
|
||||
self.encoder_layers = encoder_layers
|
||||
self.encoder_attention_heads = encoder_attention_heads
|
||||
self.head_dim = head_dim
|
||||
self.dropout = dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.activation_dropout = activation_dropout
|
||||
self.activation_function = activation_function
|
||||
self.init_std = init_std
|
||||
self.encoder_layerdrop = encoder_layerdrop
|
||||
self.classifier_dropout = classifier_dropout
|
||||
self.use_cache = use_cache
|
||||
self.num_hidden_layers = encoder_layers
|
||||
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
||||
|
||||
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
||||
858
src/diffusers/pipelines/modeling_vae.py
Normal file
858
src/diffusers/pipelines/modeling_vae.py
Normal file
@@ -0,0 +1,858 @@
|
||||
# pytorch_diffusion + derived encoder decoder
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import tqdm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from diffusers import DiffusionPipeline
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.modeling_utils import ModelMixin
|
||||
|
||||
|
||||
def get_timestep_embedding(timesteps, embedding_dim):
|
||||
"""
|
||||
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
||||
From Fairseq.
|
||||
Build sinusoidal embeddings.
|
||||
This matches the implementation in tensor2tensor, but differs slightly
|
||||
from the description in Section 3.5 of "Attention Is All You Need".
|
||||
"""
|
||||
assert len(timesteps.shape) == 1
|
||||
|
||||
half_dim = embedding_dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
||||
emb = emb.to(device=timesteps.device)
|
||||
emb = timesteps.float()[:, None] * emb[None, :]
|
||||
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
||||
if embedding_dim % 2 == 1: # zero pad
|
||||
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
||||
return emb
|
||||
|
||||
|
||||
def nonlinearity(x):
|
||||
# swish
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
if self.with_conv:
|
||||
pad = (0, 1, 0, 1)
|
||||
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if temb_channels > 0:
|
||||
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
else:
|
||||
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x, temb):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
if temb is not None:
|
||||
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
||||
|
||||
h = self.norm2(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.dropout(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return x + h
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b, c, h, w = q.shape
|
||||
q = q.reshape(b, c, h * w)
|
||||
q = q.permute(0, 2, 1) # b,hw,c
|
||||
k = k.reshape(b, c, h * w) # b,c,hw
|
||||
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||
w_ = w_ * (int(c) ** (-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = v.reshape(b, c, h * w)
|
||||
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
||||
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||
h_ = h_.reshape(b, c, h, w)
|
||||
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x + h_
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
use_timestep=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = self.ch * 4
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.use_timestep = use_timestep
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
self.temb = nn.Module()
|
||||
self.temb.dense = nn.ModuleList(
|
||||
[
|
||||
torch.nn.Linear(self.ch, self.temb_ch),
|
||||
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
||||
]
|
||||
)
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = AttnBlock(block_in)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
skip_in = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
if i_block == self.num_res_blocks:
|
||||
skip_in = ch * in_ch_mult[i_level]
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in + skip_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x, t=None):
|
||||
# assert x.shape[2] == x.shape[3] == self.resolution
|
||||
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
assert t is not None
|
||||
temb = get_timestep_embedding(t, self.ch)
|
||||
temb = self.temb.dense[0](temb)
|
||||
temb = nonlinearity(temb)
|
||||
temb = self.temb.dense[1](temb)
|
||||
else:
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
double_z=True,
|
||||
**ignore_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = AttnBlock(block_in)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
||||
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
give_pre_end=False,
|
||||
**ignorekwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.give_pre_end = give_pre_end
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
block_in = ch * ch_mult[self.num_resolutions - 1]
|
||||
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||
self.z_shape = (1, z_channels, curr_res, curr_res)
|
||||
print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = AttnBlock(block_in)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, z):
|
||||
# assert z.shape[1:] == self.z_shape[1:]
|
||||
self.last_z_shape = z.shape
|
||||
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](h, temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
if self.give_pre_end:
|
||||
return h
|
||||
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class VectorQuantizer(nn.Module):
|
||||
"""
|
||||
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
||||
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
||||
"""
|
||||
|
||||
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
||||
# backwards compatibility we use the buggy version by default, but you can
|
||||
# specify legacy=False to fix it.
|
||||
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
|
||||
super().__init__()
|
||||
self.n_e = n_e
|
||||
self.e_dim = e_dim
|
||||
self.beta = beta
|
||||
self.legacy = legacy
|
||||
|
||||
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
||||
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
||||
|
||||
self.remap = remap
|
||||
if self.remap is not None:
|
||||
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
||||
self.re_embed = self.used.shape[0]
|
||||
self.unknown_index = unknown_index # "random" or "extra" or integer
|
||||
if self.unknown_index == "extra":
|
||||
self.unknown_index = self.re_embed
|
||||
self.re_embed = self.re_embed + 1
|
||||
print(
|
||||
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
||||
f"Using {self.unknown_index} for unknown indices."
|
||||
)
|
||||
else:
|
||||
self.re_embed = n_e
|
||||
|
||||
self.sane_index_shape = sane_index_shape
|
||||
|
||||
def remap_to_used(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape) > 1
|
||||
inds = inds.reshape(ishape[0], -1)
|
||||
used = self.used.to(inds)
|
||||
match = (inds[:, :, None] == used[None, None, ...]).long()
|
||||
new = match.argmax(-1)
|
||||
unknown = match.sum(2) < 1
|
||||
if self.unknown_index == "random":
|
||||
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
||||
else:
|
||||
new[unknown] = self.unknown_index
|
||||
return new.reshape(ishape)
|
||||
|
||||
def unmap_to_all(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape) > 1
|
||||
inds = inds.reshape(ishape[0], -1)
|
||||
used = self.used.to(inds)
|
||||
if self.re_embed > self.used.shape[0]: # extra token
|
||||
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
||||
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
||||
return back.reshape(ishape)
|
||||
|
||||
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
||||
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
|
||||
assert rescale_logits == False, "Only for interface compatible with Gumbel"
|
||||
assert return_logits == False, "Only for interface compatible with Gumbel"
|
||||
# reshape z -> (batch, height, width, channel) and flatten
|
||||
z = rearrange(z, "b c h w -> b h w c").contiguous()
|
||||
z_flattened = z.view(-1, self.e_dim)
|
||||
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||
|
||||
d = (
|
||||
torch.sum(z_flattened**2, dim=1, keepdim=True)
|
||||
+ torch.sum(self.embedding.weight**2, dim=1)
|
||||
- 2 * torch.einsum("bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n"))
|
||||
)
|
||||
|
||||
min_encoding_indices = torch.argmin(d, dim=1)
|
||||
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
||||
perplexity = None
|
||||
min_encodings = None
|
||||
|
||||
# compute loss for embedding
|
||||
if not self.legacy:
|
||||
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
|
||||
else:
|
||||
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
||||
|
||||
# preserve gradients
|
||||
z_q = z + (z_q - z).detach()
|
||||
|
||||
# reshape back to match original input shape
|
||||
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous()
|
||||
|
||||
if self.remap is not None:
|
||||
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
||||
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
||||
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
||||
|
||||
if self.sane_index_shape:
|
||||
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
||||
|
||||
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
||||
|
||||
def get_codebook_entry(self, indices, shape):
|
||||
# shape specifying (batch, height, width, channel)
|
||||
if self.remap is not None:
|
||||
indices = indices.reshape(shape[0], -1) # add batch axis
|
||||
indices = self.unmap_to_all(indices)
|
||||
indices = indices.reshape(-1) # flatten again
|
||||
|
||||
# get quantized latent vectors
|
||||
z_q = self.embedding(indices)
|
||||
|
||||
if shape is not None:
|
||||
z_q = z_q.view(shape)
|
||||
# reshape back to match original input shape
|
||||
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
return z_q
|
||||
|
||||
|
||||
class VQModel(ModelMixin, ConfigMixin):
|
||||
def __init__(
|
||||
self,
|
||||
ch,
|
||||
out_ch,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
n_embed,
|
||||
embed_dim,
|
||||
remap=None,
|
||||
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
dropout=0.0,
|
||||
double_z=True,
|
||||
resamp_with_conv=True,
|
||||
give_pre_end=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# register all __init__ params with self.register
|
||||
self.register(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
n_embed=n_embed,
|
||||
embed_dim=embed_dim,
|
||||
remap=remap,
|
||||
sane_index_shape=sane_index_shape,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
double_z=double_z,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
# pass init params to Encoder
|
||||
self.encoder = Encoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
double_z=double_z,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape)
|
||||
|
||||
# pass init params to Decoder
|
||||
self.decoder = Decoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
h = self.quant_conv(h)
|
||||
return h
|
||||
|
||||
def decode(self, h, force_not_quantize=False):
|
||||
# also go through quantization layer
|
||||
if not force_not_quantize:
|
||||
quant, emb_loss, info = self.quantize(h)
|
||||
else:
|
||||
quant = h
|
||||
quant = self.post_quant_conv(quant)
|
||||
dec = self.decoder(quant)
|
||||
return dec
|
||||
|
||||
|
||||
class DiagonalGaussianDistribution(object):
|
||||
def __init__(self, parameters, deterministic=False):
|
||||
self.parameters = parameters
|
||||
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
||||
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||
self.deterministic = deterministic
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
self.var = torch.exp(self.logvar)
|
||||
if self.deterministic:
|
||||
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
||||
|
||||
def sample(self):
|
||||
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
||||
return x
|
||||
|
||||
def kl(self, other=None):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
else:
|
||||
if other is None:
|
||||
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
||||
+ self.var - 1.0 - self.logvar,
|
||||
dim=[1, 2, 3])
|
||||
else:
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean - other.mean, 2) / other.var
|
||||
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||
dim=[1, 2, 3])
|
||||
|
||||
def nll(self, sample, dims=[1,2,3]):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
logtwopi = np.log(2.0 * np.pi)
|
||||
return 0.5 * torch.sum(
|
||||
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims)
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
class AutoencoderKL(ModelMixin, ConfigMixin):
|
||||
def __init__(
|
||||
self,
|
||||
ch,
|
||||
out_ch,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
embed_dim,
|
||||
remap=None,
|
||||
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
dropout=0.0,
|
||||
double_z=True,
|
||||
resamp_with_conv=True,
|
||||
give_pre_end=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# register all __init__ params with self.register
|
||||
self.register(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
embed_dim=embed_dim,
|
||||
remap=remap,
|
||||
sane_index_shape=sane_index_shape,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
double_z=double_z,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
# pass init params to Encoder
|
||||
self.encoder = Encoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
double_z=double_z,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
# pass init params to Decoder
|
||||
self.decoder = Decoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
self.quant_conv = torch.nn.Conv2d(2*z_channels, 2*embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
moments = self.quant_conv(h)
|
||||
posterior = DiagonalGaussianDistribution(moments)
|
||||
return posterior
|
||||
|
||||
def decode(self, z):
|
||||
z = self.post_quant_conv(z)
|
||||
dec = self.decoder(z)
|
||||
return dec
|
||||
|
||||
def forward(self, input, sample_posterior=True):
|
||||
posterior = self.encode(input)
|
||||
if sample_posterior:
|
||||
z = posterior.sample()
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z)
|
||||
return dec, posterior
|
||||
@@ -0,0 +1,146 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" LDMBERT model configuration"""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
LDMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"ldm-bert": "https://huggingface.co/ldm-bert/resolve/main/config.json",
|
||||
}
|
||||
|
||||
|
||||
class LDMBertConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`LDMBertModel`]. It is used to instantiate a
|
||||
LDMBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||||
with the defaults will yield a similar configuration to that of the LDMBERT
|
||||
[facebook/ldmbert-large](https://huggingface.co/facebook/ldmbert-large) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 50265):
|
||||
Vocabulary size of the LDMBERT model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`LDMBertModel`] or [`TFLDMBertModel`].
|
||||
d_model (`int`, *optional*, defaults to 1024):
|
||||
Dimensionality of the layers and the pooler layer.
|
||||
encoder_layers (`int`, *optional*, defaults to 12):
|
||||
Number of encoder layers.
|
||||
decoder_layers (`int`, *optional*, defaults to 12):
|
||||
Number of decoder layers.
|
||||
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
||||
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
||||
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
||||
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
||||
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||||
dropout (`float`, *optional*, defaults to 0.1):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
activation_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for activations inside the fully connected layer.
|
||||
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for classifier.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
init_std (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
encoder_layerdrop: (`float`, *optional*, defaults to 0.0):
|
||||
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
||||
for more details.
|
||||
decoder_layerdrop: (`float`, *optional*, defaults to 0.0):
|
||||
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
||||
for more details.
|
||||
scale_embedding (`bool`, *optional*, defaults to `False`):
|
||||
Scale embeddings by diving by sqrt(d_model).
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models).
|
||||
num_labels: (`int`, *optional*, defaults to 3):
|
||||
The number of labels to use in [`LDMBertForSequenceClassification`].
|
||||
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
||||
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
||||
`eos_token_id`.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import LDMBertModel, LDMBertConfig
|
||||
|
||||
>>> # Initializing a LDMBERT facebook/ldmbert-large style configuration
|
||||
>>> configuration = LDMBertConfig()
|
||||
|
||||
>>> # Initializing a model from the facebook/ldmbert-large style configuration
|
||||
>>> model = LDMBertModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
model_type = "ldmbert"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=30522,
|
||||
max_position_embeddings=77,
|
||||
encoder_layers=32,
|
||||
encoder_ffn_dim=5120,
|
||||
encoder_attention_heads=8,
|
||||
head_dim=64,
|
||||
encoder_layerdrop=0.0,
|
||||
activation_function="gelu",
|
||||
d_model=1280,
|
||||
dropout=0.1,
|
||||
attention_dropout=0.0,
|
||||
activation_dropout=0.0,
|
||||
init_std=0.02,
|
||||
classifier_dropout=0.0,
|
||||
scale_embedding=False,
|
||||
use_cache=True,
|
||||
pad_token_id=0,
|
||||
**kwargs
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.d_model = d_model
|
||||
self.encoder_ffn_dim = encoder_ffn_dim
|
||||
self.encoder_layers = encoder_layers
|
||||
self.encoder_attention_heads = encoder_attention_heads
|
||||
self.head_dim = head_dim
|
||||
self.dropout = dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.activation_dropout = activation_dropout
|
||||
self.activation_function = activation_function
|
||||
self.init_std = init_std
|
||||
self.encoder_layerdrop = encoder_layerdrop
|
||||
self.classifier_dropout = classifier_dropout
|
||||
self.use_cache = use_cache
|
||||
self.num_hidden_layers = encoder_layers
|
||||
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
||||
|
||||
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
||||
@@ -1,862 +1,12 @@
|
||||
# pytorch_diffusion + derived encoder decoder
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import tqdm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from diffusers import DiffusionPipeline
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.modeling_utils import ModelMixin
|
||||
|
||||
|
||||
def get_timestep_embedding(timesteps, embedding_dim):
|
||||
"""
|
||||
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
||||
From Fairseq.
|
||||
Build sinusoidal embeddings.
|
||||
This matches the implementation in tensor2tensor, but differs slightly
|
||||
from the description in Section 3.5 of "Attention Is All You Need".
|
||||
"""
|
||||
assert len(timesteps.shape) == 1
|
||||
|
||||
half_dim = embedding_dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
||||
emb = emb.to(device=timesteps.device)
|
||||
emb = timesteps.float()[:, None] * emb[None, :]
|
||||
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
||||
if embedding_dim % 2 == 1: # zero pad
|
||||
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
||||
return emb
|
||||
|
||||
|
||||
def nonlinearity(x):
|
||||
# swish
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
if self.with_conv:
|
||||
pad = (0, 1, 0, 1)
|
||||
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if temb_channels > 0:
|
||||
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
else:
|
||||
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x, temb):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
if temb is not None:
|
||||
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
||||
|
||||
h = self.norm2(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.dropout(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return x + h
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b, c, h, w = q.shape
|
||||
q = q.reshape(b, c, h * w)
|
||||
q = q.permute(0, 2, 1) # b,hw,c
|
||||
k = k.reshape(b, c, h * w) # b,c,hw
|
||||
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||
w_ = w_ * (int(c) ** (-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = v.reshape(b, c, h * w)
|
||||
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
||||
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||
h_ = h_.reshape(b, c, h, w)
|
||||
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x + h_
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
use_timestep=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = self.ch * 4
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.use_timestep = use_timestep
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
self.temb = nn.Module()
|
||||
self.temb.dense = nn.ModuleList(
|
||||
[
|
||||
torch.nn.Linear(self.ch, self.temb_ch),
|
||||
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
||||
]
|
||||
)
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = AttnBlock(block_in)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
skip_in = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
if i_block == self.num_res_blocks:
|
||||
skip_in = ch * in_ch_mult[i_level]
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in + skip_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x, t=None):
|
||||
# assert x.shape[2] == x.shape[3] == self.resolution
|
||||
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
assert t is not None
|
||||
temb = get_timestep_embedding(t, self.ch)
|
||||
temb = self.temb.dense[0](temb)
|
||||
temb = nonlinearity(temb)
|
||||
temb = self.temb.dense[1](temb)
|
||||
else:
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
double_z=True,
|
||||
**ignore_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = AttnBlock(block_in)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
||||
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
give_pre_end=False,
|
||||
**ignorekwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.give_pre_end = give_pre_end
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
block_in = ch * ch_mult[self.num_resolutions - 1]
|
||||
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||
self.z_shape = (1, z_channels, curr_res, curr_res)
|
||||
print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = AttnBlock(block_in)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, z):
|
||||
# assert z.shape[1:] == self.z_shape[1:]
|
||||
self.last_z_shape = z.shape
|
||||
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](h, temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
if self.give_pre_end:
|
||||
return h
|
||||
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class VectorQuantizer(nn.Module):
|
||||
"""
|
||||
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
||||
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
||||
"""
|
||||
|
||||
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
||||
# backwards compatibility we use the buggy version by default, but you can
|
||||
# specify legacy=False to fix it.
|
||||
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
|
||||
super().__init__()
|
||||
self.n_e = n_e
|
||||
self.e_dim = e_dim
|
||||
self.beta = beta
|
||||
self.legacy = legacy
|
||||
|
||||
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
||||
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
||||
|
||||
self.remap = remap
|
||||
if self.remap is not None:
|
||||
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
||||
self.re_embed = self.used.shape[0]
|
||||
self.unknown_index = unknown_index # "random" or "extra" or integer
|
||||
if self.unknown_index == "extra":
|
||||
self.unknown_index = self.re_embed
|
||||
self.re_embed = self.re_embed + 1
|
||||
print(
|
||||
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
||||
f"Using {self.unknown_index} for unknown indices."
|
||||
)
|
||||
else:
|
||||
self.re_embed = n_e
|
||||
|
||||
self.sane_index_shape = sane_index_shape
|
||||
|
||||
def remap_to_used(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape) > 1
|
||||
inds = inds.reshape(ishape[0], -1)
|
||||
used = self.used.to(inds)
|
||||
match = (inds[:, :, None] == used[None, None, ...]).long()
|
||||
new = match.argmax(-1)
|
||||
unknown = match.sum(2) < 1
|
||||
if self.unknown_index == "random":
|
||||
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
||||
else:
|
||||
new[unknown] = self.unknown_index
|
||||
return new.reshape(ishape)
|
||||
|
||||
def unmap_to_all(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape) > 1
|
||||
inds = inds.reshape(ishape[0], -1)
|
||||
used = self.used.to(inds)
|
||||
if self.re_embed > self.used.shape[0]: # extra token
|
||||
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
||||
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
||||
return back.reshape(ishape)
|
||||
|
||||
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
||||
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
|
||||
assert rescale_logits == False, "Only for interface compatible with Gumbel"
|
||||
assert return_logits == False, "Only for interface compatible with Gumbel"
|
||||
# reshape z -> (batch, height, width, channel) and flatten
|
||||
z = rearrange(z, "b c h w -> b h w c").contiguous()
|
||||
z_flattened = z.view(-1, self.e_dim)
|
||||
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||
|
||||
d = (
|
||||
torch.sum(z_flattened**2, dim=1, keepdim=True)
|
||||
+ torch.sum(self.embedding.weight**2, dim=1)
|
||||
- 2 * torch.einsum("bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n"))
|
||||
)
|
||||
|
||||
min_encoding_indices = torch.argmin(d, dim=1)
|
||||
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
||||
perplexity = None
|
||||
min_encodings = None
|
||||
|
||||
# compute loss for embedding
|
||||
if not self.legacy:
|
||||
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
|
||||
else:
|
||||
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
||||
|
||||
# preserve gradients
|
||||
z_q = z + (z_q - z).detach()
|
||||
|
||||
# reshape back to match original input shape
|
||||
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous()
|
||||
|
||||
if self.remap is not None:
|
||||
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
||||
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
||||
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
||||
|
||||
if self.sane_index_shape:
|
||||
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
||||
|
||||
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
||||
|
||||
def get_codebook_entry(self, indices, shape):
|
||||
# shape specifying (batch, height, width, channel)
|
||||
if self.remap is not None:
|
||||
indices = indices.reshape(shape[0], -1) # add batch axis
|
||||
indices = self.unmap_to_all(indices)
|
||||
indices = indices.reshape(-1) # flatten again
|
||||
|
||||
# get quantized latent vectors
|
||||
z_q = self.embedding(indices)
|
||||
|
||||
if shape is not None:
|
||||
z_q = z_q.view(shape)
|
||||
# reshape back to match original input shape
|
||||
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
return z_q
|
||||
|
||||
|
||||
class VQModel(ModelMixin, ConfigMixin):
|
||||
def __init__(
|
||||
self,
|
||||
ch,
|
||||
out_ch,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
n_embed,
|
||||
embed_dim,
|
||||
remap=None,
|
||||
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
dropout=0.0,
|
||||
double_z=True,
|
||||
resamp_with_conv=True,
|
||||
give_pre_end=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# register all __init__ params with self.register
|
||||
self.register(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
n_embed=n_embed,
|
||||
embed_dim=embed_dim,
|
||||
remap=remap,
|
||||
sane_index_shape=sane_index_shape,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
double_z=double_z,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
# pass init params to Encoder
|
||||
self.encoder = Encoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
double_z=double_z,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape)
|
||||
|
||||
# pass init params to Decoder
|
||||
self.decoder = Decoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
h = self.quant_conv(h)
|
||||
return h
|
||||
|
||||
def decode(self, h, force_not_quantize=False):
|
||||
# also go through quantization layer
|
||||
if not force_not_quantize:
|
||||
quant, emb_loss, info = self.quantize(h)
|
||||
else:
|
||||
quant = h
|
||||
quant = self.post_quant_conv(quant)
|
||||
dec = self.decoder(quant)
|
||||
return dec
|
||||
|
||||
|
||||
class DiagonalGaussianDistribution(object):
|
||||
def __init__(self, parameters, deterministic=False):
|
||||
self.parameters = parameters
|
||||
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
||||
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||
self.deterministic = deterministic
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
self.var = torch.exp(self.logvar)
|
||||
if self.deterministic:
|
||||
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
||||
|
||||
def sample(self):
|
||||
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
||||
return x
|
||||
|
||||
def kl(self, other=None):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
else:
|
||||
if other is None:
|
||||
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
||||
+ self.var - 1.0 - self.logvar,
|
||||
dim=[1, 2, 3])
|
||||
else:
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean - other.mean, 2) / other.var
|
||||
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||
dim=[1, 2, 3])
|
||||
|
||||
def nll(self, sample, dims=[1,2,3]):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
logtwopi = np.log(2.0 * np.pi)
|
||||
return 0.5 * torch.sum(
|
||||
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims)
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
class AutoencoderKL(ModelMixin, ConfigMixin):
|
||||
def __init__(
|
||||
self,
|
||||
ch,
|
||||
out_ch,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
embed_dim,
|
||||
remap=None,
|
||||
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
dropout=0.0,
|
||||
double_z=True,
|
||||
resamp_with_conv=True,
|
||||
give_pre_end=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# register all __init__ params with self.register
|
||||
self.register(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
embed_dim=embed_dim,
|
||||
remap=remap,
|
||||
sane_index_shape=sane_index_shape,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
double_z=double_z,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
# pass init params to Encoder
|
||||
self.encoder = Encoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
double_z=double_z,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
# pass init params to Decoder
|
||||
self.decoder = Decoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
self.quant_conv = torch.nn.Conv2d(2*z_channels, 2*embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
moments = self.quant_conv(h)
|
||||
posterior = DiagonalGaussianDistribution(moments)
|
||||
return posterior
|
||||
|
||||
def decode(self, z):
|
||||
z = self.post_quant_conv(z)
|
||||
dec = self.decoder(z)
|
||||
return dec
|
||||
|
||||
def forward(self, input, sample_posterior=True):
|
||||
posterior = self.encode(input)
|
||||
if sample_posterior:
|
||||
z = posterior.sample()
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z)
|
||||
return dec, posterior
|
||||
|
||||
# add these relative imports here, so we can load from hub
|
||||
from .modeling_vae import AutoencoderKL # NOQA
|
||||
from .configuration_ldmbert import LDMBertConfig # NOQA
|
||||
from .modeling_ldmbert import LDMBertModel # NOQA
|
||||
|
||||
class LatentDiffusion(DiffusionPipeline):
|
||||
def __init__(self, vqvae, bert, tokenizer, unet, noise_scheduler):
|
||||
@@ -924,42 +74,17 @@ class LatentDiffusion(DiffusionPipeline):
|
||||
pred_noise_t_uncond, pred_noise_t = pred_noise_t.chunk(2)
|
||||
pred_noise_t = pred_noise_t_uncond + guidance_scale * (pred_noise_t - pred_noise_t_uncond)
|
||||
|
||||
# 2. get actual t and t-1
|
||||
train_step = inference_step_times[t]
|
||||
prev_train_step = inference_step_times[t - 1] if t > 0 else -1
|
||||
# 2. predict previous mean of image x_t-1
|
||||
pred_prev_image = self.noise_scheduler.step(pred_noise_t, image, t, num_inference_steps, eta)
|
||||
|
||||
# 3. compute alphas, betas
|
||||
alpha_prod_t = self.noise_scheduler.get_alpha_prod(train_step)
|
||||
alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(prev_train_step)
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
||||
|
||||
# 4. Compute predicted previous image from predicted noise
|
||||
# First: compute predicted original image from predicted noise also called
|
||||
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||||
pred_original_image = (image - beta_prod_t.sqrt() * pred_noise_t) / alpha_prod_t.sqrt()
|
||||
|
||||
# Second: Compute variance: "sigma_t(η)" -> see formula (16)
|
||||
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
||||
std_dev_t = (beta_prod_t_prev / beta_prod_t).sqrt() * (1 - alpha_prod_t / alpha_prod_t_prev).sqrt()
|
||||
std_dev_t = eta * std_dev_t
|
||||
|
||||
# Third: Compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||||
pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2).sqrt() * pred_noise_t
|
||||
|
||||
# Forth: Compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||||
pred_prev_image = alpha_prod_t_prev.sqrt() * pred_original_image + pred_image_direction
|
||||
|
||||
# 5. Sample x_t-1 image optionally if η > 0.0 by adding noise to pred_prev_image
|
||||
# Note: eta = 1.0 essentially corresponds to DDPM
|
||||
if eta > 0.0:
|
||||
# 3. optionally sample variance
|
||||
variance = 0
|
||||
if eta > 0:
|
||||
noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
|
||||
prev_image = pred_prev_image + std_dev_t * noise
|
||||
else:
|
||||
prev_image = pred_prev_image
|
||||
variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
|
||||
|
||||
# 6. Set current image to prev_image: x_t -> x_t-1
|
||||
image = prev_image
|
||||
# 4. set current image to prev_image: x_t -> x_t-1
|
||||
image = pred_prev_image + variance
|
||||
|
||||
# scale and decode image with vae
|
||||
image = 1 / 0.18215 * image
|
||||
|
||||
705
src/diffusers/pipelines/old/latent_diffusion/modeling_ldmbert.py
Normal file
705
src/diffusers/pipelines/old/latent_diffusion/modeling_ldmbert.py
Normal file
@@ -0,0 +1,705 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch LDMBERT model."""
|
||||
import copy
|
||||
import math
|
||||
import random
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutput,
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
CausalLMOutputWithCrossAttentions,
|
||||
Seq2SeqLMOutput,
|
||||
Seq2SeqModelOutput,
|
||||
Seq2SeqQuestionAnsweringModelOutput,
|
||||
Seq2SeqSequenceClassifierOutput,
|
||||
)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import (
|
||||
add_code_sample_docstrings,
|
||||
add_end_docstrings,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
logging,
|
||||
replace_return_docstrings,
|
||||
)
|
||||
from .configuration_ldmbert import LDMBertConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_CHECKPOINT_FOR_DOC = "ldm-bert"
|
||||
_CONFIG_FOR_DOC = "LDMBertConfig"
|
||||
_TOKENIZER_FOR_DOC = "BartTokenizer"
|
||||
|
||||
# Base model docstring
|
||||
_EXPECTED_OUTPUT_SHAPE = [1, 8, 768]
|
||||
|
||||
# SequenceClassification docstring
|
||||
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "valhalla/ldmbert-large-sst2"
|
||||
_SEQ_CLASS_EXPECTED_LOSS = 0.0
|
||||
_SEQ_CLASS_EXPECTED_OUTPUT = "'POSITIVE'"
|
||||
|
||||
# QuestionAsnwering docstring
|
||||
_CHECKPOINT_FOR_QA = "valhalla/ldmbert-large-finetuned-squadv1"
|
||||
_QA_EXPECTED_LOSS = 0.59
|
||||
_QA_EXPECTED_OUTPUT = "' nice puppet'"
|
||||
|
||||
|
||||
LDMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
||||
"ldm-bert",
|
||||
# See all LDMBert models at https://huggingface.co/models?filter=ldmbert
|
||||
]
|
||||
|
||||
|
||||
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
||||
"""
|
||||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||
"""
|
||||
bsz, src_len = mask.size()
|
||||
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||
|
||||
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
|
||||
inverted_mask = 1.0 - expanded_mask
|
||||
|
||||
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||||
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->LDMBert
|
||||
class LDMBertAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
num_heads: int,
|
||||
head_dim: int,
|
||||
dropout: float = 0.0,
|
||||
is_decoder: bool = False,
|
||||
bias: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.head_dim = head_dim
|
||||
self.inner_dim = head_dim * num_heads
|
||||
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.is_decoder = is_decoder
|
||||
|
||||
self.k_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias)
|
||||
self.v_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias)
|
||||
self.q_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias)
|
||||
self.out_proj = nn.Linear(self.inner_dim, embed_dim)
|
||||
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
key_value_states: Optional[torch.Tensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
layer_head_mask: Optional[torch.Tensor] = None,
|
||||
output_attentions: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
"""Input shape: Batch x Time x Channel"""
|
||||
|
||||
# if key_value_states are provided this layer is used as a cross-attention layer
|
||||
# for the decoder
|
||||
is_cross_attention = key_value_states is not None
|
||||
|
||||
bsz, tgt_len, _ = hidden_states.size()
|
||||
|
||||
# get query proj
|
||||
query_states = self.q_proj(hidden_states) * self.scaling
|
||||
# get key, value proj
|
||||
if is_cross_attention and past_key_value is not None:
|
||||
# reuse k,v, cross_attentions
|
||||
key_states = past_key_value[0]
|
||||
value_states = past_key_value[1]
|
||||
elif is_cross_attention:
|
||||
# cross_attentions
|
||||
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
||||
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
||||
elif past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||||
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
else:
|
||||
# self_attention
|
||||
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||||
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||||
|
||||
if self.is_decoder:
|
||||
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
||||
# Further calls to cross_attention layer can then reuse all cross-attention
|
||||
# key/value_states (first "if" case)
|
||||
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
||||
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
||||
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
||||
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
||||
past_key_value = (key_states, value_states)
|
||||
|
||||
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||||
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||||
key_states = key_states.view(*proj_shape)
|
||||
value_states = value_states.view(*proj_shape)
|
||||
|
||||
src_len = key_states.size(1)
|
||||
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||||
|
||||
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||||
raise ValueError(
|
||||
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
||||
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||
|
||||
if layer_head_mask is not None:
|
||||
if layer_head_mask.size() != (self.num_heads,):
|
||||
raise ValueError(
|
||||
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
||||
f" {layer_head_mask.size()}"
|
||||
)
|
||||
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||||
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
|
||||
if output_attentions:
|
||||
# this operation is a bit awkward, but it's required to
|
||||
# make sure that attn_weights keeps its gradient.
|
||||
# In order to do so, attn_weights have to be reshaped
|
||||
# twice and have to be reused in the following
|
||||
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||||
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
||||
else:
|
||||
attn_weights_reshaped = None
|
||||
|
||||
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||||
|
||||
attn_output = torch.bmm(attn_probs, value_states)
|
||||
|
||||
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||||
raise ValueError(
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
|
||||
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
||||
# partitioned aross GPUs when using tensor-parallelism.
|
||||
attn_output = attn_output.reshape(bsz, tgt_len, self.inner_dim)
|
||||
|
||||
attn_output = self.out_proj(attn_output)
|
||||
|
||||
return attn_output, attn_weights_reshaped, past_key_value
|
||||
|
||||
|
||||
class LDMBertEncoderLayer(nn.Module):
|
||||
def __init__(self, config: LDMBertConfig):
|
||||
super().__init__()
|
||||
self.embed_dim = config.d_model
|
||||
self.self_attn = LDMBertAttention(
|
||||
embed_dim=self.embed_dim,
|
||||
num_heads=config.encoder_attention_heads,
|
||||
head_dim=config.head_dim,
|
||||
dropout=config.attention_dropout,
|
||||
)
|
||||
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
||||
self.dropout = config.dropout
|
||||
self.activation_fn = ACT2FN[config.activation_function]
|
||||
self.activation_dropout = config.activation_dropout
|
||||
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
||||
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
||||
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
attention_mask: torch.FloatTensor,
|
||||
layer_head_mask: torch.FloatTensor,
|
||||
output_attentions: Optional[bool] = False,
|
||||
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
|
||||
attention_mask (`torch.FloatTensor`): attention mask of size
|
||||
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||||
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
||||
`(encoder_attention_heads,)`.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
"""
|
||||
residual = hidden_states
|
||||
hidden_states = self.self_attn_layer_norm(hidden_states)
|
||||
hidden_states, attn_weights, _ = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
layer_head_mask=layer_head_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
residual = hidden_states
|
||||
hidden_states = self.final_layer_norm(hidden_states)
|
||||
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
||||
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
||||
hidden_states = self.fc2(hidden_states)
|
||||
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
if hidden_states.dtype == torch.float16 and (
|
||||
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
||||
):
|
||||
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
||||
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
||||
|
||||
outputs = (hidden_states,)
|
||||
|
||||
if output_attentions:
|
||||
outputs += (attn_weights,)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart.BartPretrainedModel with Bart->LDMBert
|
||||
class LDMBertPreTrainedModel(PreTrainedModel):
|
||||
config_class = LDMBertConfig
|
||||
base_model_prefix = "model"
|
||||
supports_gradient_checkpointing = True
|
||||
_keys_to_ignore_on_load_unexpected = [r"encoder\.version", r"decoder\.version"]
|
||||
|
||||
def _init_weights(self, module):
|
||||
std = self.config.init_std
|
||||
if isinstance(module, nn.Linear):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, (LDMBertDecoder, LDMBertEncoder)):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
@property
|
||||
def dummy_inputs(self):
|
||||
pad_token = self.config.pad_token_id
|
||||
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
|
||||
dummy_inputs = {
|
||||
"attention_mask": input_ids.ne(pad_token),
|
||||
"input_ids": input_ids,
|
||||
}
|
||||
return dummy_inputs
|
||||
|
||||
|
||||
LDMBERT_START_DOCSTRING = r"""
|
||||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||||
etc.)
|
||||
|
||||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||||
and behavior.
|
||||
|
||||
Parameters:
|
||||
config ([`LDMBertConfig`]):
|
||||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||||
load the weights associated with the model, only the configuration. Check out the
|
||||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||||
"""
|
||||
|
||||
LDMBERT_GENERATION_EXAMPLE = r"""
|
||||
Summarization example:
|
||||
|
||||
```python
|
||||
>>> from transformers import BartTokenizer, LDMBertForConditionalGeneration
|
||||
|
||||
>>> model = LDMBertForConditionalGeneration.from_pretrained("facebook/ldmbert-large-cnn")
|
||||
>>> tokenizer = BartTokenizer.from_pretrained("facebook/ldmbert-large-cnn")
|
||||
|
||||
>>> ARTICLE_TO_SUMMARIZE = (
|
||||
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
|
||||
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
|
||||
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
|
||||
... )
|
||||
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt")
|
||||
|
||||
>>> # Generate Summary
|
||||
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=20)
|
||||
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
'PG&E scheduled the blackouts in response to forecasts for high winds amid dry conditions'
|
||||
```
|
||||
|
||||
Mask filling example:
|
||||
|
||||
```python
|
||||
>>> from transformers import BartTokenizer, LDMBertForConditionalGeneration
|
||||
|
||||
>>> tokenizer = BartTokenizer.from_pretrained("ldm-bert")
|
||||
>>> model = LDMBertForConditionalGeneration.from_pretrained("ldm-bert")
|
||||
|
||||
>>> TXT = "My friends are <mask> but they eat too many carbs."
|
||||
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
|
||||
>>> logits = model(input_ids).logits
|
||||
|
||||
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
|
||||
>>> probs = logits[0, masked_index].softmax(dim=0)
|
||||
>>> values, predictions = probs.topk(5)
|
||||
|
||||
>>> tokenizer.decode(predictions).split()
|
||||
['not', 'good', 'healthy', 'great', 'very']
|
||||
```
|
||||
"""
|
||||
|
||||
LDMBERT_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||||
it.
|
||||
|
||||
Indices can be obtained using [`BartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
||||
Indices of decoder input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using [`BartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
||||
|
||||
LDMBert uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
|
||||
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
||||
`past_key_values`).
|
||||
|
||||
For translation and summarization training, `decoder_input_ids` should be provided. If no
|
||||
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
|
||||
for denoising pre-training following the paper.
|
||||
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
||||
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
||||
be used by default.
|
||||
|
||||
If you want to change padding behavior, you should read
|
||||
[`modeling_ldmbert._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the
|
||||
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
|
||||
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
|
||||
1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
||||
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
||||
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
||||
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
||||
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||||
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape
|
||||
`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you
|
||||
can choose to directly pass an embedded representation. This is useful if you want more control over how to
|
||||
convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
||||
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
||||
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
||||
input (see `past_key_values`). This is useful if you want more control over how to convert
|
||||
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
||||
|
||||
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
||||
of `inputs_embeds`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||||
tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||||
more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
|
||||
|
||||
class LDMBertEncoder(LDMBertPreTrainedModel):
|
||||
"""
|
||||
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
||||
[`LDMBertEncoderLayer`].
|
||||
|
||||
Args:
|
||||
config: LDMBertConfig
|
||||
embed_tokens (nn.Embedding): output embedding
|
||||
"""
|
||||
|
||||
def __init__(self, config: LDMBertConfig):
|
||||
super().__init__(config)
|
||||
|
||||
self.dropout = config.dropout
|
||||
|
||||
embed_dim = config.d_model
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.max_source_positions = config.max_position_embeddings
|
||||
|
||||
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim)
|
||||
self.embed_positions = nn.Embedding(config.max_position_embeddings, embed_dim)
|
||||
self.layers = nn.ModuleList([LDMBertEncoderLayer(config) for _ in range(config.encoder_layers)])
|
||||
self.layer_norm = nn.LayerNorm(embed_dim)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutput]:
|
||||
r"""
|
||||
Args:
|
||||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
||||
provide it.
|
||||
|
||||
Indices can be obtained using [`BartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||||
[`PreTrainedTokenizer.__call__`] for details.
|
||||
|
||||
[What are input IDs?](../glossary#input-ids)
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
[What are attention masks?](../glossary#attention-mask)
|
||||
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
||||
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
output_hidden_states (`bool`, *optional*):
|
||||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||||
for more detail.
|
||||
return_dict (`bool`, *optional*):
|
||||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
seq_len = input_shape[1]
|
||||
if position_ids is None:
|
||||
position_ids = torch.arange(seq_len, dtype=torch.long, device=inputs_embeds.device).expand((1, -1))
|
||||
embed_pos = self.embed_positions(position_ids)
|
||||
|
||||
hidden_states = inputs_embeds + embed_pos
|
||||
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||||
|
||||
# expand attention_mask
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
|
||||
|
||||
encoder_states = () if output_hidden_states else None
|
||||
all_attentions = () if output_attentions else None
|
||||
|
||||
# check if head_mask has a correct number of layers specified if desired
|
||||
if head_mask is not None:
|
||||
if head_mask.size()[0] != (len(self.layers)):
|
||||
raise ValueError(
|
||||
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
||||
f" {head_mask.size()[0]}."
|
||||
)
|
||||
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs, output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(encoder_layer),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
(head_mask[idx] if head_mask is not None else None),
|
||||
)
|
||||
else:
|
||||
layer_outputs = encoder_layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if output_attentions:
|
||||
all_attentions = all_attentions + (layer_outputs[1],)
|
||||
|
||||
hidden_states = self.layer_norm(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
||||
return BaseModelOutput(
|
||||
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
||||
)
|
||||
|
||||
|
||||
class LDMBertModel(LDMBertPreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = LDMBertEncoder(config)
|
||||
self.to_logits = nn.Linear(config.hidden_size, config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
labels=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
|
||||
outputs = self.model(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
sequence_output = outputs[0]
|
||||
# logits = self.to_logits(sequence_output)
|
||||
# outputs = (logits,) + outputs[1:]
|
||||
|
||||
# if labels is not None:
|
||||
# loss_fct = CrossEntropyLoss()
|
||||
# loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
# outputs = (loss,) + outputs
|
||||
|
||||
# if not return_dict:
|
||||
# return outputs
|
||||
|
||||
return BaseModelOutput(
|
||||
last_hidden_state=sequence_output,
|
||||
# hidden_states=outputs[1],
|
||||
# attentions=outputs[2],
|
||||
)
|
||||
858
src/diffusers/pipelines/old/latent_diffusion/modeling_vae.py
Normal file
858
src/diffusers/pipelines/old/latent_diffusion/modeling_vae.py
Normal file
@@ -0,0 +1,858 @@
|
||||
# pytorch_diffusion + derived encoder decoder
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import tqdm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from diffusers import DiffusionPipeline
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.modeling_utils import ModelMixin
|
||||
|
||||
|
||||
def get_timestep_embedding(timesteps, embedding_dim):
|
||||
"""
|
||||
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
||||
From Fairseq.
|
||||
Build sinusoidal embeddings.
|
||||
This matches the implementation in tensor2tensor, but differs slightly
|
||||
from the description in Section 3.5 of "Attention Is All You Need".
|
||||
"""
|
||||
assert len(timesteps.shape) == 1
|
||||
|
||||
half_dim = embedding_dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
||||
emb = emb.to(device=timesteps.device)
|
||||
emb = timesteps.float()[:, None] * emb[None, :]
|
||||
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
||||
if embedding_dim % 2 == 1: # zero pad
|
||||
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
||||
return emb
|
||||
|
||||
|
||||
def nonlinearity(x):
|
||||
# swish
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
if self.with_conv:
|
||||
pad = (0, 1, 0, 1)
|
||||
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if temb_channels > 0:
|
||||
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
else:
|
||||
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x, temb):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
if temb is not None:
|
||||
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
||||
|
||||
h = self.norm2(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.dropout(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return x + h
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b, c, h, w = q.shape
|
||||
q = q.reshape(b, c, h * w)
|
||||
q = q.permute(0, 2, 1) # b,hw,c
|
||||
k = k.reshape(b, c, h * w) # b,c,hw
|
||||
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||
w_ = w_ * (int(c) ** (-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = v.reshape(b, c, h * w)
|
||||
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
||||
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||
h_ = h_.reshape(b, c, h, w)
|
||||
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x + h_
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
use_timestep=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = self.ch * 4
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.use_timestep = use_timestep
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
self.temb = nn.Module()
|
||||
self.temb.dense = nn.ModuleList(
|
||||
[
|
||||
torch.nn.Linear(self.ch, self.temb_ch),
|
||||
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
||||
]
|
||||
)
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = AttnBlock(block_in)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
skip_in = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
if i_block == self.num_res_blocks:
|
||||
skip_in = ch * in_ch_mult[i_level]
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in + skip_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x, t=None):
|
||||
# assert x.shape[2] == x.shape[3] == self.resolution
|
||||
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
assert t is not None
|
||||
temb = get_timestep_embedding(t, self.ch)
|
||||
temb = self.temb.dense[0](temb)
|
||||
temb = nonlinearity(temb)
|
||||
temb = self.temb.dense[1](temb)
|
||||
else:
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
double_z=True,
|
||||
**ignore_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = AttnBlock(block_in)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
||||
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
give_pre_end=False,
|
||||
**ignorekwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.give_pre_end = give_pre_end
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
block_in = ch * ch_mult[self.num_resolutions - 1]
|
||||
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||
self.z_shape = (1, z_channels, curr_res, curr_res)
|
||||
print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
self.mid.attn_1 = AttnBlock(block_in)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(AttnBlock(block_in))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, z):
|
||||
# assert z.shape[1:] == self.z_shape[1:]
|
||||
self.last_z_shape = z.shape
|
||||
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](h, temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
if self.give_pre_end:
|
||||
return h
|
||||
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class VectorQuantizer(nn.Module):
|
||||
"""
|
||||
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
||||
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
||||
"""
|
||||
|
||||
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
||||
# backwards compatibility we use the buggy version by default, but you can
|
||||
# specify legacy=False to fix it.
|
||||
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
|
||||
super().__init__()
|
||||
self.n_e = n_e
|
||||
self.e_dim = e_dim
|
||||
self.beta = beta
|
||||
self.legacy = legacy
|
||||
|
||||
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
||||
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
||||
|
||||
self.remap = remap
|
||||
if self.remap is not None:
|
||||
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
||||
self.re_embed = self.used.shape[0]
|
||||
self.unknown_index = unknown_index # "random" or "extra" or integer
|
||||
if self.unknown_index == "extra":
|
||||
self.unknown_index = self.re_embed
|
||||
self.re_embed = self.re_embed + 1
|
||||
print(
|
||||
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
||||
f"Using {self.unknown_index} for unknown indices."
|
||||
)
|
||||
else:
|
||||
self.re_embed = n_e
|
||||
|
||||
self.sane_index_shape = sane_index_shape
|
||||
|
||||
def remap_to_used(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape) > 1
|
||||
inds = inds.reshape(ishape[0], -1)
|
||||
used = self.used.to(inds)
|
||||
match = (inds[:, :, None] == used[None, None, ...]).long()
|
||||
new = match.argmax(-1)
|
||||
unknown = match.sum(2) < 1
|
||||
if self.unknown_index == "random":
|
||||
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
||||
else:
|
||||
new[unknown] = self.unknown_index
|
||||
return new.reshape(ishape)
|
||||
|
||||
def unmap_to_all(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape) > 1
|
||||
inds = inds.reshape(ishape[0], -1)
|
||||
used = self.used.to(inds)
|
||||
if self.re_embed > self.used.shape[0]: # extra token
|
||||
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
||||
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
||||
return back.reshape(ishape)
|
||||
|
||||
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
||||
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
|
||||
assert rescale_logits == False, "Only for interface compatible with Gumbel"
|
||||
assert return_logits == False, "Only for interface compatible with Gumbel"
|
||||
# reshape z -> (batch, height, width, channel) and flatten
|
||||
z = rearrange(z, "b c h w -> b h w c").contiguous()
|
||||
z_flattened = z.view(-1, self.e_dim)
|
||||
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||
|
||||
d = (
|
||||
torch.sum(z_flattened**2, dim=1, keepdim=True)
|
||||
+ torch.sum(self.embedding.weight**2, dim=1)
|
||||
- 2 * torch.einsum("bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n"))
|
||||
)
|
||||
|
||||
min_encoding_indices = torch.argmin(d, dim=1)
|
||||
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
||||
perplexity = None
|
||||
min_encodings = None
|
||||
|
||||
# compute loss for embedding
|
||||
if not self.legacy:
|
||||
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
|
||||
else:
|
||||
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
||||
|
||||
# preserve gradients
|
||||
z_q = z + (z_q - z).detach()
|
||||
|
||||
# reshape back to match original input shape
|
||||
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous()
|
||||
|
||||
if self.remap is not None:
|
||||
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
||||
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
||||
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
||||
|
||||
if self.sane_index_shape:
|
||||
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
||||
|
||||
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
||||
|
||||
def get_codebook_entry(self, indices, shape):
|
||||
# shape specifying (batch, height, width, channel)
|
||||
if self.remap is not None:
|
||||
indices = indices.reshape(shape[0], -1) # add batch axis
|
||||
indices = self.unmap_to_all(indices)
|
||||
indices = indices.reshape(-1) # flatten again
|
||||
|
||||
# get quantized latent vectors
|
||||
z_q = self.embedding(indices)
|
||||
|
||||
if shape is not None:
|
||||
z_q = z_q.view(shape)
|
||||
# reshape back to match original input shape
|
||||
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
return z_q
|
||||
|
||||
|
||||
class VQModel(ModelMixin, ConfigMixin):
|
||||
def __init__(
|
||||
self,
|
||||
ch,
|
||||
out_ch,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
n_embed,
|
||||
embed_dim,
|
||||
remap=None,
|
||||
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
dropout=0.0,
|
||||
double_z=True,
|
||||
resamp_with_conv=True,
|
||||
give_pre_end=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# register all __init__ params with self.register
|
||||
self.register(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
n_embed=n_embed,
|
||||
embed_dim=embed_dim,
|
||||
remap=remap,
|
||||
sane_index_shape=sane_index_shape,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
double_z=double_z,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
# pass init params to Encoder
|
||||
self.encoder = Encoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
double_z=double_z,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape)
|
||||
|
||||
# pass init params to Decoder
|
||||
self.decoder = Decoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
h = self.quant_conv(h)
|
||||
return h
|
||||
|
||||
def decode(self, h, force_not_quantize=False):
|
||||
# also go through quantization layer
|
||||
if not force_not_quantize:
|
||||
quant, emb_loss, info = self.quantize(h)
|
||||
else:
|
||||
quant = h
|
||||
quant = self.post_quant_conv(quant)
|
||||
dec = self.decoder(quant)
|
||||
return dec
|
||||
|
||||
|
||||
class DiagonalGaussianDistribution(object):
|
||||
def __init__(self, parameters, deterministic=False):
|
||||
self.parameters = parameters
|
||||
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
||||
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||
self.deterministic = deterministic
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
self.var = torch.exp(self.logvar)
|
||||
if self.deterministic:
|
||||
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
||||
|
||||
def sample(self):
|
||||
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
||||
return x
|
||||
|
||||
def kl(self, other=None):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
else:
|
||||
if other is None:
|
||||
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
||||
+ self.var - 1.0 - self.logvar,
|
||||
dim=[1, 2, 3])
|
||||
else:
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean - other.mean, 2) / other.var
|
||||
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||
dim=[1, 2, 3])
|
||||
|
||||
def nll(self, sample, dims=[1,2,3]):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
logtwopi = np.log(2.0 * np.pi)
|
||||
return 0.5 * torch.sum(
|
||||
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims)
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
class AutoencoderKL(ModelMixin, ConfigMixin):
|
||||
def __init__(
|
||||
self,
|
||||
ch,
|
||||
out_ch,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
embed_dim,
|
||||
remap=None,
|
||||
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
dropout=0.0,
|
||||
double_z=True,
|
||||
resamp_with_conv=True,
|
||||
give_pre_end=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# register all __init__ params with self.register
|
||||
self.register(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
embed_dim=embed_dim,
|
||||
remap=remap,
|
||||
sane_index_shape=sane_index_shape,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
double_z=double_z,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
# pass init params to Encoder
|
||||
self.encoder = Encoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
double_z=double_z,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
# pass init params to Decoder
|
||||
self.decoder = Decoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
ch_mult=ch_mult,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
give_pre_end=give_pre_end,
|
||||
)
|
||||
|
||||
self.quant_conv = torch.nn.Conv2d(2*z_channels, 2*embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
moments = self.quant_conv(h)
|
||||
posterior = DiagonalGaussianDistribution(moments)
|
||||
return posterior
|
||||
|
||||
def decode(self, z):
|
||||
z = self.post_quant_conv(z)
|
||||
dec = self.decoder(z)
|
||||
return dec
|
||||
|
||||
def forward(self, input, sample_posterior=True):
|
||||
posterior = self.encode(input)
|
||||
if sample_posterior:
|
||||
z = posterior.sample()
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z)
|
||||
return dec, posterior
|
||||
@@ -45,7 +45,7 @@ class DDPM(DiffusionPipeline):
|
||||
residual = self.unet(image, t)
|
||||
|
||||
# 2. predict previous mean of image x_t-1
|
||||
pred_prev_image = self.noise_scheduler.compute_prev_image_step(residual, image, t)
|
||||
pred_prev_image = self.noise_scheduler.step(residual, image, t)
|
||||
|
||||
# 3. optionally sample variance
|
||||
variance = 0
|
||||
|
||||
@@ -105,7 +105,7 @@ class DDIMScheduler(nn.Module, ConfigMixin):
|
||||
|
||||
return variance
|
||||
|
||||
def compute_prev_image_step(self, residual, image, t, num_inference_steps, eta, output_pred_x_0=False):
|
||||
def step(self, residual, image, t, num_inference_steps, eta, output_pred_x_0=False):
|
||||
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
||||
# Ideally, read DDIM paper in-detail understanding
|
||||
|
||||
|
||||
@@ -24,7 +24,6 @@ SAMPLING_CONFIG_NAME = "scheduler_config.json"
|
||||
|
||||
|
||||
class GaussianDDPMScheduler(nn.Module, ConfigMixin):
|
||||
|
||||
config_name = SAMPLING_CONFIG_NAME
|
||||
|
||||
def __init__(
|
||||
@@ -108,7 +107,7 @@ class GaussianDDPMScheduler(nn.Module, ConfigMixin):
|
||||
|
||||
return variance
|
||||
|
||||
def compute_prev_image_step(self, residual, image, t, output_pred_x_0=False):
|
||||
def step(self, residual, image, t, output_pred_x_0=False):
|
||||
# 1. compute alphas, betas
|
||||
alpha_prod_t = self.get_alpha_prod(t)
|
||||
alpha_prod_t_prev = self.get_alpha_prod(t - 1)
|
||||
|
||||
122
tests/test_ddpm_scheduler.py
Executable file
122
tests/test_ddpm_scheduler.py
Executable file
@@ -0,0 +1,122 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import os
|
||||
import random
|
||||
import tempfile
|
||||
import unittest
|
||||
import numpy as np
|
||||
from distutils.util import strtobool
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import GaussianDDPMScheduler, UNetModel, DDIMScheduler
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from models.vision.ddim.modeling_ddim import DDIM
|
||||
from models.vision.ddpm.modeling_ddpm import DDPM
|
||||
from models.vision.latent_diffusion.modeling_latent_diffusion import LatentDiffusion
|
||||
|
||||
global_rng = random.Random()
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
|
||||
|
||||
def parse_flag_from_env(key, default=False):
|
||||
try:
|
||||
value = os.environ[key]
|
||||
except KeyError:
|
||||
# KEY isn't set, default to `default`.
|
||||
_value = default
|
||||
else:
|
||||
# KEY is set, convert it to True or False.
|
||||
try:
|
||||
_value = strtobool(value)
|
||||
except ValueError:
|
||||
# More values are supported, but let's keep the message simple.
|
||||
raise ValueError(f"If set, {key} must be yes or no.")
|
||||
return _value
|
||||
|
||||
|
||||
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
|
||||
|
||||
|
||||
def slow(test_case):
|
||||
"""
|
||||
Decorator marking a test as slow.
|
||||
|
||||
Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
|
||||
|
||||
"""
|
||||
return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
|
||||
|
||||
|
||||
def floats_tensor(shape, scale=1.0, rng=None, name=None):
|
||||
"""Creates a random float32 tensor"""
|
||||
if rng is None:
|
||||
rng = global_rng
|
||||
|
||||
total_dims = 1
|
||||
for dim in shape:
|
||||
total_dims *= dim
|
||||
|
||||
values = []
|
||||
for _ in range(total_dims):
|
||||
values.append(rng.random() * scale)
|
||||
|
||||
return np.random.randn(data=values, dtype=torch.float).view(shape).contiguous()
|
||||
|
||||
|
||||
class SchedulerCommonTest(unittest.TestCase):
|
||||
|
||||
scheduler_class = None
|
||||
|
||||
@property
|
||||
def dummy_image(self):
|
||||
batch_size = 4
|
||||
num_channels = 3
|
||||
height = 8
|
||||
width = 8
|
||||
|
||||
image = np.random.rand(batch_size, num_channels, height, width)
|
||||
|
||||
return image
|
||||
|
||||
def get_scheduler_config(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def dummy_model(self):
|
||||
def model(image, residual, t, *args):
|
||||
return (image + residual) * t / (t + 1)
|
||||
|
||||
return model
|
||||
|
||||
def test_from_pretrained_save_pretrained(self):
|
||||
image = self.dummy_image
|
||||
|
||||
residual = 0.1 * image
|
||||
|
||||
scheduler_config = self.get_scheduler_config()
|
||||
scheduler = self.scheduler_class(scheduler_config())
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
scheduler.save_pretrained(tmpdirname)
|
||||
new_scheduler = self.scheduler_class.from_config(tmpdirname)
|
||||
|
||||
output = scheduler(residual, image, 1)
|
||||
new_output = new_scheduler(residual, image, 1)
|
||||
|
||||
import ipdb; ipdb.set_trace()
|
||||
@@ -27,7 +27,7 @@ from diffusers.configuration_utils import ConfigMixin
|
||||
from diffusers.pipeline_utils import DiffusionPipeline
|
||||
from models.vision.ddim.modeling_ddim import DDIM
|
||||
from models.vision.ddpm.modeling_ddpm import DDPM
|
||||
|
||||
from models.vision.latent_diffusion.modeling_latent_diffusion import LatentDiffusion
|
||||
|
||||
global_rng = random.Random()
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
@@ -334,3 +334,19 @@ class PipelineTesterMixin(unittest.TestCase):
|
||||
[-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
|
||||
)
|
||||
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
|
||||
|
||||
@slow
|
||||
def test_ldm_text2img(self):
|
||||
model_id = "fusing/latent-diffusion-text2im-large"
|
||||
ldm = LatentDiffusion.from_pretrained(model_id)
|
||||
|
||||
prompt = "A painting of a squirrel eating a burger"
|
||||
generator = torch.manual_seed(0)
|
||||
image = ldm([prompt], generator=generator, num_inference_steps=20)
|
||||
|
||||
image_slice = image[0, -1, -3:, -3:].cpu()
|
||||
print(image_slice.shape)
|
||||
|
||||
assert image.shape == (1, 3, 256, 256)
|
||||
expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
|
||||
assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
|
||||
|
||||
Reference in New Issue
Block a user