1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

LTX 0.9.7-distilled; documentation improvements (#11571)

* add guidance rescale

* update docs

* support adaptive instance norm filter

* fix custom timesteps support

* add custom timestep example to docs

* add a note about best generation settings being available only in the original repository

* use original org hub ids instead of personal

* make fix-copies

---------

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
This commit is contained in:
Aryan
2025-05-20 02:29:16 +05:30
committed by GitHub
parent c8bb1ff53e
commit 05c8b42b75
5 changed files with 280 additions and 6 deletions

View File

@@ -35,6 +35,7 @@ Available models:
| [`LTX Video 2B 0.9.1`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) | `torch.bfloat16` |
| [`LTX Video 2B 0.9.5`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.5.safetensors) | `torch.bfloat16` |
| [`LTX Video 13B 0.9.7`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-dev.safetensors) | `torch.bfloat16` |
| [`LTX Video 13B 0.9.7 (distilled)`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-distilled.safetensors) | `torch.bfloat16` |
| [`LTX Video Spatial Upscaler 0.9.7`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-spatial-upscaler-0.9.7.safetensors) | `torch.bfloat16` |
Note: The recommended dtype is for the transformer component. The VAE and text encoders can be either `torch.float32`, `torch.bfloat16` or `torch.float16` but the recommended dtype is `torch.bfloat16` as used in the original repository.
@@ -47,6 +48,14 @@ For the best results, it is recommended to follow the guidelines mentioned in th
- For variants with a timestep-aware VAE (LTXV 0.9.1 and above), it is recommended to set `decode_timestep` to `0.05` and `image_cond_noise_scale` to `0.025`.
- For variants that support interpolation between multiple conditioning images and videos (LTXV 0.9.5 and above), it is recommended to use similar looking images/videos for the best results. High divergence between the conditionings may lead to abrupt transitions in the generated video.
<!-- TODO(aryan): remove this warning when modular diffusers is ready -->
<Tip warning={true}>
The examples below show some recommended generation settings, but note that all features supported in the original [LTX Video repository](https://github.com/Lightricks/LTX-Video) are not supported in `diffusers` yet (for example, Spatio-temporal Guidance and CRF compression for image inputs). This will gradually be supported in the future. For the best possible generation quality, we recommend using the code from the original repository.
</Tip>
## Using LTX Video 13B 0.9.7
LTX Video 0.9.7 comes with a spatial latent upscaler and a 13B parameter transformer. The inference involves generating a low resolution video first, which is very fast, followed by upscaling and refining the generated video.
@@ -59,8 +68,8 @@ from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_video
pipe = LTXConditionPipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-diffusers", torch_dtype=torch.bfloat16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-Latent-Spatial-Upsampler-diffusers", vae=pipe.vae, torch_dtype=torch.bfloat16)
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=torch.bfloat16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipe_upsample.to("cuda")
pipe.vae.enable_tiling()
@@ -93,6 +102,11 @@ latents = pipe(
height=downscaled_height,
num_frames=num_frames,
num_inference_steps=30,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=5.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="latent",
).frames
@@ -117,7 +131,10 @@ video = pipe(
num_inference_steps=10,
latents=upscaled_latents,
decode_timestep=0.05,
image_cond_noise_scale=0.025,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=5.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="pil",
).frames[0]
@@ -128,6 +145,95 @@ video = [frame.resize((expected_width, expected_height)) for frame in video]
export_to_video(video, "output.mp4", fps=24)
```
## Using LTX Video 0.9.7 (distilled)
The same example as above can be used with the exception of the `guidance_scale` parameter. The model is both guidance and timestep distilled in order to speedup generation. It requires `guidance_scale` to be set to `1.0`. Additionally, to benefit from the timestep distillation, `num_inference_steps` can be set between `4` and `10` for good generation quality.
Additionally, custom timesteps can also be used for conditioning the generation. The authors recommend using the following timesteps for best results:
- Base model inference to prepare for upscaling: `[1000, 993, 987, 981, 975, 909, 725, 0.03]`
- Upscaling: `[1000, 909, 725, 421, 0]`
<details>
<summary> Full example </summary>
```python
import torch
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_video
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipe_upsample.to("cuda")
pipe.vae.enable_tiling()
def round_to_nearest_resolution_acceptable_by_vae(height, width):
height = height - (height % pipe.vae_temporal_compression_ratio)
width = width - (width % pipe.vae_temporal_compression_ratio)
return height, width
prompt = "artistic anatomical 3d render, utlra quality, human half full male body with transparent skin revealing structure instead of organs, muscular, intricate creative patterns, monochromatic with backlighting, lightning mesh, scientific concept art, blending biology with botany, surreal and ethereal quality, unreal engine 5, ray tracing, ultra realistic, 16K UHD, rich details. camera zooms out in a rotating fashion"
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
expected_height, expected_width = 768, 1152
downscale_factor = 2 / 3
num_frames = 161
# Part 1. Generate video at smaller resolution
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
timesteps=[1000, 993, 987, 981, 975, 909, 725, 0.03],
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=1.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="latent",
).frames
# Part 2. Upscale generated video using latent upsampler with fewer inference steps
# The available latent upsampler upscales the height/width by 2x
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
adain_factor=1.0,
output_type="latent"
).frames
# Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.999, # Effectively, 4 inference steps out of 5
timesteps=[1000, 909, 725, 421, 0],
latents=upscaled_latents,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=1.0,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(0),
output_type="pil",
).frames[0]
# Part 4. Downscale the video to the expected resolution
video = [frame.resize((expected_width, expected_height)) for frame in video]
export_to_video(video, "output.mp4", fps=24)
```
</details>
## Loading Single Files
Loading the original LTX Video checkpoints is also possible with [`~ModelMixin.from_single_file`]. We recommend using `from_single_file` for the Lightricks series of models, as they plan to release multiple models in the future in the single file format.

View File

@@ -140,6 +140,33 @@ def retrieve_timesteps(
return timesteps, num_inference_steps
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
r"""
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
Args:
noise_cfg (`torch.Tensor`):
The predicted noise tensor for the guided diffusion process.
noise_pred_text (`torch.Tensor`):
The predicted noise tensor for the text-guided diffusion process.
guidance_rescale (`float`, *optional*, defaults to 0.0):
A rescale factor applied to the noise predictions.
Returns:
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
r"""
Pipeline for text-to-video generation.
@@ -481,6 +508,10 @@ class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixi
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0
@@ -514,6 +545,7 @@ class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixi
num_inference_steps: int = 50,
timesteps: List[int] = None,
guidance_scale: float = 3,
guidance_rescale: float = 0.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
@@ -556,6 +588,11 @@ class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixi
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
the text `prompt`, usually at the expense of lower image quality.
guidance_rescale (`float`, *optional*, defaults to 0.0):
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Guidance rescale factor should fix overexposure when using zero terminal SNR.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of videos to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
@@ -624,6 +661,7 @@ class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixi
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._attention_kwargs = attention_kwargs
self._interrupt = False
self._current_timestep = None
@@ -737,6 +775,12 @@ class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixi
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.guidance_rescale > 0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

View File

@@ -222,6 +222,33 @@ def retrieve_latents(
raise AttributeError("Could not access latents of provided encoder_output")
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
r"""
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
Args:
noise_cfg (`torch.Tensor`):
The predicted noise tensor for the guided diffusion process.
noise_pred_text (`torch.Tensor`):
The predicted noise tensor for the text-guided diffusion process.
guidance_rescale (`float`, *optional*, defaults to 0.0):
A rescale factor applied to the noise predictions.
Returns:
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
r"""
Pipeline for text/image/video-to-video generation.
@@ -794,6 +821,10 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0
@@ -833,6 +864,7 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
num_inference_steps: int = 50,
timesteps: List[int] = None,
guidance_scale: float = 3,
guidance_rescale: float = 0.0,
image_cond_noise_scale: float = 0.15,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
@@ -893,6 +925,11 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
the text `prompt`, usually at the expense of lower image quality.
guidance_rescale (`float`, *optional*, defaults to 0.0):
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Guidance rescale factor should fix overexposure when using zero terminal SNR.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of videos to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
@@ -967,6 +1004,7 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._attention_kwargs = attention_kwargs
self._interrupt = False
self._current_timestep = None
@@ -1063,9 +1101,11 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
latent_height = height // self.vae_spatial_compression_ratio
latent_width = width // self.vae_spatial_compression_ratio
sigmas = linear_quadratic_schedule(num_inference_steps)
timesteps = sigmas * 1000
if timesteps is None:
sigmas = linear_quadratic_schedule(num_inference_steps)
timesteps = sigmas * 1000
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
sigmas = self.scheduler.sigmas
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
latent_sigma = None
@@ -1152,6 +1192,12 @@ class LTXConditionPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraL
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
timestep, _ = timestep.chunk(2)
if self.guidance_rescale > 0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale
)
denoised_latents = self.scheduler.step(
-noise_pred, t, latents, per_token_timesteps=timestep, return_dict=False
)[0]

View File

@@ -159,6 +159,33 @@ def retrieve_latents(
raise AttributeError("Could not access latents of provided encoder_output")
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
r"""
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
Args:
noise_cfg (`torch.Tensor`):
The predicted noise tensor for the guided diffusion process.
noise_pred_text (`torch.Tensor`):
The predicted noise tensor for the text-guided diffusion process.
guidance_rescale (`float`, *optional*, defaults to 0.0):
A rescale factor applied to the noise predictions.
Returns:
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
r"""
Pipeline for image-to-video generation.
@@ -542,6 +569,10 @@ class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLo
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0
@@ -576,6 +607,7 @@ class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLo
num_inference_steps: int = 50,
timesteps: List[int] = None,
guidance_scale: float = 3,
guidance_rescale: float = 0.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
@@ -620,6 +652,11 @@ class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLo
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
the text `prompt`, usually at the expense of lower image quality.
guidance_rescale (`float`, *optional*, defaults to 0.0):
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Guidance rescale factor should fix overexposure when using zero terminal SNR.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of videos to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
@@ -688,6 +725,7 @@ class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLo
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._attention_kwargs = attention_kwargs
self._interrupt = False
self._current_timestep = None
@@ -811,6 +849,12 @@ class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLo
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
timestep, _ = timestep.chunk(2)
if self.guidance_rescale > 0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale
)
# compute the previous noisy sample x_t -> x_t-1
noise_pred = self._unpack_latents(
noise_pred,

View File

@@ -91,6 +91,34 @@ class LTXLatentUpsamplePipeline(DiffusionPipeline):
init_latents = self._normalize_latents(init_latents, self.vae.latents_mean, self.vae.latents_std)
return init_latents
def adain_filter_latent(self, latents: torch.Tensor, reference_latents: torch.Tensor, factor: float = 1.0):
"""
Applies Adaptive Instance Normalization (AdaIN) to a latent tensor based on statistics from a reference latent
tensor.
Args:
latent (`torch.Tensor`):
Input latents to normalize
reference_latents (`torch.Tensor`):
The reference latents providing style statistics.
factor (`float`):
Blending factor between original and transformed latent. Range: -10.0 to 10.0, Default: 1.0
Returns:
torch.Tensor: The transformed latent tensor
"""
result = latents.clone()
for i in range(latents.size(0)):
for c in range(latents.size(1)):
r_sd, r_mean = torch.std_mean(reference_latents[i, c], dim=None) # index by original dim order
i_sd, i_mean = torch.std_mean(result[i, c], dim=None)
result[i, c] = ((result[i, c] - i_mean) / i_sd) * r_sd + r_mean
result = torch.lerp(latents, result, factor)
return result
@staticmethod
# Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._normalize_latents
def _normalize_latents(
@@ -160,6 +188,7 @@ class LTXLatentUpsamplePipeline(DiffusionPipeline):
latents: Optional[torch.Tensor] = None,
decode_timestep: Union[float, List[float]] = 0.0,
decode_noise_scale: Optional[Union[float, List[float]]] = None,
adain_factor: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
@@ -204,7 +233,12 @@ class LTXLatentUpsamplePipeline(DiffusionPipeline):
latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
)
latents = latents.to(self.latent_upsampler.dtype)
latents = self.latent_upsampler(latents)
latents_upsampled = self.latent_upsampler(latents)
if adain_factor > 0.0:
latents = self.adain_filter_latent(latents_upsampled, latents, adain_factor)
else:
latents = latents_upsampled
if output_type == "latent":
latents = self._normalize_latents(