kijai
7a0da7708e
Merge branch 'main' into vap
2025-11-04 23:15:20 +02:00
kijai
a51a53d5b7
Use proper self_attn output layers, and cleanup
2025-11-04 21:13:29 +02:00
kijai
475f96aede
Fix accidental positional arg
2025-11-04 20:53:46 +02:00
kijai
977f4a5c3a
Update model.py
2025-11-04 11:31:08 +02:00
kijai
2a45675498
Merge branch 'main' into vap
2025-11-04 10:39:35 +02:00
kijai
1d0516a2a9
Avoid graph break for LongCat
2025-11-04 10:26:37 +02:00
kijai
8002d8a2f9
This still needed for some reason too
2025-11-04 09:58:40 +02:00
kijai
9a588a42ec
Fix some precision issues with unmerged lora
2025-11-04 09:47:38 +02:00
kijai
509d6922f5
Update custom_linear.py
2025-11-04 09:44:07 +02:00
kijai
9fa4140159
Make lora torch.compile optional for unmerged lora application
...
This change has caused issues especially with LoRAs that have dynamic rank. Will now be disabled by default, to allow full graph with unmerged LoRAs the option to allow compile is available in the Torch Compile Settings -node
2025-11-04 01:34:51 +02:00
kijai
8ce6916d72
Fix for some cases of using comfy_chunked rope
2025-11-03 10:36:55 +02:00
kijai
0d0d28569a
Fix cases where text encoder isn't used (eg. Minimax remover)
2025-11-03 10:29:10 +02:00
kijai
75109fdb79
Fix custom sigmas with euler
2025-11-03 10:12:05 +02:00
kijai
5eae7087fa
Fix for S2V
2025-11-02 01:24:50 +02:00
kijai
ea414c54ac
Create wanvideo_I2V_video-as-prompt_testing_WIP.json
2025-11-01 16:53:15 +02:00
kijai
0013ae0ece
Init VAP
2025-11-01 16:47:37 +02:00
kijai
393fe78ec2
Update model.py
2025-10-31 23:39:55 +02:00
kijai
0e904e6035
Remove unnecessary casts
2025-10-31 17:28:12 +02:00
kijai
5f4020b12d
Fix a possible issue with Ovi audio model loading
2025-10-31 17:24:24 +02:00
kijai
5da8a6b169
Fix MultiTalk on some models
2025-10-31 16:50:00 +02:00
kijai
ce6e7b501d
Fix unmerged LoRA application for certain LoRAs
2025-10-30 23:28:38 +02:00
kijai
366f740d28
Update readme.md
2025-10-30 23:10:06 +02:00
Jukka Seppänen
d45fe1ee22
Add note about blocking new accounts from posting issues
...
Added a note regarding issue posting restrictions due to bot activity.
2025-10-30 18:19:45 +02:00
kijai
da24890d53
Update pyproject.toml
2025-10-30 17:56:20 +02:00
kijai
95391f403d
Update nodes_sampler.py
2025-10-30 17:55:55 +02:00
kijai
9e0b3afe4e
version checkpoint
2025-10-30 17:53:29 +02:00
kijai
ba1beba982
Create LongCat_TI2V_example_01.json
2025-10-30 17:51:52 +02:00
kijai
64c195167b
Update nodes.py
2025-10-30 17:33:42 +02:00
kijai
cc9bf1e4f5
Store lora diffs in buffers for GGUF as well
2025-10-30 16:44:03 +02:00
kijai
a64f115d35
Fix to previous
2025-10-29 11:06:38 +02:00
kijai
e45f6f2fc4
Allow WanVideoScheduler -node to work with the looping samplers
...
Was broken for Multitalk/WanAnimate/S2V
2025-10-29 10:41:33 +02:00
kijai
1cd8df5c00
Update custom_linear.py
2025-10-29 02:50:11 +02:00
kijai
d2614a9a49
Merge branch 'main' into longcat
2025-10-29 02:33:37 +02:00
kijai
083a8458c4
Register lora diffs as buffers to allow them to work with block swap
...
unmerged loras (non GGUF for now) will now be moved with block swap instead of always loaded from cpu to reduce device transfers and allow torch compile full graph
2025-10-29 02:33:26 +02:00
kijai
1c2f17e8d7
Add utility node to split sampler from settings
...
For cleaner previews
2025-10-29 02:24:24 +02:00
kijai
9d45b9f0de
Use comfy core Conv3D workaround for VAE rather than the fp32 cast
2025-10-29 02:23:49 +02:00
Jukka Seppänen
833c6f50c7
Merge pull request #1581 from chengzeyi/fix-ref-conv-dtype-mismatch
...
Fix dtype mismatch in ref_conv forward pass
2025-10-28 14:27:43 +02:00
chengzeyi
d15cf3001f
Fix dtype mismatch in ref_conv forward pass
...
This commit fixes a RuntimeError that occurs when using Fun-Control
reference images: "Input type (float) and bias type (c10::Half)
should be the same"
Root cause:
- Commit 1ba1a16 changed the dtype handling strategy to convert
the main latent `x` to `base_dtype` instead of converting
embeddings to match `x.dtype`
- This caused `fun_ref` input to be in a different dtype than
the `ref_conv` layer's weights and bias
- Line 2324 already handles this correctly for `attn_cond` by
converting to `self.attn_conv_in.weight.dtype`
Solution:
- Convert `fun_ref` to match `self.ref_conv.weight.dtype` before
passing through the convolution layer
- This follows the same pattern used for `attn_cond` on line 2324
🤖 Generated with [Claude Code](https://claude.com/claude-code )
Co-Authored-By: Claude <noreply@anthropic.com >
2025-10-28 12:08:23 +00:00
kijai
eebbcd5ee0
Update model.py
2025-10-28 02:04:50 +02:00
kijai
2633119505
Update custom_linear.py
2025-10-28 01:55:25 +02:00
kijai
90908df260
Update model.py
2025-10-28 01:54:42 +02:00
kijai
c80a488f70
Use fp32 norms for other models too and other fixes
2025-10-28 01:52:48 +02:00
kijai
e69e068b57
Update gguf.py
2025-10-27 21:02:59 +02:00
kijai
54c45500b0
Apply lora diffs with unmerged loras too
2025-10-27 21:01:45 +02:00
kijai
e560366600
Update model.py
2025-10-27 18:55:30 +02:00
kijai
f880b321c6
Allow compile in lora application
2025-10-27 01:34:32 +02:00
kijai
51fcbd6b3d
Revert "Allow compile here"
...
This reverts commit f583b56878 .
2025-10-27 01:07:03 +02:00
kijai
f583b56878
Allow compile here
2025-10-27 01:06:39 +02:00
kijai
c59e52ca44
Precision adjustments
2025-10-27 00:23:32 +02:00
kijai
a0bdf20817
Some cleanup and allow full block swap
2025-10-26 23:05:17 +02:00