mirror of
https://github.com/apache/httpd.git
synced 2025-11-02 06:53:27 +03:00
Revert r1821526, r1821527, r1821534, r1821538, r1821539, r1821541, r1821605, r1821607, r1821608.
Instead of copying event/fdqueue.c code into existing mpm_unix.c, losing all contributors (blame, since r105919...), will restart the series by svn-moving event/fdqueue.[ch] to server/mpm_fdqueue.[ch] first. The code is not really unix specific either, so this sounds better. git-svn-id: https://svn.apache.org/repos/asf/httpd/httpd/trunk@1821619 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
@@ -8,7 +8,7 @@ if test "$ac_cv_serf" = yes ; then
|
|||||||
fi
|
fi
|
||||||
APACHE_SUBST(MOD_MPM_EVENT_LDADD)
|
APACHE_SUBST(MOD_MPM_EVENT_LDADD)
|
||||||
|
|
||||||
APACHE_MPM_MODULE(event, $enable_mpm_event, event.lo,[
|
APACHE_MPM_MODULE(event, $enable_mpm_event, event.lo fdqueue.lo,[
|
||||||
AC_CHECK_FUNCS(pthread_kill)
|
AC_CHECK_FUNCS(pthread_kill)
|
||||||
], , [\$(MOD_MPM_EVENT_LDADD)])
|
], , [\$(MOD_MPM_EVENT_LDADD)])
|
||||||
|
|
||||||
|
|||||||
@@ -91,7 +91,7 @@
|
|||||||
#include "mpm_common.h"
|
#include "mpm_common.h"
|
||||||
#include "ap_listen.h"
|
#include "ap_listen.h"
|
||||||
#include "scoreboard.h"
|
#include "scoreboard.h"
|
||||||
#include "mpm_unix.h"
|
#include "fdqueue.h"
|
||||||
#include "mpm_default.h"
|
#include "mpm_default.h"
|
||||||
#include "http_vhost.h"
|
#include "http_vhost.h"
|
||||||
#include "unixd.h"
|
#include "unixd.h"
|
||||||
@@ -219,8 +219,6 @@ static apr_pollfd_t *listener_pollfd;
|
|||||||
*/
|
*/
|
||||||
static apr_pollset_t *event_pollset;
|
static apr_pollset_t *event_pollset;
|
||||||
|
|
||||||
typedef struct event_conn_state_t event_conn_state_t;
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* The chain of connections to be shutdown by a worker thread (deferred),
|
* The chain of connections to be shutdown by a worker thread (deferred),
|
||||||
* linked list updated atomically.
|
* linked list updated atomically.
|
||||||
@@ -517,7 +515,7 @@ static void enable_listensocks(void)
|
|||||||
apr_atomic_read32(&lingering_count),
|
apr_atomic_read32(&lingering_count),
|
||||||
apr_atomic_read32(&clogged_count),
|
apr_atomic_read32(&clogged_count),
|
||||||
apr_atomic_read32(&suspended_count),
|
apr_atomic_read32(&suspended_count),
|
||||||
ap_queue_info_num_idlers(worker_queue_info));
|
ap_queue_info_get_idlers(worker_queue_info));
|
||||||
for (i = 0; i < num_listensocks; i++)
|
for (i = 0; i < num_listensocks; i++)
|
||||||
apr_pollset_add(event_pollset, &listener_pollfd[i]);
|
apr_pollset_add(event_pollset, &listener_pollfd[i]);
|
||||||
/*
|
/*
|
||||||
@@ -534,7 +532,7 @@ static APR_INLINE apr_uint32_t listeners_disabled(void)
|
|||||||
|
|
||||||
static APR_INLINE int connections_above_limit(void)
|
static APR_INLINE int connections_above_limit(void)
|
||||||
{
|
{
|
||||||
apr_uint32_t i_count = ap_queue_info_num_idlers(worker_queue_info);
|
apr_uint32_t i_count = ap_queue_info_get_idlers(worker_queue_info);
|
||||||
if (i_count > 0) {
|
if (i_count > 0) {
|
||||||
apr_uint32_t c_count = apr_atomic_read32(&connection_count);
|
apr_uint32_t c_count = apr_atomic_read32(&connection_count);
|
||||||
apr_uint32_t l_count = apr_atomic_read32(&lingering_count);
|
apr_uint32_t l_count = apr_atomic_read32(&lingering_count);
|
||||||
@@ -2042,7 +2040,7 @@ static void * APR_THREAD_FUNC listener_thread(apr_thread_t * thd, void *dummy)
|
|||||||
apr_atomic_read32(&connection_count));
|
apr_atomic_read32(&connection_count));
|
||||||
ap_log_error(APLOG_MARK, APLOG_TRACE1, 0, ap_server_conf,
|
ap_log_error(APLOG_MARK, APLOG_TRACE1, 0, ap_server_conf,
|
||||||
"Idle workers: %u",
|
"Idle workers: %u",
|
||||||
ap_queue_info_num_idlers(worker_queue_info));
|
ap_queue_info_get_idlers(worker_queue_info));
|
||||||
workers_were_busy = 1;
|
workers_were_busy = 1;
|
||||||
}
|
}
|
||||||
else if (!listener_may_exit) {
|
else if (!listener_may_exit) {
|
||||||
@@ -2309,8 +2307,7 @@ static void *APR_THREAD_FUNC worker_thread(apr_thread_t * thd, void *dummy)
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
rv = ap_queue_pop_something(worker_queue, &csd, (void **)&cs,
|
rv = ap_queue_pop_something(worker_queue, &csd, &cs, &ptrans, &te);
|
||||||
&ptrans, &te);
|
|
||||||
|
|
||||||
if (rv != APR_SUCCESS) {
|
if (rv != APR_SUCCESS) {
|
||||||
/* We get APR_EOF during a graceful shutdown once all the
|
/* We get APR_EOF during a graceful shutdown once all the
|
||||||
|
|||||||
524
server/mpm/event/fdqueue.c
Normal file
524
server/mpm/event/fdqueue.c
Normal file
@@ -0,0 +1,524 @@
|
|||||||
|
/* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||||
|
* contributor license agreements. See the NOTICE file distributed with
|
||||||
|
* this work for additional information regarding copyright ownership.
|
||||||
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||||
|
* (the "License"); you may not use this file except in compliance with
|
||||||
|
* the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "fdqueue.h"
|
||||||
|
#include "apr_atomic.h"
|
||||||
|
|
||||||
|
static const apr_uint32_t zero_pt = APR_UINT32_MAX/2;
|
||||||
|
|
||||||
|
struct recycled_pool
|
||||||
|
{
|
||||||
|
apr_pool_t *pool;
|
||||||
|
struct recycled_pool *next;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct fd_queue_info_t
|
||||||
|
{
|
||||||
|
apr_uint32_t volatile idlers; /**
|
||||||
|
* >= zero_pt: number of idle worker threads
|
||||||
|
* < zero_pt: number of threads blocked,
|
||||||
|
* waiting for an idle worker
|
||||||
|
*/
|
||||||
|
apr_thread_mutex_t *idlers_mutex;
|
||||||
|
apr_thread_cond_t *wait_for_idler;
|
||||||
|
int terminated;
|
||||||
|
int max_idlers;
|
||||||
|
int max_recycled_pools;
|
||||||
|
apr_uint32_t recycled_pools_count;
|
||||||
|
struct recycled_pool *volatile recycled_pools;
|
||||||
|
};
|
||||||
|
|
||||||
|
static apr_status_t queue_info_cleanup(void *data_)
|
||||||
|
{
|
||||||
|
fd_queue_info_t *qi = data_;
|
||||||
|
apr_thread_cond_destroy(qi->wait_for_idler);
|
||||||
|
apr_thread_mutex_destroy(qi->idlers_mutex);
|
||||||
|
|
||||||
|
/* Clean up any pools in the recycled list */
|
||||||
|
for (;;) {
|
||||||
|
struct recycled_pool *first_pool = qi->recycled_pools;
|
||||||
|
if (first_pool == NULL) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (apr_atomic_casptr
|
||||||
|
((void*) &(qi->recycled_pools), first_pool->next,
|
||||||
|
first_pool) == first_pool) {
|
||||||
|
apr_pool_destroy(first_pool->pool);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_info_create(fd_queue_info_t ** queue_info,
|
||||||
|
apr_pool_t * pool, int max_idlers,
|
||||||
|
int max_recycled_pools)
|
||||||
|
{
|
||||||
|
apr_status_t rv;
|
||||||
|
fd_queue_info_t *qi;
|
||||||
|
|
||||||
|
qi = apr_pcalloc(pool, sizeof(*qi));
|
||||||
|
|
||||||
|
rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT,
|
||||||
|
pool);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
rv = apr_thread_cond_create(&qi->wait_for_idler, pool);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
qi->recycled_pools = NULL;
|
||||||
|
qi->max_recycled_pools = max_recycled_pools;
|
||||||
|
qi->max_idlers = max_idlers;
|
||||||
|
qi->idlers = zero_pt;
|
||||||
|
apr_pool_cleanup_register(pool, qi, queue_info_cleanup,
|
||||||
|
apr_pool_cleanup_null);
|
||||||
|
|
||||||
|
*queue_info = qi;
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_info_set_idle(fd_queue_info_t * queue_info,
|
||||||
|
apr_pool_t * pool_to_recycle)
|
||||||
|
{
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
ap_push_pool(queue_info, pool_to_recycle);
|
||||||
|
|
||||||
|
/* If other threads are waiting on a worker, wake one up */
|
||||||
|
if (apr_atomic_inc32(&queue_info->idlers) < zero_pt) {
|
||||||
|
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
AP_DEBUG_ASSERT(0);
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
rv = apr_thread_cond_signal(queue_info->wait_for_idler);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_info_try_get_idler(fd_queue_info_t * queue_info)
|
||||||
|
{
|
||||||
|
/* Don't block if there isn't any idle worker. */
|
||||||
|
for (;;) {
|
||||||
|
apr_uint32_t idlers = queue_info->idlers;
|
||||||
|
if (idlers <= zero_pt) {
|
||||||
|
return APR_EAGAIN;
|
||||||
|
}
|
||||||
|
if (apr_atomic_cas32(&queue_info->idlers, idlers - 1,
|
||||||
|
idlers) == idlers) {
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t * queue_info,
|
||||||
|
int *had_to_block)
|
||||||
|
{
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
/* Block if there isn't any idle worker.
|
||||||
|
* apr_atomic_add32(x, -1) does the same as dec32(x), except
|
||||||
|
* that it returns the previous value (unlike dec32's bool).
|
||||||
|
*/
|
||||||
|
if (apr_atomic_add32(&queue_info->idlers, -1) <= zero_pt) {
|
||||||
|
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
AP_DEBUG_ASSERT(0);
|
||||||
|
apr_atomic_inc32(&(queue_info->idlers)); /* back out dec */
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
/* Re-check the idle worker count to guard against a
|
||||||
|
* race condition. Now that we're in the mutex-protected
|
||||||
|
* region, one of two things may have happened:
|
||||||
|
* - If the idle worker count is still negative, the
|
||||||
|
* workers are all still busy, so it's safe to
|
||||||
|
* block on a condition variable.
|
||||||
|
* - If the idle worker count is non-negative, then a
|
||||||
|
* worker has become idle since the first check
|
||||||
|
* of queue_info->idlers above. It's possible
|
||||||
|
* that the worker has also signaled the condition
|
||||||
|
* variable--and if so, the listener missed it
|
||||||
|
* because it wasn't yet blocked on the condition
|
||||||
|
* variable. But if the idle worker count is
|
||||||
|
* now non-negative, it's safe for this function to
|
||||||
|
* return immediately.
|
||||||
|
*
|
||||||
|
* A "negative value" (relative to zero_pt) in
|
||||||
|
* queue_info->idlers tells how many
|
||||||
|
* threads are waiting on an idle worker.
|
||||||
|
*/
|
||||||
|
if (queue_info->idlers < zero_pt) {
|
||||||
|
*had_to_block = 1;
|
||||||
|
rv = apr_thread_cond_wait(queue_info->wait_for_idler,
|
||||||
|
queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
apr_status_t rv2;
|
||||||
|
AP_DEBUG_ASSERT(0);
|
||||||
|
rv2 = apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
||||||
|
if (rv2 != APR_SUCCESS) {
|
||||||
|
return rv2;
|
||||||
|
}
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (queue_info->terminated) {
|
||||||
|
return APR_EOF;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_uint32_t ap_queue_info_get_idlers(fd_queue_info_t * queue_info)
|
||||||
|
{
|
||||||
|
apr_uint32_t val;
|
||||||
|
val = apr_atomic_read32(&queue_info->idlers);
|
||||||
|
if (val <= zero_pt)
|
||||||
|
return 0;
|
||||||
|
return val - zero_pt;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ap_push_pool(fd_queue_info_t * queue_info,
|
||||||
|
apr_pool_t * pool_to_recycle)
|
||||||
|
{
|
||||||
|
struct recycled_pool *new_recycle;
|
||||||
|
/* If we have been given a pool to recycle, atomically link
|
||||||
|
* it into the queue_info's list of recycled pools
|
||||||
|
*/
|
||||||
|
if (!pool_to_recycle)
|
||||||
|
return;
|
||||||
|
|
||||||
|
if (queue_info->max_recycled_pools >= 0) {
|
||||||
|
apr_uint32_t cnt = apr_atomic_read32(&queue_info->recycled_pools_count);
|
||||||
|
if (cnt >= queue_info->max_recycled_pools) {
|
||||||
|
apr_pool_destroy(pool_to_recycle);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
apr_atomic_inc32(&queue_info->recycled_pools_count);
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_pool_clear(pool_to_recycle);
|
||||||
|
new_recycle = (struct recycled_pool *) apr_palloc(pool_to_recycle,
|
||||||
|
sizeof (*new_recycle));
|
||||||
|
new_recycle->pool = pool_to_recycle;
|
||||||
|
for (;;) {
|
||||||
|
/*
|
||||||
|
* Save queue_info->recycled_pool in local variable next because
|
||||||
|
* new_recycle->next can be changed after apr_atomic_casptr
|
||||||
|
* function call. For gory details see PR 44402.
|
||||||
|
*/
|
||||||
|
struct recycled_pool *next = queue_info->recycled_pools;
|
||||||
|
new_recycle->next = next;
|
||||||
|
if (apr_atomic_casptr((void*) &(queue_info->recycled_pools),
|
||||||
|
new_recycle, next) == next)
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ap_pop_pool(apr_pool_t ** recycled_pool, fd_queue_info_t * queue_info)
|
||||||
|
{
|
||||||
|
/* Atomically pop a pool from the recycled list */
|
||||||
|
|
||||||
|
/* This function is safe only as long as it is single threaded because
|
||||||
|
* it reaches into the queue and accesses "next" which can change.
|
||||||
|
* We are OK today because it is only called from the listener thread.
|
||||||
|
* cas-based pushes do not have the same limitation - any number can
|
||||||
|
* happen concurrently with a single cas-based pop.
|
||||||
|
*/
|
||||||
|
|
||||||
|
*recycled_pool = NULL;
|
||||||
|
|
||||||
|
|
||||||
|
/* Atomically pop a pool from the recycled list */
|
||||||
|
for (;;) {
|
||||||
|
struct recycled_pool *first_pool = queue_info->recycled_pools;
|
||||||
|
if (first_pool == NULL) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (apr_atomic_casptr
|
||||||
|
((void*) &(queue_info->recycled_pools),
|
||||||
|
first_pool->next, first_pool) == first_pool) {
|
||||||
|
*recycled_pool = first_pool->pool;
|
||||||
|
if (queue_info->max_recycled_pools >= 0)
|
||||||
|
apr_atomic_dec32(&queue_info->recycled_pools_count);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ap_free_idle_pools(fd_queue_info_t *queue_info)
|
||||||
|
{
|
||||||
|
apr_pool_t *p;
|
||||||
|
|
||||||
|
queue_info->max_recycled_pools = 0;
|
||||||
|
do {
|
||||||
|
ap_pop_pool(&p, queue_info);
|
||||||
|
if (p != NULL)
|
||||||
|
apr_pool_destroy(p);
|
||||||
|
} while (p != NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
apr_status_t ap_queue_info_term(fd_queue_info_t * queue_info)
|
||||||
|
{
|
||||||
|
apr_status_t rv;
|
||||||
|
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
queue_info->terminated = 1;
|
||||||
|
apr_thread_cond_broadcast(queue_info->wait_for_idler);
|
||||||
|
return apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Detects when the fd_queue_t is full. This utility function is expected
|
||||||
|
* to be called from within critical sections, and is not threadsafe.
|
||||||
|
*/
|
||||||
|
#define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Detects when the fd_queue_t is empty. This utility function is expected
|
||||||
|
* to be called from within critical sections, and is not threadsafe.
|
||||||
|
*/
|
||||||
|
#define ap_queue_empty(queue) ((queue)->nelts == 0 && APR_RING_EMPTY(&queue->timers ,timer_event_t, link))
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Callback routine that is called to destroy this
|
||||||
|
* fd_queue_t when its pool is destroyed.
|
||||||
|
*/
|
||||||
|
static apr_status_t ap_queue_destroy(void *data)
|
||||||
|
{
|
||||||
|
fd_queue_t *queue = data;
|
||||||
|
|
||||||
|
/* Ignore errors here, we can't do anything about them anyway.
|
||||||
|
* XXX: We should at least try to signal an error here, it is
|
||||||
|
* indicative of a programmer error. -aaron */
|
||||||
|
apr_thread_cond_destroy(queue->not_empty);
|
||||||
|
apr_thread_mutex_destroy(queue->one_big_mutex);
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Initialize the fd_queue_t.
|
||||||
|
*/
|
||||||
|
apr_status_t ap_queue_init(fd_queue_t * queue, int queue_capacity,
|
||||||
|
apr_pool_t * a)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_create(&queue->one_big_mutex,
|
||||||
|
APR_THREAD_MUTEX_DEFAULT,
|
||||||
|
a)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
if ((rv = apr_thread_cond_create(&queue->not_empty, a)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
APR_RING_INIT(&queue->timers, timer_event_t, link);
|
||||||
|
|
||||||
|
queue->data = apr_palloc(a, queue_capacity * sizeof(fd_queue_elem_t));
|
||||||
|
queue->bounds = queue_capacity;
|
||||||
|
queue->nelts = 0;
|
||||||
|
queue->in = 0;
|
||||||
|
queue->out = 0;
|
||||||
|
|
||||||
|
/* Set all the sockets in the queue to NULL */
|
||||||
|
for (i = 0; i < queue_capacity; ++i)
|
||||||
|
queue->data[i].sd = NULL;
|
||||||
|
|
||||||
|
apr_pool_cleanup_register(a, queue, ap_queue_destroy,
|
||||||
|
apr_pool_cleanup_null);
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Push a new socket onto the queue.
|
||||||
|
*
|
||||||
|
* precondition: ap_queue_info_wait_for_idler has already been called
|
||||||
|
* to reserve an idle worker thread
|
||||||
|
*/
|
||||||
|
apr_status_t ap_queue_push(fd_queue_t * queue, apr_socket_t * sd,
|
||||||
|
event_conn_state_t * ecs, apr_pool_t * p)
|
||||||
|
{
|
||||||
|
fd_queue_elem_t *elem;
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
AP_DEBUG_ASSERT(!queue->terminated);
|
||||||
|
AP_DEBUG_ASSERT(!ap_queue_full(queue));
|
||||||
|
|
||||||
|
elem = &queue->data[queue->in];
|
||||||
|
queue->in++;
|
||||||
|
if (queue->in >= queue->bounds)
|
||||||
|
queue->in -= queue->bounds;
|
||||||
|
elem->sd = sd;
|
||||||
|
elem->ecs = ecs;
|
||||||
|
elem->p = p;
|
||||||
|
queue->nelts++;
|
||||||
|
|
||||||
|
apr_thread_cond_signal(queue->not_empty);
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_push_timer(fd_queue_t * queue, timer_event_t *te)
|
||||||
|
{
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
AP_DEBUG_ASSERT(!queue->terminated);
|
||||||
|
|
||||||
|
APR_RING_INSERT_TAIL(&queue->timers, te, timer_event_t, link);
|
||||||
|
|
||||||
|
apr_thread_cond_signal(queue->not_empty);
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Retrieves the next available socket from the queue. If there are no
|
||||||
|
* sockets available, it will block until one becomes available.
|
||||||
|
* Once retrieved, the socket is placed into the address specified by
|
||||||
|
* 'sd'.
|
||||||
|
*/
|
||||||
|
apr_status_t ap_queue_pop_something(fd_queue_t * queue, apr_socket_t ** sd,
|
||||||
|
event_conn_state_t ** ecs, apr_pool_t ** p,
|
||||||
|
timer_event_t ** te_out)
|
||||||
|
{
|
||||||
|
fd_queue_elem_t *elem;
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Keep waiting until we wake up and find that the queue is not empty. */
|
||||||
|
if (ap_queue_empty(queue)) {
|
||||||
|
if (!queue->terminated) {
|
||||||
|
apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex);
|
||||||
|
}
|
||||||
|
/* If we wake up and it's still empty, then we were interrupted */
|
||||||
|
if (ap_queue_empty(queue)) {
|
||||||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
if (queue->terminated) {
|
||||||
|
return APR_EOF; /* no more elements ever again */
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
return APR_EINTR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
*te_out = NULL;
|
||||||
|
|
||||||
|
if (!APR_RING_EMPTY(&queue->timers, timer_event_t, link)) {
|
||||||
|
*te_out = APR_RING_FIRST(&queue->timers);
|
||||||
|
APR_RING_REMOVE(*te_out, link);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
elem = &queue->data[queue->out];
|
||||||
|
queue->out++;
|
||||||
|
if (queue->out >= queue->bounds)
|
||||||
|
queue->out -= queue->bounds;
|
||||||
|
queue->nelts--;
|
||||||
|
*sd = elem->sd;
|
||||||
|
*ecs = elem->ecs;
|
||||||
|
*p = elem->p;
|
||||||
|
#ifdef AP_DEBUG
|
||||||
|
elem->sd = NULL;
|
||||||
|
elem->p = NULL;
|
||||||
|
#endif /* AP_DEBUG */
|
||||||
|
}
|
||||||
|
|
||||||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
static apr_status_t queue_interrupt(fd_queue_t *queue, int all, int term)
|
||||||
|
{
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
/* we must hold one_big_mutex when setting this... otherwise,
|
||||||
|
* we could end up setting it and waking everybody up just after a
|
||||||
|
* would-be popper checks it but right before they block
|
||||||
|
*/
|
||||||
|
if (term) {
|
||||||
|
queue->terminated = 1;
|
||||||
|
}
|
||||||
|
if (all)
|
||||||
|
apr_thread_cond_broadcast(queue->not_empty);
|
||||||
|
else
|
||||||
|
apr_thread_cond_signal(queue->not_empty);
|
||||||
|
return apr_thread_mutex_unlock(queue->one_big_mutex);
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_interrupt_all(fd_queue_t * queue)
|
||||||
|
{
|
||||||
|
return queue_interrupt(queue, 1, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_interrupt_one(fd_queue_t * queue)
|
||||||
|
{
|
||||||
|
return queue_interrupt(queue, 0, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_term(fd_queue_t * queue)
|
||||||
|
{
|
||||||
|
return queue_interrupt(queue, 1, 1);
|
||||||
|
}
|
||||||
@@ -15,43 +15,52 @@
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @file mpm_unix.h
|
* @file event/fdqueue.h
|
||||||
* @brief fd queue declarations
|
* @brief fd queue declarations
|
||||||
*
|
*
|
||||||
* @defgroup APACHE_MPM Multi-Processing Modules
|
* @addtogroup APACHE_MPM_EVENT
|
||||||
* @ingroup APACHE
|
|
||||||
* @{
|
* @{
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#ifndef MPM_UNIX_H
|
#ifndef FDQUEUE_H
|
||||||
#define MPM_UNIX_H
|
#define FDQUEUE_H
|
||||||
|
#include "httpd.h"
|
||||||
#ifndef WIN32
|
#include <stdlib.h>
|
||||||
|
#if APR_HAVE_UNISTD_H
|
||||||
#include <apr.h>
|
#include <unistd.h>
|
||||||
#include <apr_ring.h>
|
#endif
|
||||||
#include <apr_pools.h>
|
|
||||||
#include <apr_network_io.h>
|
|
||||||
#include <apr_thread_mutex.h>
|
#include <apr_thread_mutex.h>
|
||||||
#include <apr_thread_cond.h>
|
#include <apr_thread_cond.h>
|
||||||
|
#include <sys/types.h>
|
||||||
|
#if APR_HAVE_SYS_SOCKET_H
|
||||||
|
#include <sys/socket.h>
|
||||||
|
#endif
|
||||||
|
#include <apr_errno.h>
|
||||||
|
|
||||||
#include "ap_mpm.h"
|
#include "ap_mpm.h"
|
||||||
|
|
||||||
struct fd_queue_info_t; /* opaque */
|
|
||||||
struct fd_queue_elem_t; /* opaque */
|
|
||||||
typedef struct fd_queue_info_t fd_queue_info_t;
|
typedef struct fd_queue_info_t fd_queue_info_t;
|
||||||
typedef struct fd_queue_elem_t fd_queue_elem_t;
|
typedef struct event_conn_state_t event_conn_state_t;
|
||||||
|
|
||||||
apr_status_t ap_queue_info_create(fd_queue_info_t **queue_info,
|
apr_status_t ap_queue_info_create(fd_queue_info_t ** queue_info,
|
||||||
apr_pool_t *pool, int max_idlers,
|
apr_pool_t * pool, int max_idlers,
|
||||||
int max_recycled_pools);
|
int max_recycled_pools);
|
||||||
apr_status_t ap_queue_info_set_idle(fd_queue_info_t *queue_info,
|
apr_status_t ap_queue_info_set_idle(fd_queue_info_t * queue_info,
|
||||||
apr_pool_t *pool_to_recycle);
|
apr_pool_t * pool_to_recycle);
|
||||||
apr_status_t ap_queue_info_try_get_idler(fd_queue_info_t *queue_info);
|
apr_status_t ap_queue_info_try_get_idler(fd_queue_info_t * queue_info);
|
||||||
apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t *queue_info,
|
apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t * queue_info,
|
||||||
int *had_to_block);
|
int *had_to_block);
|
||||||
apr_uint32_t ap_queue_info_num_idlers(fd_queue_info_t *queue_info);
|
apr_status_t ap_queue_info_term(fd_queue_info_t * queue_info);
|
||||||
apr_status_t ap_queue_info_term(fd_queue_info_t *queue_info);
|
apr_uint32_t ap_queue_info_get_idlers(fd_queue_info_t * queue_info);
|
||||||
|
void ap_free_idle_pools(fd_queue_info_t *queue_info);
|
||||||
|
|
||||||
|
struct fd_queue_elem_t
|
||||||
|
{
|
||||||
|
apr_socket_t *sd;
|
||||||
|
apr_pool_t *p;
|
||||||
|
event_conn_state_t *ecs;
|
||||||
|
};
|
||||||
|
typedef struct fd_queue_elem_t fd_queue_elem_t;
|
||||||
|
|
||||||
typedef struct timer_event_t timer_event_t;
|
typedef struct timer_event_t timer_event_t;
|
||||||
|
|
||||||
@@ -79,25 +88,21 @@ struct fd_queue_t
|
|||||||
};
|
};
|
||||||
typedef struct fd_queue_t fd_queue_t;
|
typedef struct fd_queue_t fd_queue_t;
|
||||||
|
|
||||||
void ap_pop_pool(apr_pool_t **recycled_pool, fd_queue_info_t *queue_info);
|
void ap_pop_pool(apr_pool_t ** recycled_pool, fd_queue_info_t * queue_info);
|
||||||
void ap_push_pool(fd_queue_info_t *queue_info, apr_pool_t *pool_to_recycle);
|
void ap_push_pool(fd_queue_info_t * queue_info,
|
||||||
void ap_free_idle_pools(fd_queue_info_t *queue_info);
|
apr_pool_t * pool_to_recycle);
|
||||||
|
|
||||||
apr_status_t ap_queue_init(fd_queue_t *queue, int queue_capacity,
|
apr_status_t ap_queue_init(fd_queue_t * queue, int queue_capacity,
|
||||||
apr_pool_t *a);
|
apr_pool_t * a);
|
||||||
apr_status_t ap_queue_push(fd_queue_t *queue, apr_socket_t *sd,
|
apr_status_t ap_queue_push(fd_queue_t * queue, apr_socket_t * sd,
|
||||||
void *baton, apr_pool_t *p);
|
event_conn_state_t * ecs, apr_pool_t * p);
|
||||||
apr_status_t ap_queue_push_timer(fd_queue_t *queue, timer_event_t *te);
|
apr_status_t ap_queue_push_timer(fd_queue_t *queue, timer_event_t *te);
|
||||||
apr_status_t ap_queue_pop_something(fd_queue_t *queue, apr_socket_t **sd,
|
apr_status_t ap_queue_pop_something(fd_queue_t * queue, apr_socket_t ** sd,
|
||||||
void **baton, apr_pool_t **p,
|
event_conn_state_t ** ecs, apr_pool_t ** p,
|
||||||
timer_event_t **te);
|
timer_event_t ** te);
|
||||||
#define ap_queue_pop(q_, s_, p_) \
|
apr_status_t ap_queue_interrupt_all(fd_queue_t * queue);
|
||||||
ap_queue_pop_something((q_), (s_), NULL, (p_), NULL)
|
apr_status_t ap_queue_interrupt_one(fd_queue_t * queue);
|
||||||
apr_status_t ap_queue_interrupt_all(fd_queue_t *queue);
|
apr_status_t ap_queue_term(fd_queue_t * queue);
|
||||||
apr_status_t ap_queue_interrupt_one(fd_queue_t *queue);
|
|
||||||
apr_status_t ap_queue_term(fd_queue_t *queue);
|
|
||||||
|
|
||||||
#endif /* WIN32 */
|
#endif /* FDQUEUE_H */
|
||||||
|
|
||||||
#endif /* MPM_UNIX_H */
|
|
||||||
/** @} */
|
/** @} */
|
||||||
@@ -1,7 +1,7 @@
|
|||||||
APACHE_MPMPATH_INIT(worker)
|
APACHE_MPMPATH_INIT(worker)
|
||||||
|
|
||||||
dnl ## XXX - Need a more thorough check of the proper flags to use
|
dnl ## XXX - Need a more thorough check of the proper flags to use
|
||||||
APACHE_MPM_MODULE(worker, $enable_mpm_worker, worker.lo,[
|
APACHE_MPM_MODULE(worker, $enable_mpm_worker, worker.lo fdqueue.lo,[
|
||||||
AC_CHECK_FUNCS(pthread_kill)
|
AC_CHECK_FUNCS(pthread_kill)
|
||||||
])
|
])
|
||||||
|
|
||||||
|
|||||||
401
server/mpm/worker/fdqueue.c
Normal file
401
server/mpm/worker/fdqueue.c
Normal file
@@ -0,0 +1,401 @@
|
|||||||
|
/* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||||
|
* contributor license agreements. See the NOTICE file distributed with
|
||||||
|
* this work for additional information regarding copyright ownership.
|
||||||
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||||
|
* (the "License"); you may not use this file except in compliance with
|
||||||
|
* the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "fdqueue.h"
|
||||||
|
#include "apr_atomic.h"
|
||||||
|
|
||||||
|
typedef struct recycled_pool {
|
||||||
|
apr_pool_t *pool;
|
||||||
|
struct recycled_pool *next;
|
||||||
|
} recycled_pool;
|
||||||
|
|
||||||
|
struct fd_queue_info_t {
|
||||||
|
volatile apr_uint32_t idlers;
|
||||||
|
apr_thread_mutex_t *idlers_mutex;
|
||||||
|
apr_thread_cond_t *wait_for_idler;
|
||||||
|
int terminated;
|
||||||
|
int max_idlers;
|
||||||
|
recycled_pool *recycled_pools;
|
||||||
|
};
|
||||||
|
|
||||||
|
static apr_status_t queue_info_cleanup(void *data_)
|
||||||
|
{
|
||||||
|
fd_queue_info_t *qi = data_;
|
||||||
|
apr_thread_cond_destroy(qi->wait_for_idler);
|
||||||
|
apr_thread_mutex_destroy(qi->idlers_mutex);
|
||||||
|
|
||||||
|
/* Clean up any pools in the recycled list */
|
||||||
|
for (;;) {
|
||||||
|
struct recycled_pool *first_pool = qi->recycled_pools;
|
||||||
|
if (first_pool == NULL) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (apr_atomic_casptr((void*)&(qi->recycled_pools), first_pool->next,
|
||||||
|
first_pool) == first_pool) {
|
||||||
|
apr_pool_destroy(first_pool->pool);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_info_create(fd_queue_info_t **queue_info,
|
||||||
|
apr_pool_t *pool, int max_idlers)
|
||||||
|
{
|
||||||
|
apr_status_t rv;
|
||||||
|
fd_queue_info_t *qi;
|
||||||
|
|
||||||
|
qi = apr_pcalloc(pool, sizeof(*qi));
|
||||||
|
|
||||||
|
rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT,
|
||||||
|
pool);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
rv = apr_thread_cond_create(&qi->wait_for_idler, pool);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
qi->recycled_pools = NULL;
|
||||||
|
qi->max_idlers = max_idlers;
|
||||||
|
apr_pool_cleanup_register(pool, qi, queue_info_cleanup,
|
||||||
|
apr_pool_cleanup_null);
|
||||||
|
|
||||||
|
*queue_info = qi;
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_info_set_idle(fd_queue_info_t *queue_info,
|
||||||
|
apr_pool_t *pool_to_recycle)
|
||||||
|
{
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
/* If we have been given a pool to recycle, atomically link
|
||||||
|
* it into the queue_info's list of recycled pools
|
||||||
|
*/
|
||||||
|
if (pool_to_recycle) {
|
||||||
|
struct recycled_pool *new_recycle;
|
||||||
|
new_recycle = (struct recycled_pool *)apr_palloc(pool_to_recycle,
|
||||||
|
sizeof(*new_recycle));
|
||||||
|
new_recycle->pool = pool_to_recycle;
|
||||||
|
for (;;) {
|
||||||
|
/* Save queue_info->recycled_pool in local variable next because
|
||||||
|
* new_recycle->next can be changed after apr_atomic_casptr
|
||||||
|
* function call. For gory details see PR 44402.
|
||||||
|
*/
|
||||||
|
struct recycled_pool *next = queue_info->recycled_pools;
|
||||||
|
new_recycle->next = next;
|
||||||
|
if (apr_atomic_casptr((void*)&(queue_info->recycled_pools),
|
||||||
|
new_recycle, next) == next) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* If this thread makes the idle worker count nonzero,
|
||||||
|
* wake up the listener. */
|
||||||
|
if (apr_atomic_inc32(&queue_info->idlers) == 0) {
|
||||||
|
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
rv = apr_thread_cond_signal(queue_info->wait_for_idler);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t *queue_info,
|
||||||
|
apr_pool_t **recycled_pool)
|
||||||
|
{
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
*recycled_pool = NULL;
|
||||||
|
|
||||||
|
/* Block if the count of idle workers is zero */
|
||||||
|
if (queue_info->idlers == 0) {
|
||||||
|
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
/* Re-check the idle worker count to guard against a
|
||||||
|
* race condition. Now that we're in the mutex-protected
|
||||||
|
* region, one of two things may have happened:
|
||||||
|
* - If the idle worker count is still zero, the
|
||||||
|
* workers are all still busy, so it's safe to
|
||||||
|
* block on a condition variable, BUT
|
||||||
|
* we need to check for idle worker count again
|
||||||
|
* when we are signaled since it can happen that
|
||||||
|
* we are signaled by a worker thread that went idle
|
||||||
|
* but received a context switch before it could
|
||||||
|
* tell us. If it does signal us later once it is on
|
||||||
|
* CPU again there might be no idle worker left.
|
||||||
|
* See
|
||||||
|
* https://issues.apache.org/bugzilla/show_bug.cgi?id=45605#c4
|
||||||
|
* - If the idle worker count is nonzero, then a
|
||||||
|
* worker has become idle since the first check
|
||||||
|
* of queue_info->idlers above. It's possible
|
||||||
|
* that the worker has also signaled the condition
|
||||||
|
* variable--and if so, the listener missed it
|
||||||
|
* because it wasn't yet blocked on the condition
|
||||||
|
* variable. But if the idle worker count is
|
||||||
|
* now nonzero, it's safe for this function to
|
||||||
|
* return immediately.
|
||||||
|
*/
|
||||||
|
while (queue_info->idlers == 0) {
|
||||||
|
rv = apr_thread_cond_wait(queue_info->wait_for_idler,
|
||||||
|
queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
apr_status_t rv2;
|
||||||
|
rv2 = apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
||||||
|
if (rv2 != APR_SUCCESS) {
|
||||||
|
return rv2;
|
||||||
|
}
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Atomically decrement the idle worker count */
|
||||||
|
apr_atomic_dec32(&(queue_info->idlers));
|
||||||
|
|
||||||
|
/* Atomically pop a pool from the recycled list */
|
||||||
|
|
||||||
|
/* This function is safe only as long as it is single threaded because
|
||||||
|
* it reaches into the queue and accesses "next" which can change.
|
||||||
|
* We are OK today because it is only called from the listener thread.
|
||||||
|
* cas-based pushes do not have the same limitation - any number can
|
||||||
|
* happen concurrently with a single cas-based pop.
|
||||||
|
*/
|
||||||
|
|
||||||
|
for (;;) {
|
||||||
|
struct recycled_pool *first_pool = queue_info->recycled_pools;
|
||||||
|
if (first_pool == NULL) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (apr_atomic_casptr((void*)&(queue_info->recycled_pools), first_pool->next,
|
||||||
|
first_pool) == first_pool) {
|
||||||
|
*recycled_pool = first_pool->pool;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (queue_info->terminated) {
|
||||||
|
return APR_EOF;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_info_term(fd_queue_info_t *queue_info)
|
||||||
|
{
|
||||||
|
apr_status_t rv;
|
||||||
|
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
queue_info->terminated = 1;
|
||||||
|
apr_thread_cond_broadcast(queue_info->wait_for_idler);
|
||||||
|
return apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Detects when the fd_queue_t is full. This utility function is expected
|
||||||
|
* to be called from within critical sections, and is not threadsafe.
|
||||||
|
*/
|
||||||
|
#define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Detects when the fd_queue_t is empty. This utility function is expected
|
||||||
|
* to be called from within critical sections, and is not threadsafe.
|
||||||
|
*/
|
||||||
|
#define ap_queue_empty(queue) ((queue)->nelts == 0)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Callback routine that is called to destroy this
|
||||||
|
* fd_queue_t when its pool is destroyed.
|
||||||
|
*/
|
||||||
|
static apr_status_t ap_queue_destroy(void *data)
|
||||||
|
{
|
||||||
|
fd_queue_t *queue = data;
|
||||||
|
|
||||||
|
/* Ignore errors here, we can't do anything about them anyway.
|
||||||
|
* XXX: We should at least try to signal an error here, it is
|
||||||
|
* indicative of a programmer error. -aaron */
|
||||||
|
apr_thread_cond_destroy(queue->not_empty);
|
||||||
|
apr_thread_mutex_destroy(queue->one_big_mutex);
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Initialize the fd_queue_t.
|
||||||
|
*/
|
||||||
|
apr_status_t ap_queue_init(fd_queue_t *queue, int queue_capacity, apr_pool_t *a)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_create(&queue->one_big_mutex,
|
||||||
|
APR_THREAD_MUTEX_DEFAULT, a)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
if ((rv = apr_thread_cond_create(&queue->not_empty, a)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
queue->data = apr_palloc(a, queue_capacity * sizeof(fd_queue_elem_t));
|
||||||
|
queue->bounds = queue_capacity;
|
||||||
|
queue->nelts = 0;
|
||||||
|
queue->in = 0;
|
||||||
|
queue->out = 0;
|
||||||
|
|
||||||
|
/* Set all the sockets in the queue to NULL */
|
||||||
|
for (i = 0; i < queue_capacity; ++i)
|
||||||
|
queue->data[i].sd = NULL;
|
||||||
|
|
||||||
|
apr_pool_cleanup_register(a, queue, ap_queue_destroy, apr_pool_cleanup_null);
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Push a new socket onto the queue.
|
||||||
|
*
|
||||||
|
* precondition: ap_queue_info_wait_for_idler has already been called
|
||||||
|
* to reserve an idle worker thread
|
||||||
|
*/
|
||||||
|
apr_status_t ap_queue_push(fd_queue_t *queue, apr_socket_t *sd, apr_pool_t *p)
|
||||||
|
{
|
||||||
|
fd_queue_elem_t *elem;
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
AP_DEBUG_ASSERT(!queue->terminated);
|
||||||
|
AP_DEBUG_ASSERT(!ap_queue_full(queue));
|
||||||
|
|
||||||
|
elem = &queue->data[queue->in];
|
||||||
|
queue->in++;
|
||||||
|
if (queue->in >= queue->bounds)
|
||||||
|
queue->in -= queue->bounds;
|
||||||
|
elem->sd = sd;
|
||||||
|
elem->p = p;
|
||||||
|
queue->nelts++;
|
||||||
|
|
||||||
|
apr_thread_cond_signal(queue->not_empty);
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
return APR_SUCCESS;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Retrieves the next available socket from the queue. If there are no
|
||||||
|
* sockets available, it will block until one becomes available.
|
||||||
|
* Once retrieved, the socket is placed into the address specified by
|
||||||
|
* 'sd'.
|
||||||
|
*/
|
||||||
|
apr_status_t ap_queue_pop(fd_queue_t *queue, apr_socket_t **sd, apr_pool_t **p)
|
||||||
|
{
|
||||||
|
fd_queue_elem_t *elem;
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Keep waiting until we wake up and find that the queue is not empty. */
|
||||||
|
if (ap_queue_empty(queue)) {
|
||||||
|
if (!queue->terminated) {
|
||||||
|
apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex);
|
||||||
|
}
|
||||||
|
/* If we wake up and it's still empty, then we were interrupted */
|
||||||
|
if (ap_queue_empty(queue)) {
|
||||||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||||||
|
if (rv != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
if (queue->terminated) {
|
||||||
|
return APR_EOF; /* no more elements ever again */
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
return APR_EINTR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
elem = &queue->data[queue->out];
|
||||||
|
queue->out++;
|
||||||
|
if (queue->out >= queue->bounds)
|
||||||
|
queue->out -= queue->bounds;
|
||||||
|
queue->nelts--;
|
||||||
|
*sd = elem->sd;
|
||||||
|
*p = elem->p;
|
||||||
|
#ifdef AP_DEBUG
|
||||||
|
elem->sd = NULL;
|
||||||
|
elem->p = NULL;
|
||||||
|
#endif /* AP_DEBUG */
|
||||||
|
|
||||||
|
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
|
||||||
|
static apr_status_t queue_interrupt_all(fd_queue_t *queue, int term)
|
||||||
|
{
|
||||||
|
apr_status_t rv;
|
||||||
|
|
||||||
|
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
||||||
|
return rv;
|
||||||
|
}
|
||||||
|
/* we must hold one_big_mutex when setting this... otherwise,
|
||||||
|
* we could end up setting it and waking everybody up just after a
|
||||||
|
* would-be popper checks it but right before they block
|
||||||
|
*/
|
||||||
|
if (term) {
|
||||||
|
queue->terminated = 1;
|
||||||
|
}
|
||||||
|
apr_thread_cond_broadcast(queue->not_empty);
|
||||||
|
return apr_thread_mutex_unlock(queue->one_big_mutex);
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_interrupt_all(fd_queue_t *queue)
|
||||||
|
{
|
||||||
|
return queue_interrupt_all(queue, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
apr_status_t ap_queue_term(fd_queue_t *queue)
|
||||||
|
{
|
||||||
|
return queue_interrupt_all(queue, 1);
|
||||||
|
}
|
||||||
75
server/mpm/worker/fdqueue.h
Normal file
75
server/mpm/worker/fdqueue.h
Normal file
@@ -0,0 +1,75 @@
|
|||||||
|
/* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||||
|
* contributor license agreements. See the NOTICE file distributed with
|
||||||
|
* this work for additional information regarding copyright ownership.
|
||||||
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||||
|
* (the "License"); you may not use this file except in compliance with
|
||||||
|
* the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file worker/fdqueue.h
|
||||||
|
* @brief fd queue declarations
|
||||||
|
*
|
||||||
|
* @addtogroup APACHE_MPM_WORKER
|
||||||
|
* @{
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef FDQUEUE_H
|
||||||
|
#define FDQUEUE_H
|
||||||
|
#include "httpd.h"
|
||||||
|
#include <stdlib.h>
|
||||||
|
#if APR_HAVE_UNISTD_H
|
||||||
|
#include <unistd.h>
|
||||||
|
#endif
|
||||||
|
#include <apr_thread_mutex.h>
|
||||||
|
#include <apr_thread_cond.h>
|
||||||
|
#include <sys/types.h>
|
||||||
|
#if APR_HAVE_SYS_SOCKET_H
|
||||||
|
#include <sys/socket.h>
|
||||||
|
#endif
|
||||||
|
#include <apr_errno.h>
|
||||||
|
|
||||||
|
typedef struct fd_queue_info_t fd_queue_info_t;
|
||||||
|
|
||||||
|
apr_status_t ap_queue_info_create(fd_queue_info_t **queue_info,
|
||||||
|
apr_pool_t *pool, int max_idlers);
|
||||||
|
apr_status_t ap_queue_info_set_idle(fd_queue_info_t *queue_info,
|
||||||
|
apr_pool_t *pool_to_recycle);
|
||||||
|
apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t *queue_info,
|
||||||
|
apr_pool_t **recycled_pool);
|
||||||
|
apr_status_t ap_queue_info_term(fd_queue_info_t *queue_info);
|
||||||
|
|
||||||
|
struct fd_queue_elem_t {
|
||||||
|
apr_socket_t *sd;
|
||||||
|
apr_pool_t *p;
|
||||||
|
};
|
||||||
|
typedef struct fd_queue_elem_t fd_queue_elem_t;
|
||||||
|
|
||||||
|
struct fd_queue_t {
|
||||||
|
fd_queue_elem_t *data;
|
||||||
|
unsigned int nelts;
|
||||||
|
unsigned int bounds;
|
||||||
|
unsigned int in;
|
||||||
|
unsigned int out;
|
||||||
|
apr_thread_mutex_t *one_big_mutex;
|
||||||
|
apr_thread_cond_t *not_empty;
|
||||||
|
int terminated;
|
||||||
|
};
|
||||||
|
typedef struct fd_queue_t fd_queue_t;
|
||||||
|
|
||||||
|
apr_status_t ap_queue_init(fd_queue_t *queue, int queue_capacity, apr_pool_t *a);
|
||||||
|
apr_status_t ap_queue_push(fd_queue_t *queue, apr_socket_t *sd, apr_pool_t *p);
|
||||||
|
apr_status_t ap_queue_pop(fd_queue_t *queue, apr_socket_t **sd, apr_pool_t **p);
|
||||||
|
apr_status_t ap_queue_interrupt_all(fd_queue_t *queue);
|
||||||
|
apr_status_t ap_queue_term(fd_queue_t *queue);
|
||||||
|
|
||||||
|
#endif /* FDQUEUE_H */
|
||||||
|
/** @} */
|
||||||
@@ -64,7 +64,7 @@
|
|||||||
#include "mpm_common.h"
|
#include "mpm_common.h"
|
||||||
#include "ap_listen.h"
|
#include "ap_listen.h"
|
||||||
#include "scoreboard.h"
|
#include "scoreboard.h"
|
||||||
#include "mpm_unix.h"
|
#include "fdqueue.h"
|
||||||
#include "mpm_default.h"
|
#include "mpm_default.h"
|
||||||
#include "util_mutex.h"
|
#include "util_mutex.h"
|
||||||
#include "unixd.h"
|
#include "unixd.h"
|
||||||
@@ -597,7 +597,11 @@ static void * APR_THREAD_FUNC listener_thread(apr_thread_t *thd, void * dummy)
|
|||||||
if (listener_may_exit) break;
|
if (listener_may_exit) break;
|
||||||
|
|
||||||
if (!have_idle_worker) {
|
if (!have_idle_worker) {
|
||||||
rv = ap_queue_info_wait_for_idler(worker_queue_info, NULL);
|
/* the following pops a recycled ptrans pool off a stack
|
||||||
|
* if there is one, in addition to reserving a worker thread
|
||||||
|
*/
|
||||||
|
rv = ap_queue_info_wait_for_idler(worker_queue_info,
|
||||||
|
&ptrans);
|
||||||
if (APR_STATUS_IS_EOF(rv)) {
|
if (APR_STATUS_IS_EOF(rv)) {
|
||||||
break; /* we've been signaled to die now */
|
break; /* we've been signaled to die now */
|
||||||
}
|
}
|
||||||
@@ -675,8 +679,6 @@ static void * APR_THREAD_FUNC listener_thread(apr_thread_t *thd, void * dummy)
|
|||||||
} /* if/else */
|
} /* if/else */
|
||||||
|
|
||||||
if (!listener_may_exit) {
|
if (!listener_may_exit) {
|
||||||
/* the following pops a recycled ptrans pool off a stack */
|
|
||||||
ap_pop_pool(&ptrans, worker_queue_info);
|
|
||||||
if (ptrans == NULL) {
|
if (ptrans == NULL) {
|
||||||
/* we can't use a recycled transaction pool this time.
|
/* we can't use a recycled transaction pool this time.
|
||||||
* create a new transaction pool */
|
* create a new transaction pool */
|
||||||
@@ -686,8 +688,8 @@ static void * APR_THREAD_FUNC listener_thread(apr_thread_t *thd, void * dummy)
|
|||||||
apr_allocator_max_free_set(allocator, ap_max_mem_free);
|
apr_allocator_max_free_set(allocator, ap_max_mem_free);
|
||||||
apr_pool_create_ex(&ptrans, pconf, NULL, allocator);
|
apr_pool_create_ex(&ptrans, pconf, NULL, allocator);
|
||||||
apr_allocator_owner_set(allocator, ptrans);
|
apr_allocator_owner_set(allocator, ptrans);
|
||||||
apr_pool_tag(ptrans, "transaction");
|
|
||||||
}
|
}
|
||||||
|
apr_pool_tag(ptrans, "transaction");
|
||||||
rv = lr->accept_func(&csd, lr, ptrans);
|
rv = lr->accept_func(&csd, lr, ptrans);
|
||||||
/* later we trash rv and rely on csd to indicate success/failure */
|
/* later we trash rv and rely on csd to indicate success/failure */
|
||||||
AP_DEBUG_ASSERT(rv == APR_SUCCESS || !csd);
|
AP_DEBUG_ASSERT(rv == APR_SUCCESS || !csd);
|
||||||
@@ -710,7 +712,7 @@ static void * APR_THREAD_FUNC listener_thread(apr_thread_t *thd, void * dummy)
|
|||||||
accept_mutex_error("unlock", rv, process_slot);
|
accept_mutex_error("unlock", rv, process_slot);
|
||||||
}
|
}
|
||||||
if (csd != NULL) {
|
if (csd != NULL) {
|
||||||
rv = ap_queue_push(worker_queue, csd, NULL, ptrans);
|
rv = ap_queue_push(worker_queue, csd, ptrans);
|
||||||
if (rv) {
|
if (rv) {
|
||||||
/* trash the connection; we couldn't queue the connected
|
/* trash the connection; we couldn't queue the connected
|
||||||
* socket to a worker
|
* socket to a worker
|
||||||
@@ -916,7 +918,7 @@ static void * APR_THREAD_FUNC start_threads(apr_thread_t *thd, void *dummy)
|
|||||||
}
|
}
|
||||||
|
|
||||||
rv = ap_queue_info_create(&worker_queue_info, pchild,
|
rv = ap_queue_info_create(&worker_queue_info, pchild,
|
||||||
threads_per_child, -1);
|
threads_per_child);
|
||||||
if (rv != APR_SUCCESS) {
|
if (rv != APR_SUCCESS) {
|
||||||
ap_log_error(APLOG_MARK, APLOG_ALERT, rv, ap_server_conf, APLOGNO(03141)
|
ap_log_error(APLOG_MARK, APLOG_ALERT, rv, ap_server_conf, APLOGNO(03141)
|
||||||
"ap_queue_info_create() failed");
|
"ap_queue_info_create() failed");
|
||||||
|
|||||||
@@ -27,8 +27,7 @@
|
|||||||
|
|
||||||
#ifndef WIN32
|
#ifndef WIN32
|
||||||
|
|
||||||
#include "mpm_unix.h"
|
#include "apr.h"
|
||||||
|
|
||||||
#include "apr_thread_proc.h"
|
#include "apr_thread_proc.h"
|
||||||
#include "apr_signal.h"
|
#include "apr_signal.h"
|
||||||
#include "apr_strings.h"
|
#include "apr_strings.h"
|
||||||
@@ -37,8 +36,6 @@
|
|||||||
#include "apr_getopt.h"
|
#include "apr_getopt.h"
|
||||||
#include "apr_optional.h"
|
#include "apr_optional.h"
|
||||||
#include "apr_allocator.h"
|
#include "apr_allocator.h"
|
||||||
#include "apr_atomic.h"
|
|
||||||
#include "apr_errno.h"
|
|
||||||
|
|
||||||
#include "httpd.h"
|
#include "httpd.h"
|
||||||
#include "http_config.h"
|
#include "http_config.h"
|
||||||
@@ -46,6 +43,7 @@
|
|||||||
#include "http_log.h"
|
#include "http_log.h"
|
||||||
#include "http_main.h"
|
#include "http_main.h"
|
||||||
#include "mpm_common.h"
|
#include "mpm_common.h"
|
||||||
|
#include "ap_mpm.h"
|
||||||
#include "ap_listen.h"
|
#include "ap_listen.h"
|
||||||
#include "scoreboard.h"
|
#include "scoreboard.h"
|
||||||
#include "util_mutex.h"
|
#include "util_mutex.h"
|
||||||
@@ -1106,528 +1104,4 @@ AP_DECLARE(apr_status_t) ap_fatal_signal_setup(server_rec *s,
|
|||||||
return APR_SUCCESS;
|
return APR_SUCCESS;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/*
|
|
||||||
* fdqueue code used by MPMs event and worker.
|
|
||||||
* Not part of the API, so not AP_DECLARE()d.
|
|
||||||
*/
|
|
||||||
|
|
||||||
static const apr_uint32_t zero_pt = APR_UINT32_MAX/2;
|
|
||||||
|
|
||||||
struct recycled_pool
|
|
||||||
{
|
|
||||||
apr_pool_t *pool;
|
|
||||||
struct recycled_pool *next;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct fd_queue_info_t
|
|
||||||
{
|
|
||||||
apr_uint32_t volatile idlers; /**
|
|
||||||
* >= zero_pt: number of idle worker threads
|
|
||||||
* < zero_pt: number of threads blocked,
|
|
||||||
* waiting for an idle worker
|
|
||||||
*/
|
|
||||||
apr_thread_mutex_t *idlers_mutex;
|
|
||||||
apr_thread_cond_t *wait_for_idler;
|
|
||||||
int terminated;
|
|
||||||
int max_idlers;
|
|
||||||
int max_recycled_pools;
|
|
||||||
apr_uint32_t recycled_pools_count;
|
|
||||||
struct recycled_pool *volatile recycled_pools;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct fd_queue_elem_t
|
|
||||||
{
|
|
||||||
apr_socket_t *sd;
|
|
||||||
apr_pool_t *p;
|
|
||||||
void *baton;
|
|
||||||
};
|
|
||||||
|
|
||||||
static apr_status_t queue_info_cleanup(void *data_)
|
|
||||||
{
|
|
||||||
fd_queue_info_t *qi = data_;
|
|
||||||
apr_thread_cond_destroy(qi->wait_for_idler);
|
|
||||||
apr_thread_mutex_destroy(qi->idlers_mutex);
|
|
||||||
|
|
||||||
/* Clean up any pools in the recycled list */
|
|
||||||
for (;;) {
|
|
||||||
struct recycled_pool *first_pool = qi->recycled_pools;
|
|
||||||
if (first_pool == NULL) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
if (apr_atomic_casptr((void *)&qi->recycled_pools, first_pool->next,
|
|
||||||
first_pool) == first_pool) {
|
|
||||||
apr_pool_destroy(first_pool->pool);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return APR_SUCCESS;
|
|
||||||
}
|
|
||||||
|
|
||||||
apr_status_t ap_queue_info_create(fd_queue_info_t **queue_info,
|
|
||||||
apr_pool_t *pool, int max_idlers,
|
|
||||||
int max_recycled_pools)
|
|
||||||
{
|
|
||||||
apr_status_t rv;
|
|
||||||
fd_queue_info_t *qi;
|
|
||||||
|
|
||||||
qi = apr_pcalloc(pool, sizeof(*qi));
|
|
||||||
|
|
||||||
rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT,
|
|
||||||
pool);
|
|
||||||
if (rv != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
rv = apr_thread_cond_create(&qi->wait_for_idler, pool);
|
|
||||||
if (rv != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
qi->recycled_pools = NULL;
|
|
||||||
qi->max_recycled_pools = max_recycled_pools;
|
|
||||||
qi->max_idlers = max_idlers;
|
|
||||||
qi->idlers = zero_pt;
|
|
||||||
apr_pool_cleanup_register(pool, qi, queue_info_cleanup,
|
|
||||||
apr_pool_cleanup_null);
|
|
||||||
|
|
||||||
*queue_info = qi;
|
|
||||||
|
|
||||||
return APR_SUCCESS;
|
|
||||||
}
|
|
||||||
|
|
||||||
apr_status_t ap_queue_info_set_idle(fd_queue_info_t *queue_info,
|
|
||||||
apr_pool_t *pool_to_recycle)
|
|
||||||
{
|
|
||||||
apr_status_t rv;
|
|
||||||
|
|
||||||
ap_push_pool(queue_info, pool_to_recycle);
|
|
||||||
|
|
||||||
/* If other threads are waiting on a worker, wake one up */
|
|
||||||
if (apr_atomic_inc32(&queue_info->idlers) < zero_pt) {
|
|
||||||
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
|
|
||||||
if (rv != APR_SUCCESS) {
|
|
||||||
AP_DEBUG_ASSERT(0);
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
rv = apr_thread_cond_signal(queue_info->wait_for_idler);
|
|
||||||
if (rv != APR_SUCCESS) {
|
|
||||||
apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
|
||||||
if (rv != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return APR_SUCCESS;
|
|
||||||
}
|
|
||||||
|
|
||||||
apr_status_t ap_queue_info_try_get_idler(fd_queue_info_t *queue_info)
|
|
||||||
{
|
|
||||||
/* Don't block if there isn't any idle worker. */
|
|
||||||
for (;;) {
|
|
||||||
apr_uint32_t idlers = queue_info->idlers;
|
|
||||||
if (idlers <= zero_pt) {
|
|
||||||
return APR_EAGAIN;
|
|
||||||
}
|
|
||||||
if (apr_atomic_cas32(&queue_info->idlers, idlers - 1,
|
|
||||||
idlers) == idlers) {
|
|
||||||
return APR_SUCCESS;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t *queue_info,
|
|
||||||
int *had_to_block)
|
|
||||||
{
|
|
||||||
apr_status_t rv;
|
|
||||||
|
|
||||||
/* Block if there isn't any idle worker.
|
|
||||||
* apr_atomic_add32(x, -1) does the same as dec32(x), except
|
|
||||||
* that it returns the previous value (unlike dec32's bool).
|
|
||||||
*/
|
|
||||||
if (apr_atomic_add32(&queue_info->idlers, -1) <= zero_pt) {
|
|
||||||
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
|
|
||||||
if (rv != APR_SUCCESS) {
|
|
||||||
AP_DEBUG_ASSERT(0);
|
|
||||||
apr_atomic_inc32(&(queue_info->idlers)); /* back out dec */
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
/* Re-check the idle worker count to guard against a
|
|
||||||
* race condition. Now that we're in the mutex-protected
|
|
||||||
* region, one of two things may have happened:
|
|
||||||
* - If the idle worker count is still negative, the
|
|
||||||
* workers are all still busy, so it's safe to
|
|
||||||
* block on a condition variable.
|
|
||||||
* - If the idle worker count is non-negative, then a
|
|
||||||
* worker has become idle since the first check
|
|
||||||
* of queue_info->idlers above. It's possible
|
|
||||||
* that the worker has also signaled the condition
|
|
||||||
* variable--and if so, the listener missed it
|
|
||||||
* because it wasn't yet blocked on the condition
|
|
||||||
* variable. But if the idle worker count is
|
|
||||||
* now non-negative, it's safe for this function to
|
|
||||||
* return immediately.
|
|
||||||
*
|
|
||||||
* A "negative value" (relative to zero_pt) in
|
|
||||||
* queue_info->idlers tells how many
|
|
||||||
* threads are waiting on an idle worker.
|
|
||||||
*/
|
|
||||||
if (queue_info->idlers < zero_pt) {
|
|
||||||
if (had_to_block) {
|
|
||||||
*had_to_block = 1;
|
|
||||||
}
|
|
||||||
rv = apr_thread_cond_wait(queue_info->wait_for_idler,
|
|
||||||
queue_info->idlers_mutex);
|
|
||||||
if (rv != APR_SUCCESS) {
|
|
||||||
apr_status_t rv2;
|
|
||||||
AP_DEBUG_ASSERT(0);
|
|
||||||
rv2 = apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
|
||||||
if (rv2 != APR_SUCCESS) {
|
|
||||||
return rv2;
|
|
||||||
}
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
|
||||||
if (rv != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (queue_info->terminated) {
|
|
||||||
return APR_EOF;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
return APR_SUCCESS;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
apr_uint32_t ap_queue_info_num_idlers(fd_queue_info_t *queue_info)
|
|
||||||
{
|
|
||||||
apr_uint32_t val;
|
|
||||||
val = apr_atomic_read32(&queue_info->idlers);
|
|
||||||
if (val <= zero_pt)
|
|
||||||
return 0;
|
|
||||||
return val - zero_pt;
|
|
||||||
}
|
|
||||||
|
|
||||||
void ap_push_pool(fd_queue_info_t *queue_info, apr_pool_t *pool_to_recycle)
|
|
||||||
{
|
|
||||||
struct recycled_pool *new_recycle;
|
|
||||||
/* If we have been given a pool to recycle, atomically link
|
|
||||||
* it into the queue_info's list of recycled pools
|
|
||||||
*/
|
|
||||||
if (!pool_to_recycle)
|
|
||||||
return;
|
|
||||||
|
|
||||||
if (queue_info->max_recycled_pools >= 0) {
|
|
||||||
apr_uint32_t cnt = apr_atomic_read32(&queue_info->recycled_pools_count);
|
|
||||||
if (cnt >= queue_info->max_recycled_pools) {
|
|
||||||
apr_pool_destroy(pool_to_recycle);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
apr_atomic_inc32(&queue_info->recycled_pools_count);
|
|
||||||
}
|
|
||||||
|
|
||||||
apr_pool_clear(pool_to_recycle);
|
|
||||||
new_recycle = apr_palloc(pool_to_recycle, sizeof *new_recycle);
|
|
||||||
new_recycle->pool = pool_to_recycle;
|
|
||||||
for (;;) {
|
|
||||||
/*
|
|
||||||
* Save queue_info->recycled_pool in local variable next because
|
|
||||||
* new_recycle->next can be changed after apr_atomic_casptr
|
|
||||||
* function call. For gory details see PR 44402.
|
|
||||||
*/
|
|
||||||
struct recycled_pool *next = queue_info->recycled_pools;
|
|
||||||
new_recycle->next = next;
|
|
||||||
if (apr_atomic_casptr((void*) &(queue_info->recycled_pools),
|
|
||||||
new_recycle, next) == next)
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void ap_pop_pool(apr_pool_t **recycled_pool, fd_queue_info_t *queue_info)
|
|
||||||
{
|
|
||||||
/* Atomically pop a pool from the recycled list */
|
|
||||||
|
|
||||||
/* This function is safe only as long as it is single threaded because
|
|
||||||
* it reaches into the queue and accesses "next" which can change.
|
|
||||||
* We are OK today because it is only called from the listener thread.
|
|
||||||
* cas-based pushes do not have the same limitation - any number can
|
|
||||||
* happen concurrently with a single cas-based pop.
|
|
||||||
*/
|
|
||||||
|
|
||||||
*recycled_pool = NULL;
|
|
||||||
|
|
||||||
|
|
||||||
/* Atomically pop a pool from the recycled list */
|
|
||||||
for (;;) {
|
|
||||||
struct recycled_pool *first_pool = queue_info->recycled_pools;
|
|
||||||
if (first_pool == NULL) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
if (apr_atomic_casptr((void *)&queue_info->recycled_pools,
|
|
||||||
first_pool->next, first_pool) == first_pool) {
|
|
||||||
*recycled_pool = first_pool->pool;
|
|
||||||
if (queue_info->max_recycled_pools >= 0)
|
|
||||||
apr_atomic_dec32(&queue_info->recycled_pools_count);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void ap_free_idle_pools(fd_queue_info_t *queue_info)
|
|
||||||
{
|
|
||||||
apr_pool_t *p;
|
|
||||||
|
|
||||||
queue_info->max_recycled_pools = 0;
|
|
||||||
for (;;) {
|
|
||||||
ap_pop_pool(&p, queue_info);
|
|
||||||
if (p == NULL)
|
|
||||||
break;
|
|
||||||
apr_pool_destroy(p);
|
|
||||||
}
|
|
||||||
apr_atomic_set32(&queue_info->recycled_pools_count, 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
apr_status_t ap_queue_info_term(fd_queue_info_t *queue_info)
|
|
||||||
{
|
|
||||||
apr_status_t rv;
|
|
||||||
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
|
|
||||||
if (rv != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
queue_info->terminated = 1;
|
|
||||||
apr_thread_cond_broadcast(queue_info->wait_for_idler);
|
|
||||||
return apr_thread_mutex_unlock(queue_info->idlers_mutex);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Detects when the fd_queue_t is full. This utility function is expected
|
|
||||||
* to be called from within critical sections, and is not threadsafe.
|
|
||||||
*/
|
|
||||||
#define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds)
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Detects when the fd_queue_t is empty. This utility function is expected
|
|
||||||
* to be called from within critical sections, and is not threadsafe.
|
|
||||||
*/
|
|
||||||
#define ap_queue_empty(queue) ((queue)->nelts == 0 && APR_RING_EMPTY(&queue->timers ,timer_event_t, link))
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Callback routine that is called to destroy this
|
|
||||||
* fd_queue_t when its pool is destroyed.
|
|
||||||
*/
|
|
||||||
static apr_status_t ap_queue_destroy(void *data)
|
|
||||||
{
|
|
||||||
fd_queue_t *queue = data;
|
|
||||||
|
|
||||||
/* Ignore errors here, we can't do anything about them anyway.
|
|
||||||
* XXX: We should at least try to signal an error here, it is
|
|
||||||
* indicative of a programmer error. -aaron */
|
|
||||||
apr_thread_cond_destroy(queue->not_empty);
|
|
||||||
apr_thread_mutex_destroy(queue->one_big_mutex);
|
|
||||||
|
|
||||||
return APR_SUCCESS;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Initialize the fd_queue_t.
|
|
||||||
*/
|
|
||||||
apr_status_t ap_queue_init(fd_queue_t *queue, int queue_capacity,
|
|
||||||
apr_pool_t *a)
|
|
||||||
{
|
|
||||||
int i;
|
|
||||||
apr_status_t rv;
|
|
||||||
|
|
||||||
if ((rv = apr_thread_mutex_create(&queue->one_big_mutex,
|
|
||||||
APR_THREAD_MUTEX_DEFAULT,
|
|
||||||
a)) != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
if ((rv = apr_thread_cond_create(&queue->not_empty, a)) != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
|
|
||||||
APR_RING_INIT(&queue->timers, timer_event_t, link);
|
|
||||||
|
|
||||||
queue->data = apr_palloc(a, queue_capacity * sizeof(fd_queue_elem_t));
|
|
||||||
queue->bounds = queue_capacity;
|
|
||||||
queue->nelts = 0;
|
|
||||||
queue->in = 0;
|
|
||||||
queue->out = 0;
|
|
||||||
|
|
||||||
/* Set all the sockets in the queue to NULL */
|
|
||||||
for (i = 0; i < queue_capacity; ++i)
|
|
||||||
queue->data[i].sd = NULL;
|
|
||||||
|
|
||||||
apr_pool_cleanup_register(a, queue, ap_queue_destroy,
|
|
||||||
apr_pool_cleanup_null);
|
|
||||||
|
|
||||||
return APR_SUCCESS;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Push a new socket onto the queue.
|
|
||||||
*
|
|
||||||
* precondition: ap_queue_info_wait_for_idler has already been called
|
|
||||||
* to reserve an idle worker thread
|
|
||||||
*/
|
|
||||||
apr_status_t ap_queue_push(fd_queue_t *queue, apr_socket_t *sd,
|
|
||||||
void *baton, apr_pool_t *p)
|
|
||||||
{
|
|
||||||
fd_queue_elem_t *elem;
|
|
||||||
apr_status_t rv;
|
|
||||||
|
|
||||||
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
|
|
||||||
AP_DEBUG_ASSERT(!queue->terminated);
|
|
||||||
AP_DEBUG_ASSERT(!ap_queue_full(queue));
|
|
||||||
|
|
||||||
elem = &queue->data[queue->in];
|
|
||||||
queue->in++;
|
|
||||||
if (queue->in >= queue->bounds)
|
|
||||||
queue->in -= queue->bounds;
|
|
||||||
elem->sd = sd;
|
|
||||||
elem->baton = baton;
|
|
||||||
elem->p = p;
|
|
||||||
queue->nelts++;
|
|
||||||
|
|
||||||
apr_thread_cond_signal(queue->not_empty);
|
|
||||||
|
|
||||||
if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
|
|
||||||
return APR_SUCCESS;
|
|
||||||
}
|
|
||||||
|
|
||||||
apr_status_t ap_queue_push_timer(fd_queue_t *queue, timer_event_t *te)
|
|
||||||
{
|
|
||||||
apr_status_t rv;
|
|
||||||
|
|
||||||
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
|
|
||||||
AP_DEBUG_ASSERT(!queue->terminated);
|
|
||||||
|
|
||||||
APR_RING_INSERT_TAIL(&queue->timers, te, timer_event_t, link);
|
|
||||||
|
|
||||||
apr_thread_cond_signal(queue->not_empty);
|
|
||||||
|
|
||||||
if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
|
|
||||||
return APR_SUCCESS;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Retrieves the next available socket from the queue. If there are no
|
|
||||||
* sockets available, it will block until one becomes available.
|
|
||||||
* Once retrieved, the socket is placed into the address specified by
|
|
||||||
* 'sd'.
|
|
||||||
*/
|
|
||||||
apr_status_t ap_queue_pop_something(fd_queue_t *queue, apr_socket_t **sd,
|
|
||||||
void **baton, apr_pool_t **p,
|
|
||||||
timer_event_t **te_out)
|
|
||||||
{
|
|
||||||
fd_queue_elem_t *elem;
|
|
||||||
timer_event_t *te;
|
|
||||||
apr_status_t rv;
|
|
||||||
|
|
||||||
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Keep waiting until we wake up and find that the queue is not empty. */
|
|
||||||
if (ap_queue_empty(queue)) {
|
|
||||||
if (!queue->terminated) {
|
|
||||||
apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex);
|
|
||||||
}
|
|
||||||
/* If we wake up and it's still empty, then we were interrupted */
|
|
||||||
if (ap_queue_empty(queue)) {
|
|
||||||
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
|
||||||
if (rv != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
if (queue->terminated) {
|
|
||||||
return APR_EOF; /* no more elements ever again */
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
return APR_EINTR;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
te = NULL;
|
|
||||||
if (te_out) {
|
|
||||||
if (!APR_RING_EMPTY(&queue->timers, timer_event_t, link)) {
|
|
||||||
te = APR_RING_FIRST(&queue->timers);
|
|
||||||
APR_RING_REMOVE(te, link);
|
|
||||||
}
|
|
||||||
*te_out = te;
|
|
||||||
}
|
|
||||||
if (!te) {
|
|
||||||
elem = &queue->data[queue->out];
|
|
||||||
queue->out++;
|
|
||||||
if (queue->out >= queue->bounds)
|
|
||||||
queue->out -= queue->bounds;
|
|
||||||
queue->nelts--;
|
|
||||||
*sd = elem->sd;
|
|
||||||
if (baton) {
|
|
||||||
*baton = elem->baton;
|
|
||||||
}
|
|
||||||
*p = elem->p;
|
|
||||||
#ifdef AP_DEBUG
|
|
||||||
elem->sd = NULL;
|
|
||||||
elem->p = NULL;
|
|
||||||
#endif /* AP_DEBUG */
|
|
||||||
}
|
|
||||||
|
|
||||||
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
|
|
||||||
static apr_status_t queue_interrupt(fd_queue_t *queue, int all, int term)
|
|
||||||
{
|
|
||||||
apr_status_t rv;
|
|
||||||
|
|
||||||
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
|
|
||||||
return rv;
|
|
||||||
}
|
|
||||||
/* we must hold one_big_mutex when setting this... otherwise,
|
|
||||||
* we could end up setting it and waking everybody up just after a
|
|
||||||
* would-be popper checks it but right before they block
|
|
||||||
*/
|
|
||||||
if (term) {
|
|
||||||
queue->terminated = 1;
|
|
||||||
}
|
|
||||||
if (all)
|
|
||||||
apr_thread_cond_broadcast(queue->not_empty);
|
|
||||||
else
|
|
||||||
apr_thread_cond_signal(queue->not_empty);
|
|
||||||
return apr_thread_mutex_unlock(queue->one_big_mutex);
|
|
||||||
}
|
|
||||||
|
|
||||||
apr_status_t ap_queue_interrupt_all(fd_queue_t *queue)
|
|
||||||
{
|
|
||||||
return queue_interrupt(queue, 1, 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
apr_status_t ap_queue_interrupt_one(fd_queue_t *queue)
|
|
||||||
{
|
|
||||||
return queue_interrupt(queue, 0, 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
apr_status_t ap_queue_term(fd_queue_t *queue)
|
|
||||||
{
|
|
||||||
return queue_interrupt(queue, 1, 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif /* WIN32 */
|
#endif /* WIN32 */
|
||||||
|
|||||||
Reference in New Issue
Block a user