mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[2737]: Add DPMSolverMultistepScheduler to CLIP guided community pipeline (#2779)
[2737]: Add DPMSolverMultistepScheduler to CLIP guided community pipelines Co-authored-by: njindal <njindal@adobe.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
This commit is contained in:
@@ -11,6 +11,7 @@ from diffusers import (
|
||||
AutoencoderKL,
|
||||
DDIMScheduler,
|
||||
DiffusionPipeline,
|
||||
DPMSolverMultistepScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
UNet2DConditionModel,
|
||||
@@ -63,7 +64,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline):
|
||||
clip_model: CLIPModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler],
|
||||
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
|
||||
feature_extractor: CLIPImageProcessor,
|
||||
):
|
||||
super().__init__()
|
||||
@@ -125,17 +126,12 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline):
|
||||
):
|
||||
latents = latents.detach().requires_grad_()
|
||||
|
||||
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
||||
sigma = self.scheduler.sigmas[index]
|
||||
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
||||
latent_model_input = latents / ((sigma**2 + 1) ** 0.5)
|
||||
else:
|
||||
latent_model_input = latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
|
||||
|
||||
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler)):
|
||||
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
|
||||
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
# compute predicted original sample from predicted noise also called
|
||||
|
||||
@@ -13,6 +13,7 @@ from diffusers import (
|
||||
AutoencoderKL,
|
||||
DDIMScheduler,
|
||||
DiffusionPipeline,
|
||||
DPMSolverMultistepScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
UNet2DConditionModel,
|
||||
@@ -140,7 +141,7 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline):
|
||||
clip_model: CLIPModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler],
|
||||
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
|
||||
feature_extractor: CLIPFeatureExtractor,
|
||||
):
|
||||
super().__init__()
|
||||
@@ -263,17 +264,12 @@ class CLIPGuidedStableDiffusion(DiffusionPipeline):
|
||||
):
|
||||
latents = latents.detach().requires_grad_()
|
||||
|
||||
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
||||
sigma = self.scheduler.sigmas[index]
|
||||
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
||||
latent_model_input = latents / ((sigma**2 + 1) ** 0.5)
|
||||
else:
|
||||
latent_model_input = latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
|
||||
|
||||
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler)):
|
||||
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
|
||||
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
# compute predicted original sample from predicted noise also called
|
||||
|
||||
Reference in New Issue
Block a user