1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
This commit is contained in:
sayakpaul
2025-12-08 13:36:29 +05:30
parent be586607de
commit 044392d65f
11 changed files with 540 additions and 477 deletions

View File

@@ -37,6 +37,7 @@ from ..utils import (
is_accelerate_available,
is_peft_available,
is_peft_version,
is_torch_version,
is_transformers_available,
is_transformers_version,
logging,
@@ -49,6 +50,17 @@ from ..utils.peft_utils import _create_lora_config
from ..utils.state_dict_utils import _load_sft_state_dict_metadata
_LOW_CPU_MEM_USAGE_DEFAULT_LORA = False
if is_torch_version(">=", "1.9.0"):
if (
is_peft_available()
and is_peft_version(">=", "0.13.1")
and is_transformers_available()
and is_transformers_version(">", "4.45.2")
):
_LOW_CPU_MEM_USAGE_DEFAULT_LORA = True
if is_transformers_available():
from transformers import PreTrainedModel
@@ -64,6 +76,10 @@ LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
LORA_ADAPTER_METADATA_KEY = "lora_adapter_metadata"
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
TRANSFORMER_NAME = "transformer"
def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None):
"""

View File

@@ -18,6 +18,7 @@ from typing import Callable, Dict, List, Optional, Union
import torch
from huggingface_hub.utils import validate_hf_hub_args
from ..pipelines.stable_diffusion.lora_utils import StableDiffusionLoraLoaderMixin
from ..utils import (
USE_PEFT_BACKEND,
deprecate,
@@ -127,468 +128,11 @@ def _maybe_dequantize_weight_for_expanded_lora(model, module):
return module_weight
class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
"""
_lora_loadable_modules = ["unet", "text_encoder"]
unet_name = UNET_NAME
text_encoder_name = TEXT_ENCODER_NAME
def load_lora_weights(
self,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
adapter_name: Optional[str] = None,
hotswap: bool = False,
**kwargs,
):
"""Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
`self.text_encoder`.
All kwargs are forwarded to `self.lora_state_dict`.
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
loaded into `self.unet`.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
dict is loaded into `self.text_encoder`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
hotswap (`bool`, *optional*):
Defaults to `False`. Whether to substitute an existing (LoRA) adapter with the newly loaded adapter
in-place. This means that, instead of loading an additional adapter, this will take the existing
adapter weights and replace them with the weights of the new adapter. This can be faster and more
memory efficient. However, the main advantage of hotswapping is that when the model is compiled with
torch.compile, loading the new adapter does not require recompilation of the model. When using
hotswapping, the passed `adapter_name` should be the name of an already loaded adapter.
If the new adapter and the old adapter have different ranks and/or LoRA alphas (i.e. scaling), you need
to call an additional method before loading the adapter:
```py
pipeline = ... # load diffusers pipeline
max_rank = ... # the highest rank among all LoRAs that you want to load
# call *before* compiling and loading the LoRA adapter
pipeline.enable_lora_hotswap(target_rank=max_rank)
pipeline.load_lora_weights(file_name)
# optionally compile the model now
```
Note that hotswapping adapters of the text encoder is not yet supported. There are some further
limitations to this technique, which are documented here:
https://huggingface.co/docs/peft/main/en/package_reference/hotswap
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
kwargs["return_lora_metadata"] = True
state_dict, network_alphas, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_unet(
state_dict,
network_alphas=network_alphas,
unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
self.load_lora_into_text_encoder(
state_dict,
network_alphas=network_alphas,
text_encoder=getattr(self, self.text_encoder_name)
if not hasattr(self, "text_encoder")
else self.text_encoder,
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
metadata=metadata,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
@classmethod
@validate_hf_hub_args
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
> [!WARNING] > We support loading A1111 formatted LoRA checkpoints in a limited capacity. > > This function is
experimental and might change in the future.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
weight_name (`str`, *optional*, defaults to None):
Name of the serialized state dict file.
return_lora_metadata (`bool`, *optional*, defaults to False):
When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
"""
# Load the main state dict first which has the LoRA layers for either of
# UNet and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
unet_config = kwargs.pop("unet_config", None)
use_safetensors = kwargs.pop("use_safetensors", None)
return_lora_metadata = kwargs.pop("return_lora_metadata", False)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
state_dict, metadata = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
network_alphas = None
# TODO: replace it with a method from `state_dict_utils`
if all(
(
k.startswith("lora_te_")
or k.startswith("lora_unet_")
or k.startswith("lora_te1_")
or k.startswith("lora_te2_")
)
for k in state_dict.keys()
):
# Map SDXL blocks correctly.
if unet_config is not None:
# use unet config to remap block numbers
state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
return out
@classmethod
def load_lora_into_unet(
cls,
state_dict,
network_alphas,
unet,
adapter_name=None,
_pipeline=None,
low_cpu_mem_usage=False,
hotswap: bool = False,
metadata=None,
):
"""
This will load the LoRA layers specified in `state_dict` into `unet`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
unet (`UNet2DConditionModel`):
The UNet model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading only loading the pretrained LoRA weights and not initializing the random
weights.
hotswap (`bool`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
metadata (`dict`):
Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
from the state dict.
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
# then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
# their prefixes.
logger.info(f"Loading {cls.unet_name}.")
unet.load_lora_adapter(
state_dict,
prefix=cls.unet_name,
network_alphas=network_alphas,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
@classmethod
def load_lora_into_text_encoder(
cls,
state_dict,
network_alphas,
text_encoder,
prefix=None,
lora_scale=1.0,
adapter_name=None,
_pipeline=None,
low_cpu_mem_usage=False,
hotswap: bool = False,
metadata=None,
):
"""
This will load the LoRA layers specified in `state_dict` into `text_encoder`
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The key should be prefixed with an
additional `text_encoder` to distinguish between unet lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
text_encoder (`CLIPTextModel`):
The text encoder model to load the LoRA layers into.
prefix (`str`):
Expected prefix of the `text_encoder` in the `state_dict`.
lora_scale (`float`):
How much to scale the output of the lora linear layer before it is added with the output of the regular
lora layer.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
hotswap (`bool`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
metadata (`dict`):
Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
from the state dict.
"""
_load_lora_into_text_encoder(
state_dict=state_dict,
network_alphas=network_alphas,
lora_scale=lora_scale,
text_encoder=text_encoder,
prefix=prefix,
text_encoder_name=cls.text_encoder_name,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
@classmethod
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
unet_lora_adapter_metadata=None,
text_encoder_lora_adapter_metadata=None,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `unet`.
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
unet_lora_adapter_metadata:
LoRA adapter metadata associated with the unet to be serialized with the state dict.
text_encoder_lora_adapter_metadata:
LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
"""
lora_layers = {}
lora_metadata = {}
if unet_lora_layers:
lora_layers[cls.unet_name] = unet_lora_layers
lora_metadata[cls.unet_name] = unet_lora_adapter_metadata
if text_encoder_lora_layers:
lora_layers[cls.text_encoder_name] = text_encoder_lora_layers
lora_metadata[cls.text_encoder_name] = text_encoder_lora_adapter_metadata
if not lora_layers:
raise ValueError("You must pass at least one of `unet_lora_layers` or `text_encoder_lora_layers`.")
cls._save_lora_weights(
save_directory=save_directory,
lora_layers=lora_layers,
lora_metadata=lora_metadata,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def fuse_lora(
self,
components: List[str] = ["unet", "text_encoder"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
> [!WARNING] > This is an experimental API.
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components,
lora_scale=lora_scale,
safe_fusing=safe_fusing,
adapter_names=adapter_names,
**kwargs,
)
def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
> [!WARNING] > This is an experimental API.
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
unfuse_text_encoder (`bool`, defaults to `True`):
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
LoRA parameters then it won't have any effect.
"""
super().unfuse_lora(components=components, **kwargs)
class StableDiffusionLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
def __init__(self, *args, **kwargs):
deprecation_message = "Import `StableDiffusionLoraLoaderMixin` from `diffusers.loaders` is deprecated and this will be removed in a future version. Please use `from diffusers.pipelines.stable_diffusion.lora_utils import StableDiffusionLoraLoaderMixin`, instead."
deprecate("StableDiffusionLoraLoaderMixin", "1.0.0", deprecation_message)
super().__init__(*args, **kwargs)
class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):

View File

@@ -0,0 +1,501 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Callable, Dict, List, Optional, Union
import torch
from ...loaders.lora_base import (
_LOW_CPU_MEM_USAGE_DEFAULT_LORA,
LoraBaseMixin,
_fetch_state_dict,
_load_lora_into_text_encoder,
)
from ...loaders.lora_conversion_utils import (
_convert_non_diffusers_lora_to_diffusers,
_maybe_map_sgm_blocks_to_diffusers,
)
from ...utils import USE_PEFT_BACKEND, is_peft_version, logging
from ...utils.hub_utils import validate_hf_hub_args
logger = logging.get_logger(__name__)
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
"""
_lora_loadable_modules = ["unet", "text_encoder"]
unet_name = UNET_NAME
text_encoder_name = TEXT_ENCODER_NAME
def load_lora_weights(
self,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
adapter_name: Optional[str] = None,
hotswap: bool = False,
**kwargs,
):
"""Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
`self.text_encoder`.
All kwargs are forwarded to `self.lora_state_dict`.
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
loaded into `self.unet`.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
dict is loaded into `self.text_encoder`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
hotswap (`bool`, *optional*):
Defaults to `False`. Whether to substitute an existing (LoRA) adapter with the newly loaded adapter
in-place. This means that, instead of loading an additional adapter, this will take the existing
adapter weights and replace them with the weights of the new adapter. This can be faster and more
memory efficient. However, the main advantage of hotswapping is that when the model is compiled with
torch.compile, loading the new adapter does not require recompilation of the model. When using
hotswapping, the passed `adapter_name` should be the name of an already loaded adapter.
If the new adapter and the old adapter have different ranks and/or LoRA alphas (i.e. scaling), you need
to call an additional method before loading the adapter:
```py
pipeline = ... # load diffusers pipeline
max_rank = ... # the highest rank among all LoRAs that you want to load
# call *before* compiling and loading the LoRA adapter
pipeline.enable_lora_hotswap(target_rank=max_rank)
pipeline.load_lora_weights(file_name)
# optionally compile the model now
```
Note that hotswapping adapters of the text encoder is not yet supported. There are some further
limitations to this technique, which are documented here:
https://huggingface.co/docs/peft/main/en/package_reference/hotswap
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
kwargs["return_lora_metadata"] = True
state_dict, network_alphas, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_unet(
state_dict,
network_alphas=network_alphas,
unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
self.load_lora_into_text_encoder(
state_dict,
network_alphas=network_alphas,
text_encoder=getattr(self, self.text_encoder_name)
if not hasattr(self, "text_encoder")
else self.text_encoder,
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
metadata=metadata,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
@classmethod
@validate_hf_hub_args
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
> [!WARNING] > We support loading A1111 formatted LoRA checkpoints in a limited capacity. > > This function is
experimental and might change in the future.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
weight_name (`str`, *optional*, defaults to None):
Name of the serialized state dict file.
return_lora_metadata (`bool`, *optional*, defaults to False):
When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
"""
# Load the main state dict first which has the LoRA layers for either of
# UNet and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
unet_config = kwargs.pop("unet_config", None)
use_safetensors = kwargs.pop("use_safetensors", None)
return_lora_metadata = kwargs.pop("return_lora_metadata", False)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
state_dict, metadata = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
network_alphas = None
# TODO: replace it with a method from `state_dict_utils`
if all(
(
k.startswith("lora_te_")
or k.startswith("lora_unet_")
or k.startswith("lora_te1_")
or k.startswith("lora_te2_")
)
for k in state_dict.keys()
):
# Map SDXL blocks correctly.
if unet_config is not None:
# use unet config to remap block numbers
state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
return out
@classmethod
def load_lora_into_unet(
cls,
state_dict,
network_alphas,
unet,
adapter_name=None,
_pipeline=None,
low_cpu_mem_usage=False,
hotswap: bool = False,
metadata=None,
):
"""
This will load the LoRA layers specified in `state_dict` into `unet`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
unet (`UNet2DConditionModel`):
The UNet model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading only loading the pretrained LoRA weights and not initializing the random
weights.
hotswap (`bool`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
metadata (`dict`):
Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
from the state dict.
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
# then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
# their prefixes.
logger.info(f"Loading {cls.unet_name}.")
unet.load_lora_adapter(
state_dict,
prefix=cls.unet_name,
network_alphas=network_alphas,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
@classmethod
def load_lora_into_text_encoder(
cls,
state_dict,
network_alphas,
text_encoder,
prefix=None,
lora_scale=1.0,
adapter_name=None,
_pipeline=None,
low_cpu_mem_usage=False,
hotswap: bool = False,
metadata=None,
):
"""
This will load the LoRA layers specified in `state_dict` into `text_encoder`
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The key should be prefixed with an
additional `text_encoder` to distinguish between unet lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
text_encoder (`CLIPTextModel`):
The text encoder model to load the LoRA layers into.
prefix (`str`):
Expected prefix of the `text_encoder` in the `state_dict`.
lora_scale (`float`):
How much to scale the output of the lora linear layer before it is added with the output of the regular
lora layer.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
hotswap (`bool`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
metadata (`dict`):
Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
from the state dict.
"""
_load_lora_into_text_encoder(
state_dict=state_dict,
network_alphas=network_alphas,
lora_scale=lora_scale,
text_encoder=text_encoder,
prefix=prefix,
text_encoder_name=cls.text_encoder_name,
adapter_name=adapter_name,
metadata=metadata,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
hotswap=hotswap,
)
@classmethod
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
unet_lora_adapter_metadata=None,
text_encoder_lora_adapter_metadata=None,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `unet`.
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
unet_lora_adapter_metadata:
LoRA adapter metadata associated with the unet to be serialized with the state dict.
text_encoder_lora_adapter_metadata:
LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
"""
lora_layers = {}
lora_metadata = {}
if unet_lora_layers:
lora_layers[cls.unet_name] = unet_lora_layers
lora_metadata[cls.unet_name] = unet_lora_adapter_metadata
if text_encoder_lora_layers:
lora_layers[cls.text_encoder_name] = text_encoder_lora_layers
lora_metadata[cls.text_encoder_name] = text_encoder_lora_adapter_metadata
if not lora_layers:
raise ValueError("You must pass at least one of `unet_lora_layers` or `text_encoder_lora_layers`.")
cls._save_lora_weights(
save_directory=save_directory,
lora_layers=lora_layers,
lora_metadata=lora_metadata,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def fuse_lora(
self,
components: List[str] = ["unet", "text_encoder"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
> [!WARNING] > This is an experimental API.
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components,
lora_scale=lora_scale,
safe_fusing=safe_fusing,
adapter_names=adapter_names,
**kwargs,
)
def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
> [!WARNING] > This is an experimental API.
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
unfuse_text_encoder (`bool`, defaults to `True`):
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
LoRA parameters then it won't have any effect.
"""
super().unfuse_lora(components=components, **kwargs)

View File

@@ -20,12 +20,13 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPV
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...configuration_utils import FrozenDict
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, IPAdapterMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import deprecate, is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from .lora_utils import StableDiffusionLoraLoaderMixin
from .pipeline_output import StableDiffusionPipelineOutput
from .pipeline_stable_diffusion_utils import SDMixin, rescale_noise_cfg, retrieve_timesteps
from .safety_checker import StableDiffusionSafetyChecker

View File

@@ -23,7 +23,7 @@ from transformers import CLIPTextModel, CLIPTokenizer, DPTForDepthEstimation, DP
from ...configuration_utils import FrozenDict
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import TextualInversionLoaderMixin
from ...models import AutoencoderKL, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
@@ -34,6 +34,7 @@ from ...utils import (
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .lora_utils import StableDiffusionLoraLoaderMixin
from .pipeline_stable_diffusion_utils import SDMixin, retrieve_latents

View File

@@ -23,19 +23,14 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPV
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...configuration_utils import FrozenDict
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, IPAdapterMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
PIL_INTERPOLATION,
deprecate,
is_torch_xla_available,
logging,
replace_example_docstring,
)
from ...utils import PIL_INTERPOLATION, deprecate, is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from . import StableDiffusionPipelineOutput
from .lora_utils import StableDiffusionLoraLoaderMixin
from .pipeline_stable_diffusion_utils import SDMixin, retrieve_latents, retrieve_timesteps
from .safety_checker import StableDiffusionSafetyChecker

View File

@@ -22,13 +22,14 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPV
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...configuration_utils import FrozenDict
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, IPAdapterMixin, TextualInversionLoaderMixin
from ...models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import deprecate, is_torch_xla_available, logging
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from . import StableDiffusionPipelineOutput
from .lora_utils import StableDiffusionLoraLoaderMixin
from .pipeline_stable_diffusion_utils import SDMixin, retrieve_latents, retrieve_timesteps
from .safety_checker import StableDiffusionSafetyChecker

View File

@@ -22,13 +22,14 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPV
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, IPAdapterMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import PIL_INTERPOLATION, deprecate, is_torch_xla_available, logging
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from . import StableDiffusionPipelineOutput
from .lora_utils import StableDiffusionLoraLoaderMixin
from .safety_checker import StableDiffusionSafetyChecker

View File

@@ -21,13 +21,14 @@ import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, UNet2DConditionModel
from ...schedulers import DDPMScheduler, KarrasDiffusionSchedulers
from ...utils import deprecate, is_torch_xla_available, logging
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from . import StableDiffusionPipelineOutput
from .lora_utils import StableDiffusionLoraLoaderMixin
from .pipeline_stable_diffusion_utils import SDMixin

View File

@@ -20,13 +20,14 @@ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokeniz
from transformers.models.clip.modeling_clip import CLIPTextModelOutput
from ...image_processor import VaeImageProcessor
from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import TextualInversionLoaderMixin
from ...models import AutoencoderKL, PriorTransformer, UNet2DConditionModel
from ...models.embeddings import get_timestep_embedding
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput, StableDiffusionMixin
from .lora_utils import StableDiffusionLoraLoaderMixin
from .pipeline_stable_diffusion_utils import SDMixin
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer

View File

@@ -19,13 +19,14 @@ import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from ...image_processor import VaeImageProcessor
from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import TextualInversionLoaderMixin
from ...models import AutoencoderKL, UNet2DConditionModel
from ...models.embeddings import get_timestep_embedding
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput, StableDiffusionMixin
from .lora_utils import StableDiffusionLoraLoaderMixin
from .pipeline_stable_diffusion_utils import SDMixin
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer