You've already forked ComfyUI-WanVideoWrapper
mirror of
https://github.com/kijai/ComfyUI-WanVideoWrapper.git
synced 2026-01-26 23:41:35 +03:00
259 lines
10 KiB
Python
259 lines
10 KiB
Python
import numpy as np
|
|
from typing import Callable, Optional, List
|
|
import torch
|
|
from ..utils import log
|
|
|
|
def ordered_halving(val):
|
|
bin_str = f"{val:064b}"
|
|
bin_flip = bin_str[::-1]
|
|
as_int = int(bin_flip, 2)
|
|
|
|
return as_int / (1 << 64)
|
|
|
|
def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
|
|
prev_val = -1
|
|
for i, val in enumerate(window):
|
|
val = val % num_frames
|
|
if val < prev_val:
|
|
return True, i
|
|
prev_val = val
|
|
return False, -1
|
|
|
|
def shift_window_to_start(window: list[int], num_frames: int):
|
|
start_val = window[0]
|
|
for i in range(len(window)):
|
|
# 1) subtract each element by start_val to move vals relative to the start of all frames
|
|
# 2) add num_frames and take modulus to get adjusted vals
|
|
window[i] = ((window[i] - start_val) + num_frames) % num_frames
|
|
|
|
def shift_window_to_end(window: list[int], num_frames: int):
|
|
# 1) shift window to start
|
|
shift_window_to_start(window, num_frames)
|
|
end_val = window[-1]
|
|
end_delta = num_frames - end_val - 1
|
|
for i in range(len(window)):
|
|
# 2) add end_delta to each val to slide windows to end
|
|
window[i] = window[i] + end_delta
|
|
|
|
def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
|
|
all_indexes = list(range(num_frames))
|
|
for w in windows:
|
|
for val in w:
|
|
try:
|
|
all_indexes.remove(val)
|
|
except ValueError:
|
|
pass
|
|
return all_indexes
|
|
|
|
def uniform_looped(
|
|
step: int = ...,
|
|
num_steps: Optional[int] = None,
|
|
num_frames: int = ...,
|
|
context_size: Optional[int] = None,
|
|
context_stride: int = 3,
|
|
context_overlap: int = 4,
|
|
closed_loop: bool = True,
|
|
):
|
|
if num_frames <= context_size:
|
|
yield list(range(num_frames))
|
|
return
|
|
|
|
context_stride = min(context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1)
|
|
|
|
for context_step in 1 << np.arange(context_stride):
|
|
pad = int(round(num_frames * ordered_halving(step)))
|
|
for j in range(
|
|
int(ordered_halving(step) * context_step) + pad,
|
|
num_frames + pad + (0 if closed_loop else -context_overlap),
|
|
(context_size * context_step - context_overlap),
|
|
):
|
|
yield [e % num_frames for e in range(j, j + context_size * context_step, context_step)]
|
|
|
|
#from AnimateDiff-Evolved by Kosinkadink (https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved)
|
|
def uniform_standard(
|
|
step: int = ...,
|
|
num_steps: Optional[int] = None,
|
|
num_frames: int = ...,
|
|
context_size: Optional[int] = None,
|
|
context_stride: int = 3,
|
|
context_overlap: int = 4,
|
|
closed_loop: bool = True,
|
|
):
|
|
windows = []
|
|
if num_frames <= context_size:
|
|
windows.append(list(range(num_frames)))
|
|
return windows
|
|
|
|
context_stride = min(context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1)
|
|
|
|
for context_step in 1 << np.arange(context_stride):
|
|
pad = int(round(num_frames * ordered_halving(step)))
|
|
for j in range(
|
|
int(ordered_halving(step) * context_step) + pad,
|
|
num_frames + pad + (0 if closed_loop else -context_overlap),
|
|
(context_size * context_step - context_overlap),
|
|
):
|
|
windows.append([e % num_frames for e in range(j, j + context_size * context_step, context_step)])
|
|
|
|
# now that windows are created, shift any windows that loop, and delete duplicate windows
|
|
delete_idxs = []
|
|
win_i = 0
|
|
while win_i < len(windows):
|
|
# if window is rolls over itself, need to shift it
|
|
is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
|
|
if is_roll:
|
|
roll_val = windows[win_i][roll_idx] # roll_val might not be 0 for windows of higher strides
|
|
shift_window_to_end(windows[win_i], num_frames=num_frames)
|
|
# check if next window (cyclical) is missing roll_val
|
|
if roll_val not in windows[(win_i+1) % len(windows)]:
|
|
# need to insert new window here - just insert window starting at roll_val
|
|
windows.insert(win_i+1, list(range(roll_val, roll_val + context_size)))
|
|
# delete window if it's not unique
|
|
for pre_i in range(0, win_i):
|
|
if windows[win_i] == windows[pre_i]:
|
|
delete_idxs.append(win_i)
|
|
break
|
|
win_i += 1
|
|
|
|
# reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
|
|
delete_idxs.reverse()
|
|
for i in delete_idxs:
|
|
windows.pop(i)
|
|
return windows
|
|
|
|
def static_standard(
|
|
step: int = ...,
|
|
num_steps: Optional[int] = None,
|
|
num_frames: int = ...,
|
|
context_size: Optional[int] = None,
|
|
context_stride: int = 3,
|
|
context_overlap: int = 4,
|
|
closed_loop: bool = True,
|
|
):
|
|
windows = []
|
|
if num_frames <= context_size:
|
|
windows.append(list(range(num_frames)))
|
|
return windows
|
|
# always return the same set of windows
|
|
delta = context_size - context_overlap
|
|
for start_idx in range(0, num_frames, delta):
|
|
# if past the end of frames, move start_idx back to allow same context_length
|
|
ending = start_idx + context_size
|
|
if ending >= num_frames:
|
|
final_delta = ending - num_frames
|
|
final_start_idx = start_idx - final_delta
|
|
windows.append(list(range(final_start_idx, final_start_idx + context_size)))
|
|
break
|
|
windows.append(list(range(start_idx, start_idx + context_size)))
|
|
return windows
|
|
|
|
def get_context_scheduler(name: str) -> Callable:
|
|
if name == "uniform_looped":
|
|
return uniform_looped
|
|
elif name == "uniform_standard":
|
|
return uniform_standard
|
|
elif name == "static_standard":
|
|
return static_standard
|
|
else:
|
|
raise ValueError(f"Unknown context_overlap policy {name}")
|
|
|
|
|
|
def get_total_steps(
|
|
scheduler,
|
|
timesteps: List[int],
|
|
num_steps: Optional[int] = None,
|
|
num_frames: int = ...,
|
|
context_size: Optional[int] = None,
|
|
context_stride: int = 3,
|
|
context_overlap: int = 4,
|
|
closed_loop: bool = True,
|
|
):
|
|
return sum(
|
|
len(
|
|
list(
|
|
scheduler(
|
|
i,
|
|
num_steps,
|
|
num_frames,
|
|
context_size,
|
|
context_stride,
|
|
context_overlap,
|
|
)
|
|
)
|
|
)
|
|
for i in range(len(timesteps))
|
|
)
|
|
|
|
def create_window_mask(noise_pred_context, c, latent_video_length, context_overlap, looped=False, window_type="linear"):
|
|
window_mask = torch.ones_like(noise_pred_context)
|
|
|
|
if window_type == "pyramid":
|
|
# Create pyramid weights that peak in the middle
|
|
length = noise_pred_context.shape[1]
|
|
if length % 2 == 0:
|
|
max_weight = length // 2
|
|
weight_sequence = list(range(1, max_weight + 1, 1)) + list(range(max_weight, 0, -1))
|
|
else:
|
|
max_weight = (length + 1) // 2
|
|
weight_sequence = list(range(1, max_weight, 1)) + [max_weight] + list(range(max_weight - 1, 0, -1))
|
|
|
|
# Normalize weights to range from 0 to 1
|
|
max_val = max(weight_sequence)
|
|
weight_sequence = [w / max_val for w in weight_sequence]
|
|
|
|
# Apply the weights to create the mask
|
|
weights_tensor = torch.tensor(weight_sequence, device=noise_pred_context.device)
|
|
weights_tensor = weights_tensor.view(1, -1, 1, 1)
|
|
window_mask = weights_tensor.expand_as(window_mask).clone()
|
|
|
|
# Adjust for position in sequence if needed
|
|
if not looped:
|
|
if min(c) == 0: # First chunk
|
|
left_ramp = torch.linspace(0, 1, context_overlap, device=noise_pred_context.device).view(1, -1, 1, 1)
|
|
# Clone to avoid in-place memory conflict
|
|
left_section = window_mask[:, :context_overlap].clone()
|
|
window_mask[:, :context_overlap] = torch.maximum(left_section, left_ramp)
|
|
|
|
if max(c) == latent_video_length - 1: # Last chunk
|
|
right_ramp = torch.linspace(1, 0, context_overlap, device=noise_pred_context.device).view(1, -1, 1, 1)
|
|
# Clone to avoid in-place memory conflict
|
|
right_section = window_mask[:, -context_overlap:].clone()
|
|
window_mask[:, -context_overlap:] = torch.maximum(right_section, right_ramp)
|
|
else: # Original "linear" window masking
|
|
# Apply left-side blending for all except first chunk (or always in loop mode)
|
|
if min(c) > 0 or (looped and max(c) == latent_video_length - 1):
|
|
ramp_up = torch.linspace(0, 1, context_overlap, device=noise_pred_context.device)
|
|
ramp_up = ramp_up.view(1, -1, 1, 1)
|
|
window_mask[:, :context_overlap] = ramp_up
|
|
|
|
# Apply right-side blending for all except last chunk (or always in loop mode)
|
|
if max(c) < latent_video_length - 1 or (looped and min(c) == 0):
|
|
ramp_down = torch.linspace(1, 0, context_overlap, device=noise_pred_context.device)
|
|
ramp_down = ramp_down.view(1, -1, 1, 1)
|
|
window_mask[:, -context_overlap:] = ramp_down
|
|
|
|
return window_mask
|
|
|
|
class WindowTracker:
|
|
def __init__(self, verbose=False):
|
|
self.window_map = {} # Maps frame sequence to persistent ID
|
|
self.next_id = 0
|
|
self.cache_states = {} # Maps persistent ID to teacache state
|
|
self.verbose = verbose
|
|
|
|
def get_window_id(self, frames):
|
|
key = tuple(sorted(frames)) # Order-independent frame sequence
|
|
if key not in self.window_map:
|
|
self.window_map[key] = self.next_id
|
|
if self.verbose:
|
|
log.info(f"New window pattern {key} -> ID {self.next_id}")
|
|
self.next_id += 1
|
|
return self.window_map[key]
|
|
|
|
def get_teacache(self, window_id, base_state):
|
|
if window_id not in self.cache_states:
|
|
if self.verbose:
|
|
log.info(f"Initializing persistent teacache for window {window_id}")
|
|
self.cache_states[window_id] = base_state.copy()
|
|
return self.cache_states[window_id]
|