mirror of
https://github.com/svg/svgo.git
synced 2025-04-19 10:22:15 +03:00
742 lines
19 KiB
JavaScript
742 lines
19 KiB
JavaScript
import { cleanupOutData, toFixed } from '../lib/svgo/tools.js';
|
|
|
|
/**
|
|
* @typedef {{ name: string, data: number[] }} TransformItem
|
|
* @typedef {{
|
|
* convertToShorts: boolean,
|
|
* degPrecision?: number,
|
|
* floatPrecision: number,
|
|
* transformPrecision: number,
|
|
* matrixToTransform: boolean,
|
|
* shortTranslate: boolean,
|
|
* shortScale: boolean,
|
|
* shortRotate: boolean,
|
|
* removeUseless: boolean,
|
|
* collapseIntoOne: boolean,
|
|
* leadingZero: boolean,
|
|
* negativeExtraSpace: boolean,
|
|
* }} TransformParams
|
|
*/
|
|
|
|
const transformTypes = new Set([
|
|
'matrix',
|
|
'rotate',
|
|
'scale',
|
|
'skewX',
|
|
'skewY',
|
|
'translate',
|
|
]);
|
|
|
|
const regTransformSplit =
|
|
/\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/;
|
|
const regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g;
|
|
|
|
/**
|
|
* Convert transform string to JS representation.
|
|
*
|
|
* @param {string} transformString
|
|
* @returns {TransformItem[]} Object representation of transform, or an empty array if it was malformed.
|
|
*/
|
|
export const transform2js = (transformString) => {
|
|
/** @type {TransformItem[]} */
|
|
const transforms = [];
|
|
/** @type {?TransformItem} */
|
|
let currentTransform = null;
|
|
|
|
// split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', '']
|
|
for (const item of transformString.split(regTransformSplit)) {
|
|
if (!item) {
|
|
continue;
|
|
}
|
|
|
|
if (transformTypes.has(item)) {
|
|
currentTransform = { name: item, data: [] };
|
|
transforms.push(currentTransform);
|
|
} else {
|
|
let num;
|
|
// then split it into [10, 50] and collect as context.data
|
|
while ((num = regNumericValues.exec(item))) {
|
|
num = Number(num);
|
|
if (currentTransform != null) {
|
|
currentTransform.data.push(num);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return currentTransform == null || currentTransform.data.length == 0
|
|
? []
|
|
: transforms;
|
|
};
|
|
/**
|
|
* Multiply transforms into one.
|
|
*
|
|
* @param {TransformItem[]} transforms
|
|
* @returns {TransformItem}
|
|
*/
|
|
export const transformsMultiply = (transforms) => {
|
|
const matrixData = transforms.map((transform) => {
|
|
if (transform.name === 'matrix') {
|
|
return transform.data;
|
|
}
|
|
return transformToMatrix(transform);
|
|
});
|
|
|
|
const matrixTransform = {
|
|
name: 'matrix',
|
|
data:
|
|
matrixData.length > 0 ? matrixData.reduce(multiplyTransformMatrices) : [],
|
|
};
|
|
|
|
return matrixTransform;
|
|
};
|
|
|
|
/**
|
|
* Math utilities in radians.
|
|
*/
|
|
const mth = {
|
|
/**
|
|
* @param {number} deg
|
|
* @returns {number}
|
|
*/
|
|
rad: (deg) => {
|
|
return (deg * Math.PI) / 180;
|
|
},
|
|
|
|
/**
|
|
* @param {number} rad
|
|
* @returns {number}
|
|
*/
|
|
deg: (rad) => {
|
|
return (rad * 180) / Math.PI;
|
|
},
|
|
|
|
/**
|
|
* @param {number} deg
|
|
* @returns {number}
|
|
*/
|
|
cos: (deg) => {
|
|
return Math.cos(mth.rad(deg));
|
|
},
|
|
|
|
/**
|
|
* @param {number} val
|
|
* @param {number} floatPrecision
|
|
* @returns {number}
|
|
*/
|
|
acos: (val, floatPrecision) => {
|
|
return toFixed(mth.deg(Math.acos(val)), floatPrecision);
|
|
},
|
|
|
|
/**
|
|
* @param {number} deg
|
|
* @returns {number}
|
|
*/
|
|
sin: (deg) => {
|
|
return Math.sin(mth.rad(deg));
|
|
},
|
|
|
|
/**
|
|
* @param {number} val
|
|
* @param {number} floatPrecision
|
|
* @returns {number}
|
|
*/
|
|
asin: (val, floatPrecision) => {
|
|
return toFixed(mth.deg(Math.asin(val)), floatPrecision);
|
|
},
|
|
|
|
/**
|
|
* @param {number} deg
|
|
* @returns {number}
|
|
*/
|
|
tan: (deg) => {
|
|
return Math.tan(mth.rad(deg));
|
|
},
|
|
|
|
/**
|
|
* @param {number} val
|
|
* @param {number} floatPrecision
|
|
* @returns {number}
|
|
*/
|
|
atan: (val, floatPrecision) => {
|
|
return toFixed(mth.deg(Math.atan(val)), floatPrecision);
|
|
},
|
|
};
|
|
|
|
/**
|
|
* @param {TransformItem} matrix
|
|
* @returns {TransformItem[][]}
|
|
*/
|
|
const getDecompositions = (matrix) => {
|
|
const decompositions = [];
|
|
const qrab = decomposeQRAB(matrix);
|
|
const qrcd = decomposeQRCD(matrix);
|
|
|
|
if (qrab) {
|
|
decompositions.push(qrab);
|
|
}
|
|
if (qrcd) {
|
|
decompositions.push(qrcd);
|
|
}
|
|
return decompositions;
|
|
};
|
|
|
|
/**
|
|
* @param {TransformItem} matrix
|
|
* @returns {TransformItem[]|undefined}
|
|
* @see {@link https://frederic-wang.fr/2013/12/01/decomposition-of-2d-transform-matrices/} Where applicable, variables are named in accordance with this document.
|
|
*/
|
|
const decomposeQRAB = (matrix) => {
|
|
const data = matrix.data;
|
|
|
|
const [a, b, c, d, e, f] = data;
|
|
const delta = a * d - b * c;
|
|
if (delta === 0) {
|
|
return;
|
|
}
|
|
const r = Math.hypot(a, b);
|
|
|
|
if (r === 0) {
|
|
return;
|
|
}
|
|
|
|
const decomposition = [];
|
|
const cosOfRotationAngle = a / r;
|
|
|
|
// [..., ..., ..., ..., tx, ty] → translate(tx, ty)
|
|
if (e || f) {
|
|
decomposition.push({
|
|
name: 'translate',
|
|
data: [e, f],
|
|
});
|
|
}
|
|
|
|
if (cosOfRotationAngle !== 1) {
|
|
const rotationAngleRads = Math.acos(cosOfRotationAngle);
|
|
decomposition.push({
|
|
name: 'rotate',
|
|
data: [mth.deg(b < 0 ? -rotationAngleRads : rotationAngleRads), 0, 0],
|
|
});
|
|
}
|
|
|
|
const sx = r;
|
|
const sy = delta / sx;
|
|
if (sx !== 1 || sy !== 1) {
|
|
decomposition.push({ name: 'scale', data: [sx, sy] });
|
|
}
|
|
|
|
const ac_plus_bd = a * c + b * d;
|
|
if (ac_plus_bd) {
|
|
decomposition.push({
|
|
name: 'skewX',
|
|
data: [mth.deg(Math.atan(ac_plus_bd / (a * a + b * b)))],
|
|
});
|
|
}
|
|
|
|
return decomposition;
|
|
};
|
|
|
|
/**
|
|
* @param {TransformItem} matrix
|
|
* @returns {TransformItem[]|undefined}
|
|
* @see {@link https://frederic-wang.fr/2013/12/01/decomposition-of-2d-transform-matrices/} Where applicable, variables are named in accordance with this document.
|
|
*/
|
|
const decomposeQRCD = (matrix) => {
|
|
const data = matrix.data;
|
|
|
|
const [a, b, c, d, e, f] = data;
|
|
const delta = a * d - b * c;
|
|
if (delta === 0) {
|
|
return;
|
|
}
|
|
const s = Math.hypot(c, d);
|
|
if (s === 0) {
|
|
return;
|
|
}
|
|
|
|
const decomposition = [];
|
|
|
|
if (e || f) {
|
|
decomposition.push({
|
|
name: 'translate',
|
|
data: [e, f],
|
|
});
|
|
}
|
|
|
|
const rotationAngleRads = Math.PI / 2 - (d < 0 ? -1 : 1) * Math.acos(-c / s);
|
|
decomposition.push({
|
|
name: 'rotate',
|
|
data: [mth.deg(rotationAngleRads), 0, 0],
|
|
});
|
|
|
|
const sx = delta / s;
|
|
const sy = s;
|
|
if (sx !== 1 || sy !== 1) {
|
|
decomposition.push({ name: 'scale', data: [sx, sy] });
|
|
}
|
|
|
|
const ac_plus_bd = a * c + b * d;
|
|
if (ac_plus_bd) {
|
|
decomposition.push({
|
|
name: 'skewY',
|
|
data: [mth.deg(Math.atan(ac_plus_bd / (c * c + d * d)))],
|
|
});
|
|
}
|
|
|
|
return decomposition;
|
|
};
|
|
|
|
/**
|
|
* Convert translate(tx,ty)rotate(a) to rotate(a,cx,cy).
|
|
* @param {number} tx
|
|
* @param {number} ty
|
|
* @param {number} a
|
|
* @returns {TransformItem}
|
|
*/
|
|
const mergeTranslateAndRotate = (tx, ty, a) => {
|
|
// From https://www.w3.org/TR/SVG11/coords.html#TransformAttribute:
|
|
// We have translate(tx,ty) rotate(a). This is equivalent to [cos(a) sin(a) -sin(a) cos(a) tx ty].
|
|
//
|
|
// rotate(a,cx,cy) is equivalent to translate(cx, cy) rotate(a) translate(-cx, -cy).
|
|
// Multiplying the right side gives the matrix
|
|
// [cos(a) sin(a) -sin(a) cos(a)
|
|
// -cx * cos(a) + cy * sin(a) + cx
|
|
// -cx * sin(a) - cy * cos(a) + cy
|
|
// ]
|
|
//
|
|
// We need cx and cy such that
|
|
// tx = -cx * cos(a) + cy * sin(a) + cx
|
|
// ty = -cx * sin(a) - cy * cos(a) + cy
|
|
//
|
|
// Solving these for cx and cy gives
|
|
// cy = (d * ty + e * tx)/(d^2 + e^2)
|
|
// cx = (tx - e * cy) / d
|
|
// where d = 1 - cos(a) and e = sin(a)
|
|
|
|
const rotationAngleRads = mth.rad(a);
|
|
const d = 1 - Math.cos(rotationAngleRads);
|
|
const e = Math.sin(rotationAngleRads);
|
|
const cy = (d * ty + e * tx) / (d * d + e * e);
|
|
const cx = (tx - e * cy) / d;
|
|
return { name: 'rotate', data: [a, cx, cy] };
|
|
};
|
|
|
|
/**
|
|
* @param {TransformItem} t
|
|
* @returns {Boolean}
|
|
*/
|
|
const isIdentityTransform = (t) => {
|
|
switch (t.name) {
|
|
case 'rotate':
|
|
case 'skewX':
|
|
case 'skewY':
|
|
return t.data[0] === 0;
|
|
case 'scale':
|
|
return t.data[0] === 1 && t.data[1] === 1;
|
|
case 'translate':
|
|
return t.data[0] === 0 && t.data[1] === 0;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
/**
|
|
* Optimize matrix of simple transforms.
|
|
* @param {TransformItem[]} roundedTransforms
|
|
* @param {TransformItem[]} rawTransforms
|
|
* @returns {TransformItem[]}
|
|
*/
|
|
const optimize = (roundedTransforms, rawTransforms) => {
|
|
const optimizedTransforms = [];
|
|
|
|
for (let index = 0; index < roundedTransforms.length; index++) {
|
|
const roundedTransform = roundedTransforms[index];
|
|
|
|
// Don't include any identity transforms.
|
|
if (isIdentityTransform(roundedTransform)) {
|
|
continue;
|
|
}
|
|
const data = roundedTransform.data;
|
|
switch (roundedTransform.name) {
|
|
case 'rotate':
|
|
switch (data[0]) {
|
|
case 180:
|
|
case -180:
|
|
{
|
|
// If the next element is a scale, invert it, and don't add the rotate to the optimized array.
|
|
const next = roundedTransforms[index + 1];
|
|
if (next && next.name === 'scale') {
|
|
optimizedTransforms.push(
|
|
createScaleTransform(next.data.map((v) => -v)),
|
|
);
|
|
index++;
|
|
} else {
|
|
// Otherwise replace the rotate with a scale(-1).
|
|
optimizedTransforms.push({
|
|
name: 'scale',
|
|
data: [-1],
|
|
});
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
optimizedTransforms.push({
|
|
name: 'rotate',
|
|
data: data.slice(0, data[1] || data[2] ? 3 : 1),
|
|
});
|
|
break;
|
|
|
|
case 'scale':
|
|
optimizedTransforms.push(createScaleTransform(data));
|
|
break;
|
|
|
|
case 'skewX':
|
|
case 'skewY':
|
|
optimizedTransforms.push({
|
|
name: roundedTransform.name,
|
|
data: [data[0]],
|
|
});
|
|
break;
|
|
|
|
case 'translate':
|
|
{
|
|
// If the next item is a rotate(a,0,0), merge the translate and rotate.
|
|
// If the rotation angle is +/-180, assume it will be optimized out, and don't do the merge.
|
|
const next = roundedTransforms[index + 1];
|
|
if (
|
|
next &&
|
|
next.name === 'rotate' &&
|
|
next.data[0] !== 180 &&
|
|
next.data[0] !== -180 &&
|
|
next.data[0] !== 0 &&
|
|
next.data[1] === 0 &&
|
|
next.data[2] === 0
|
|
) {
|
|
// Use the un-rounded data to do the merge.
|
|
const data = rawTransforms[index].data;
|
|
optimizedTransforms.push(
|
|
mergeTranslateAndRotate(
|
|
data[0],
|
|
data[1],
|
|
rawTransforms[index + 1].data[0],
|
|
),
|
|
);
|
|
// Skip over the rotate.
|
|
index++;
|
|
continue;
|
|
}
|
|
}
|
|
optimizedTransforms.push({
|
|
name: 'translate',
|
|
data: data.slice(0, data[1] ? 2 : 1),
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If everything was optimized out, return identity transform scale(1).
|
|
return optimizedTransforms.length
|
|
? optimizedTransforms
|
|
: [{ name: 'scale', data: [1] }];
|
|
};
|
|
|
|
/**
|
|
* @param {number[]} data
|
|
* @returns {TransformItem}
|
|
*/
|
|
const createScaleTransform = (data) => {
|
|
const scaleData = data.slice(0, data[0] === data[1] ? 1 : 2);
|
|
return {
|
|
name: 'scale',
|
|
data: scaleData,
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Decompose matrix into simple transforms and optimize.
|
|
* @param {TransformItem} origMatrix
|
|
* @param {TransformParams} params
|
|
* @returns {TransformItem[]}
|
|
*/
|
|
export const matrixToTransform = (origMatrix, params) => {
|
|
const decomposed = getDecompositions(origMatrix);
|
|
|
|
let shortest;
|
|
let shortestLen = Number.MAX_VALUE;
|
|
|
|
for (const decomposition of decomposed) {
|
|
// Make a copy of the decomposed matrix, and round all data. We need to keep the original decomposition,
|
|
// at full precision, to perform some optimizations.
|
|
const roundedTransforms = decomposition.map((transformItem) => {
|
|
const transformCopy = {
|
|
name: transformItem.name,
|
|
data: [...transformItem.data],
|
|
};
|
|
return roundTransform(transformCopy, params);
|
|
});
|
|
|
|
const optimized = optimize(roundedTransforms, decomposition);
|
|
const len = js2transform(optimized, params).length;
|
|
if (len < shortestLen) {
|
|
shortest = optimized;
|
|
shortestLen = len;
|
|
}
|
|
}
|
|
|
|
return shortest ?? [origMatrix];
|
|
};
|
|
|
|
/**
|
|
* Convert transform to the matrix data.
|
|
*
|
|
* @type {(transform: TransformItem) => number[] }
|
|
*/
|
|
const transformToMatrix = (transform) => {
|
|
if (transform.name === 'matrix') {
|
|
return transform.data;
|
|
}
|
|
switch (transform.name) {
|
|
case 'translate':
|
|
// [1, 0, 0, 1, tx, ty]
|
|
return [1, 0, 0, 1, transform.data[0], transform.data[1] || 0];
|
|
case 'scale':
|
|
// [sx, 0, 0, sy, 0, 0]
|
|
return [
|
|
transform.data[0],
|
|
0,
|
|
0,
|
|
transform.data[1] ?? transform.data[0],
|
|
0,
|
|
0,
|
|
];
|
|
case 'rotate':
|
|
// [cos(a), sin(a), -sin(a), cos(a), x, y]
|
|
var cos = mth.cos(transform.data[0]),
|
|
sin = mth.sin(transform.data[0]),
|
|
cx = transform.data[1] || 0,
|
|
cy = transform.data[2] || 0;
|
|
return [
|
|
cos,
|
|
sin,
|
|
-sin,
|
|
cos,
|
|
(1 - cos) * cx + sin * cy,
|
|
(1 - cos) * cy - sin * cx,
|
|
];
|
|
case 'skewX':
|
|
// [1, 0, tan(a), 1, 0, 0]
|
|
return [1, 0, mth.tan(transform.data[0]), 1, 0, 0];
|
|
case 'skewY':
|
|
// [1, tan(a), 0, 1, 0, 0]
|
|
return [1, mth.tan(transform.data[0]), 0, 1, 0, 0];
|
|
default:
|
|
throw Error(`Unknown transform ${transform.name}`);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it
|
|
* by the transformation matrix and use a singular value decomposition to represent in a form
|
|
* rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ.
|
|
* SVD is being done with the formulae provided by Wolfram|Alpha (svd {{m0, m2}, {m1, m3}})
|
|
*
|
|
* @type {(
|
|
* cursor: [x: number, y: number],
|
|
* arc: number[],
|
|
* transform: number[]
|
|
* ) => number[]}
|
|
*/
|
|
export const transformArc = (cursor, arc, transform) => {
|
|
const x = arc[5] - cursor[0];
|
|
const y = arc[6] - cursor[1];
|
|
let a = arc[0];
|
|
let b = arc[1];
|
|
const rot = (arc[2] * Math.PI) / 180;
|
|
const cos = Math.cos(rot);
|
|
const sin = Math.sin(rot);
|
|
// skip if radius is 0
|
|
if (a > 0 && b > 0) {
|
|
let h =
|
|
Math.pow(x * cos + y * sin, 2) / (4 * a * a) +
|
|
Math.pow(y * cos - x * sin, 2) / (4 * b * b);
|
|
if (h > 1) {
|
|
h = Math.sqrt(h);
|
|
a *= h;
|
|
b *= h;
|
|
}
|
|
}
|
|
const ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0];
|
|
const m = multiplyTransformMatrices(transform, ellipse);
|
|
// Decompose the new ellipse matrix
|
|
const lastCol = m[2] * m[2] + m[3] * m[3];
|
|
const squareSum = m[0] * m[0] + m[1] * m[1] + lastCol;
|
|
const root =
|
|
Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]);
|
|
|
|
if (!root) {
|
|
// circle
|
|
arc[0] = arc[1] = Math.sqrt(squareSum / 2);
|
|
arc[2] = 0;
|
|
} else {
|
|
const majorAxisSqr = (squareSum + root) / 2;
|
|
const minorAxisSqr = (squareSum - root) / 2;
|
|
const major = Math.abs(majorAxisSqr - lastCol) > 1e-6;
|
|
const sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol;
|
|
const rowsSum = m[0] * m[2] + m[1] * m[3];
|
|
const term1 = m[0] * sub + m[2] * rowsSum;
|
|
const term2 = m[1] * sub + m[3] * rowsSum;
|
|
arc[0] = Math.sqrt(majorAxisSqr);
|
|
arc[1] = Math.sqrt(minorAxisSqr);
|
|
arc[2] =
|
|
(((major ? term2 < 0 : term1 > 0) ? -1 : 1) *
|
|
Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) *
|
|
180) /
|
|
Math.PI;
|
|
}
|
|
|
|
if (transform[0] < 0 !== transform[3] < 0) {
|
|
// Flip the sweep flag if coordinates are being flipped horizontally XOR vertically
|
|
arc[4] = 1 - arc[4];
|
|
}
|
|
|
|
return arc;
|
|
};
|
|
|
|
/**
|
|
* Multiply transformation matrices.
|
|
*
|
|
* @type {(a: number[], b: number[]) => number[]}
|
|
*/
|
|
const multiplyTransformMatrices = (a, b) => {
|
|
return [
|
|
a[0] * b[0] + a[2] * b[1],
|
|
a[1] * b[0] + a[3] * b[1],
|
|
a[0] * b[2] + a[2] * b[3],
|
|
a[1] * b[2] + a[3] * b[3],
|
|
a[0] * b[4] + a[2] * b[5] + a[4],
|
|
a[1] * b[4] + a[3] * b[5] + a[5],
|
|
];
|
|
};
|
|
|
|
/**
|
|
* @type {(transform: TransformItem, params: TransformParams) => TransformItem}
|
|
*/
|
|
export const roundTransform = (transform, params) => {
|
|
switch (transform.name) {
|
|
case 'translate':
|
|
transform.data = floatRound(transform.data, params);
|
|
break;
|
|
case 'rotate':
|
|
transform.data = [
|
|
...degRound(transform.data.slice(0, 1), params),
|
|
...floatRound(transform.data.slice(1), params),
|
|
];
|
|
break;
|
|
case 'skewX':
|
|
case 'skewY':
|
|
transform.data = degRound(transform.data, params);
|
|
break;
|
|
case 'scale':
|
|
transform.data = transformRound(transform.data, params);
|
|
break;
|
|
case 'matrix':
|
|
transform.data = [
|
|
...transformRound(transform.data.slice(0, 4), params),
|
|
...floatRound(transform.data.slice(4), params),
|
|
];
|
|
break;
|
|
}
|
|
return transform;
|
|
};
|
|
|
|
/**
|
|
* @type {(data: number[], params: TransformParams) => number[]}
|
|
*/
|
|
const degRound = (data, params) => {
|
|
if (
|
|
params.degPrecision != null &&
|
|
params.degPrecision >= 1 &&
|
|
params.floatPrecision < 20
|
|
) {
|
|
return smartRound(params.degPrecision, data);
|
|
} else {
|
|
return round(data);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* @type {(data: number[], params: TransformParams) => number[]}
|
|
*/
|
|
const floatRound = (data, params) => {
|
|
if (params.floatPrecision >= 1 && params.floatPrecision < 20) {
|
|
return smartRound(params.floatPrecision, data);
|
|
} else {
|
|
return round(data);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* @type {(data: number[], params: TransformParams) => number[]}
|
|
*/
|
|
const transformRound = (data, params) => {
|
|
if (params.transformPrecision >= 1 && params.floatPrecision < 20) {
|
|
return smartRound(params.transformPrecision, data);
|
|
} else {
|
|
return round(data);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Rounds numbers in array.
|
|
*
|
|
* @type {(data: number[]) => number[]}
|
|
*/
|
|
const round = (data) => {
|
|
return data.map(Math.round);
|
|
};
|
|
|
|
/**
|
|
* Decrease accuracy of floating-point numbers
|
|
* in transforms keeping a specified number of decimals.
|
|
* Smart rounds values like 2.349 to 2.35.
|
|
*
|
|
* @param {number} precision
|
|
* @param {number[]} data
|
|
* @returns {number[]}
|
|
*/
|
|
const smartRound = (precision, data) => {
|
|
for (
|
|
var i = data.length,
|
|
tolerance = +Math.pow(0.1, precision).toFixed(precision);
|
|
i--;
|
|
|
|
) {
|
|
if (toFixed(data[i], precision) !== data[i]) {
|
|
var rounded = +data[i].toFixed(precision - 1);
|
|
data[i] =
|
|
+Math.abs(rounded - data[i]).toFixed(precision + 1) >= tolerance
|
|
? +data[i].toFixed(precision)
|
|
: rounded;
|
|
}
|
|
}
|
|
|
|
return data;
|
|
};
|
|
|
|
/**
|
|
* Convert transforms JS representation to string.
|
|
*
|
|
* @param {TransformItem[]} transformJS
|
|
* @param {TransformParams} params
|
|
* @returns {string}
|
|
*/
|
|
export const js2transform = (transformJS, params) => {
|
|
const transformString = transformJS
|
|
.map((transform) => {
|
|
roundTransform(transform, params);
|
|
return `${transform.name}(${cleanupOutData(transform.data, params)})`;
|
|
})
|
|
.join('');
|
|
|
|
return transformString;
|
|
};
|