mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
add upsample and downsample blocks
This commit is contained in:
@@ -0,0 +1,278 @@
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D average pooling module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.AvgPool1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.AvgPool2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.Conv1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
def conv_transpose_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.ConvTranspose1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.ConvTranspose2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.ConvTranspose3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
def nonlinearity(x, swish=1.0):
|
||||
# swish
|
||||
if swish == 1.0:
|
||||
return F.silu(x)
|
||||
else:
|
||||
return x * F.sigmoid(x * float(swish))
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, use_conv_transpose=False, dims=2, out_channels=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
self.use_conv_transpose = use_conv_transpose
|
||||
|
||||
if use_conv_transpose:
|
||||
self.conv = conv_transpose_nd(dims, channels, out_channels, 4, 2, 1)
|
||||
elif use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.use_conv_transpose:
|
||||
return self.conv(x)
|
||||
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
self.padding = padding
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.down = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
self.down = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.use_conv and self.padding == 0 and self.dims == 2:
|
||||
pad = (0, 1, 0, 1)
|
||||
x = F.pad(x, pad, mode="constant", value=0)
|
||||
return self.down(x)
|
||||
|
||||
|
||||
class UNetUpsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
class GlideUpsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class LDMUpsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class GradTTSUpsample(torch.nn.Module):
|
||||
def __init__(self, dim):
|
||||
super(Upsample, self).__init__()
|
||||
self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Upsample1d(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
|
||||
|
||||
def forward(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
# class ResnetBlock(nn.Module):
|
||||
# def __init__(
|
||||
# self,
|
||||
# *,
|
||||
# in_channels,
|
||||
# out_channels=None,
|
||||
# conv_shortcut=False,
|
||||
# dropout,
|
||||
# temb_channels=512,
|
||||
# use_scale_shift_norm=False,
|
||||
# ):
|
||||
# super().__init__()
|
||||
# self.in_channels = in_channels
|
||||
# out_channels = in_channels if out_channels is None else out_channels
|
||||
# self.out_channels = out_channels
|
||||
# self.use_conv_shortcut = conv_shortcut
|
||||
# self.use_scale_shift_norm = use_scale_shift_norm
|
||||
|
||||
# self.norm1 = Normalize(in_channels)
|
||||
# self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
# temp_out_channles = 2 * out_channels if use_scale_shift_norm else out_channels
|
||||
# self.temb_proj = torch.nn.Linear(temb_channels, temp_out_channles)
|
||||
|
||||
# self.norm2 = Normalize(out_channels)
|
||||
# self.dropout = torch.nn.Dropout(dropout)
|
||||
# self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
# if self.in_channels != self.out_channels:
|
||||
# if self.use_conv_shortcut:
|
||||
# self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
# else:
|
||||
# self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
# def forward(self, x, temb):
|
||||
# h = x
|
||||
# h = self.norm1(h)
|
||||
# h = nonlinearity(h)
|
||||
# h = self.conv1(h)
|
||||
|
||||
# # TODO: check if this broadcasting works correctly for 1D and 3D
|
||||
# temb = self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
||||
|
||||
# if self.use_scale_shift_norm:
|
||||
# out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
# scale, shift = torch.chunk(temb, 2, dim=1)
|
||||
# h = self.norm2(h) * (1 + scale) + shift
|
||||
# h = out_rest(h)
|
||||
# else:
|
||||
# h = h + temb
|
||||
# h = self.norm2(h)
|
||||
# h = nonlinearity(h)
|
||||
# h = self.dropout(h)
|
||||
# h = self.conv2(h)
|
||||
|
||||
# if self.in_channels != self.out_channels:
|
||||
# if self.use_conv_shortcut:
|
||||
# x = self.conv_shortcut(x)
|
||||
# else:
|
||||
# x = self.nin_shortcut(x)
|
||||
|
||||
# return x + h
|
||||
|
||||
Reference in New Issue
Block a user