mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
[tests] add tests for framepack transformer model. (#11520)
* start. * add tests for framepack transformer model. * merge conflicts. * make to square. * fixes
This commit is contained in:
@@ -196,7 +196,7 @@ class HunyuanVideoFramepackTransformer3DModel(
|
||||
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
|
||||
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
|
||||
|
||||
self.use_gradient_checkpointing = False
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
||||
@@ -0,0 +1,116 @@
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import HunyuanVideoFramepackTransformer3DModel
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..test_modeling_common import ModelTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class HunyuanVideoTransformer3DTests(ModelTesterMixin, unittest.TestCase):
|
||||
model_class = HunyuanVideoFramepackTransformer3DModel
|
||||
main_input_name = "hidden_states"
|
||||
uses_custom_attn_processor = True
|
||||
model_split_percents = [0.5, 0.7, 0.9]
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
batch_size = 1
|
||||
num_channels = 4
|
||||
num_frames = 3
|
||||
height = 4
|
||||
width = 4
|
||||
text_encoder_embedding_dim = 16
|
||||
image_encoder_embedding_dim = 16
|
||||
pooled_projection_dim = 8
|
||||
sequence_length = 12
|
||||
|
||||
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
|
||||
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
|
||||
pooled_projections = torch.randn((batch_size, pooled_projection_dim)).to(torch_device)
|
||||
encoder_attention_mask = torch.ones((batch_size, sequence_length)).to(torch_device)
|
||||
image_embeds = torch.randn((batch_size, sequence_length, image_encoder_embedding_dim)).to(torch_device)
|
||||
indices_latents = torch.ones((3,)).to(torch_device)
|
||||
latents_clean = torch.randn((batch_size, num_channels, num_frames - 1, height, width)).to(torch_device)
|
||||
indices_latents_clean = torch.ones((num_frames - 1,)).to(torch_device)
|
||||
latents_history_2x = torch.randn((batch_size, num_channels, num_frames - 1, height, width)).to(torch_device)
|
||||
indices_latents_history_2x = torch.ones((num_frames - 1,)).to(torch_device)
|
||||
latents_history_4x = torch.randn((batch_size, num_channels, (num_frames - 1) * 4, height, width)).to(
|
||||
torch_device
|
||||
)
|
||||
indices_latents_history_4x = torch.ones(((num_frames - 1) * 4,)).to(torch_device)
|
||||
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
||||
guidance = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"timestep": timestep,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"pooled_projections": pooled_projections,
|
||||
"encoder_attention_mask": encoder_attention_mask,
|
||||
"guidance": guidance,
|
||||
"image_embeds": image_embeds,
|
||||
"indices_latents": indices_latents,
|
||||
"latents_clean": latents_clean,
|
||||
"indices_latents_clean": indices_latents_clean,
|
||||
"latents_history_2x": latents_history_2x,
|
||||
"indices_latents_history_2x": indices_latents_history_2x,
|
||||
"latents_history_4x": latents_history_4x,
|
||||
"indices_latents_history_4x": indices_latents_history_4x,
|
||||
}
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
return (4, 3, 4, 4)
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
return (4, 3, 4, 4)
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
init_dict = {
|
||||
"in_channels": 4,
|
||||
"out_channels": 4,
|
||||
"num_attention_heads": 2,
|
||||
"attention_head_dim": 10,
|
||||
"num_layers": 1,
|
||||
"num_single_layers": 1,
|
||||
"num_refiner_layers": 1,
|
||||
"patch_size": 2,
|
||||
"patch_size_t": 1,
|
||||
"guidance_embeds": True,
|
||||
"text_embed_dim": 16,
|
||||
"pooled_projection_dim": 8,
|
||||
"rope_axes_dim": (2, 4, 4),
|
||||
"image_condition_type": None,
|
||||
"has_image_proj": True,
|
||||
"image_proj_dim": 16,
|
||||
"has_clean_x_embedder": True,
|
||||
}
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
def test_gradient_checkpointing_is_applied(self):
|
||||
expected_set = {"HunyuanVideoFramepackTransformer3DModel"}
|
||||
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
||||
Reference in New Issue
Block a user