1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00

[tests] add tests for framepack transformer model. (#11520)

* start.

* add tests for framepack transformer model.

* merge conflicts.

* make to square.

* fixes
This commit is contained in:
Sayak Paul
2025-05-11 09:50:06 +05:30
committed by GitHub
parent 92fe689f06
commit 01abfc8736
2 changed files with 117 additions and 1 deletions

View File

@@ -196,7 +196,7 @@ class HunyuanVideoFramepackTransformer3DModel(
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
self.use_gradient_checkpointing = False
self.gradient_checkpointing = False
def forward(
self,

View File

@@ -0,0 +1,116 @@
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import HunyuanVideoFramepackTransformer3DModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class HunyuanVideoTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = HunyuanVideoFramepackTransformer3DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
model_split_percents = [0.5, 0.7, 0.9]
@property
def dummy_input(self):
batch_size = 1
num_channels = 4
num_frames = 3
height = 4
width = 4
text_encoder_embedding_dim = 16
image_encoder_embedding_dim = 16
pooled_projection_dim = 8
sequence_length = 12
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
pooled_projections = torch.randn((batch_size, pooled_projection_dim)).to(torch_device)
encoder_attention_mask = torch.ones((batch_size, sequence_length)).to(torch_device)
image_embeds = torch.randn((batch_size, sequence_length, image_encoder_embedding_dim)).to(torch_device)
indices_latents = torch.ones((3,)).to(torch_device)
latents_clean = torch.randn((batch_size, num_channels, num_frames - 1, height, width)).to(torch_device)
indices_latents_clean = torch.ones((num_frames - 1,)).to(torch_device)
latents_history_2x = torch.randn((batch_size, num_channels, num_frames - 1, height, width)).to(torch_device)
indices_latents_history_2x = torch.ones((num_frames - 1,)).to(torch_device)
latents_history_4x = torch.randn((batch_size, num_channels, (num_frames - 1) * 4, height, width)).to(
torch_device
)
indices_latents_history_4x = torch.ones(((num_frames - 1) * 4,)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
guidance = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
return {
"hidden_states": hidden_states,
"timestep": timestep,
"encoder_hidden_states": encoder_hidden_states,
"pooled_projections": pooled_projections,
"encoder_attention_mask": encoder_attention_mask,
"guidance": guidance,
"image_embeds": image_embeds,
"indices_latents": indices_latents,
"latents_clean": latents_clean,
"indices_latents_clean": indices_latents_clean,
"latents_history_2x": latents_history_2x,
"indices_latents_history_2x": indices_latents_history_2x,
"latents_history_4x": latents_history_4x,
"indices_latents_history_4x": indices_latents_history_4x,
}
@property
def input_shape(self):
return (4, 3, 4, 4)
@property
def output_shape(self):
return (4, 3, 4, 4)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 4,
"out_channels": 4,
"num_attention_heads": 2,
"attention_head_dim": 10,
"num_layers": 1,
"num_single_layers": 1,
"num_refiner_layers": 1,
"patch_size": 2,
"patch_size_t": 1,
"guidance_embeds": True,
"text_embed_dim": 16,
"pooled_projection_dim": 8,
"rope_axes_dim": (2, 4, 4),
"image_condition_type": None,
"has_image_proj": True,
"image_proj_dim": 16,
"has_clean_x_embedder": True,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_gradient_checkpointing_is_applied(self):
expected_set = {"HunyuanVideoFramepackTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)