mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
start unbloating docstrings (save_lora_weights).
This commit is contained in:
@@ -967,35 +967,7 @@ class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
|
||||
text_encoder_2_lora_adapter_metadata=None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the UNet and text encoder.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `unet`.
|
||||
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
|
||||
encoder LoRA state dict because it comes from 🤗 Transformers.
|
||||
text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text
|
||||
encoder LoRA state dict because it comes from 🤗 Transformers.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
unet_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the unet to be serialized with the state dict.
|
||||
text_encoder_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
|
||||
text_encoder_2_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the second text encoder to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -1420,35 +1392,7 @@ class SD3LoraLoaderMixin(LoraBaseMixin):
|
||||
text_encoder_2_lora_adapter_metadata=None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the UNet and text encoder.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
|
||||
encoder LoRA state dict because it comes from 🤗 Transformers.
|
||||
text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text
|
||||
encoder LoRA state dict because it comes from 🤗 Transformers.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
text_encoder_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
|
||||
text_encoder_2_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the second text encoder to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -1781,25 +1725,7 @@ class AuraFlowLoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -3180,7 +3106,6 @@ class CogVideoXLoraLoaderMixin(LoraBaseMixin):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
# Adapted from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights without support for text encoder
|
||||
def save_lora_weights(
|
||||
cls,
|
||||
save_directory: Union[str, os.PathLike],
|
||||
@@ -3192,25 +3117,7 @@ class CogVideoXLoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -3528,25 +3435,7 @@ class Mochi1LoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -3868,25 +3757,7 @@ class LTXVideoLoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -4206,25 +4077,7 @@ class SanaLoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -4546,25 +4399,7 @@ class HunyuanVideoLoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -4887,25 +4722,7 @@ class Lumina2LoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -5298,25 +5115,7 @@ class WanLoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -5712,25 +5511,7 @@ class SkyReelsV2LoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -6050,25 +5831,7 @@ class CogView4LoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -6390,25 +6153,7 @@ class HiDreamImageLoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
@@ -6733,25 +6478,7 @@ class QwenImageLoraLoaderMixin(LoraBaseMixin):
|
||||
transformer_lora_adapter_metadata: Optional[dict] = None,
|
||||
):
|
||||
r"""
|
||||
Save the LoRA parameters corresponding to the transformer.
|
||||
|
||||
Arguments:
|
||||
save_directory (`str` or `os.PathLike`):
|
||||
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
||||
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
|
||||
State dict of the LoRA layers corresponding to the `transformer`.
|
||||
is_main_process (`bool`, *optional*, defaults to `True`):
|
||||
Whether the process calling this is the main process or not. Useful during distributed training and you
|
||||
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
||||
process to avoid race conditions.
|
||||
save_function (`Callable`):
|
||||
The function to use to save the state dictionary. Useful during distributed training when you need to
|
||||
replace `torch.save` with another method. Can be configured with the environment variable
|
||||
`DIFFUSERS_SAVE_MODE`.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
||||
transformer_lora_adapter_metadata:
|
||||
LoRA adapter metadata associated with the transformer to be serialized with the state dict.
|
||||
See [`~loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
|
||||
"""
|
||||
lora_layers = {}
|
||||
lora_metadata = {}
|
||||
|
||||
Reference in New Issue
Block a user