1
0
mirror of https://github.com/redis/go-redis.git synced 2025-12-02 06:22:31 +03:00

lazy cluster topology reload

This commit is contained in:
Nedyalko Dyakov
2025-11-24 17:17:22 +02:00
parent fd437cea4f
commit f3e91263a7
3 changed files with 266 additions and 14 deletions

View File

@@ -8905,27 +8905,37 @@ var _ = Describe("Commands", func() {
const key = "latency-monitor-threshold"
old := client.ConfigGet(ctx, key).Val()
client.ConfigSet(ctx, key, "1")
// Use a higher threshold (100ms) to avoid capturing normal operations
// that could cause flakiness due to timing variations
client.ConfigSet(ctx, key, "100")
defer client.ConfigSet(ctx, key, old[key])
result, err := client.Latency(ctx).Result()
Expect(err).NotTo(HaveOccurred())
Expect(len(result)).Should(Equal(0))
err = client.Do(ctx, "DEBUG", "SLEEP", 0.01).Err()
// Use a longer sleep (150ms) to ensure it exceeds the 100ms threshold
err = client.Do(ctx, "DEBUG", "SLEEP", 0.15).Err()
Expect(err).NotTo(HaveOccurred())
result, err = client.Latency(ctx).Result()
Expect(err).NotTo(HaveOccurred())
Expect(len(result)).Should(Equal(1))
Expect(len(result)).Should(BeNumerically(">=", 1))
// reset latency by event name
err = client.LatencyReset(ctx, result[0].Name).Err()
eventName := result[0].Name
err = client.LatencyReset(ctx, eventName).Err()
Expect(err).NotTo(HaveOccurred())
// Verify the specific event was reset (not that all events are gone)
// This avoids flakiness from other operations triggering latency events
result, err = client.Latency(ctx).Result()
Expect(err).NotTo(HaveOccurred())
Expect(len(result)).Should(Equal(0))
for _, event := range result {
if event.Name == eventName {
Fail("Event " + eventName + " should have been reset")
}
}
})
})
})

View File

@@ -146,7 +146,8 @@ type ClusterOptions struct {
// cluster upgrade notifications gracefully and manage connection/pool state
// transitions seamlessly. Requires Protocol: 3 (RESP3) for push notifications.
// If nil, maintnotifications upgrades are in "auto" mode and will be enabled if the server supports it.
// The ClusterClient does not directly work with maintnotifications, it is up to the clients in the Nodes map to work with maintnotifications.
// The ClusterClient supports SMIGRATING and SMIGRATED notifications for cluster state management.
// Individual node clients handle other maintenance notifications (MOVING, MIGRATING, etc.).
MaintNotificationsConfig *maintnotifications.Config
}
@@ -945,8 +946,9 @@ func (c *clusterState) slotNodes(slot int) []*clusterNode {
type clusterStateHolder struct {
load func(ctx context.Context) (*clusterState, error)
state atomic.Value
reloading uint32 // atomic
state atomic.Value
reloading uint32 // atomic
reloadPending uint32 // atomic - set to 1 when reload is requested during active reload
}
func newClusterStateHolder(fn func(ctx context.Context) (*clusterState, error)) *clusterStateHolder {
@@ -965,17 +967,36 @@ func (c *clusterStateHolder) Reload(ctx context.Context) (*clusterState, error)
}
func (c *clusterStateHolder) LazyReload() {
// If already reloading, mark that another reload is pending
if !atomic.CompareAndSwapUint32(&c.reloading, 0, 1) {
atomic.StoreUint32(&c.reloadPending, 1)
return
}
go func() {
defer atomic.StoreUint32(&c.reloading, 0)
_, err := c.Reload(context.Background())
if err != nil {
return
go func() {
for {
_, err := c.Reload(context.Background())
if err != nil {
atomic.StoreUint32(&c.reloading, 0)
return
}
// Clear pending flag after reload completes, before cooldown
// This captures notifications that arrived during the reload
atomic.StoreUint32(&c.reloadPending, 0)
// Wait cooldown period
time.Sleep(200 * time.Millisecond)
// Check if another reload was requested during cooldown
if atomic.LoadUint32(&c.reloadPending) == 0 {
// No pending reload, we're done
atomic.StoreUint32(&c.reloading, 0)
return
}
// Pending reload requested, loop to reload again
}
time.Sleep(200 * time.Millisecond)
}()
}
@@ -1038,6 +1059,26 @@ func NewClusterClient(opt *ClusterOptions) *ClusterClient {
txPipeline: c.processTxPipeline,
})
// Set up SMIGRATED notification handling for cluster state reload
// When a node client receives a SMIGRATED notification, it should trigger
// cluster state reload on the parent ClusterClient
if opt.MaintNotificationsConfig != nil {
c.nodes.OnNewNode(func(nodeClient *Client) {
manager := nodeClient.GetMaintNotificationsManager()
if manager != nil {
manager.SetClusterStateReloadCallback(func(ctx context.Context, hostPort string, slotRanges []string) {
// Log the migration details for now
if internal.LogLevel.InfoOrAbove() {
internal.Logger.Printf(ctx, "cluster: slots %v migrated to %s, reloading cluster state", slotRanges, hostPort)
}
// Currently we reload the entire cluster state
// In the future, this could be optimized to reload only the specific slots
c.state.LazyReload()
})
}
})
}
return c
}

View File

@@ -0,0 +1,201 @@
package redis
import (
"context"
"sync/atomic"
"testing"
"time"
)
// TestLazyReloadQueueBehavior tests that LazyReload properly queues reload requests
func TestLazyReloadQueueBehavior(t *testing.T) {
t.Run("SingleReload", func(t *testing.T) {
var reloadCount atomic.Int32
holder := newClusterStateHolder(func(ctx context.Context) (*clusterState, error) {
reloadCount.Add(1)
time.Sleep(50 * time.Millisecond) // Simulate reload work
return &clusterState{}, nil
})
// Trigger one reload
holder.LazyReload()
// Wait for reload to complete
time.Sleep(300 * time.Millisecond)
if count := reloadCount.Load(); count != 1 {
t.Errorf("Expected 1 reload, got %d", count)
}
})
t.Run("ConcurrentReloadsDeduplication", func(t *testing.T) {
var reloadCount atomic.Int32
holder := newClusterStateHolder(func(ctx context.Context) (*clusterState, error) {
reloadCount.Add(1)
time.Sleep(50 * time.Millisecond) // Simulate reload work
return &clusterState{}, nil
})
// Trigger multiple reloads concurrently
for i := 0; i < 10; i++ {
go holder.LazyReload()
}
// Wait for all to complete
time.Sleep(100 * time.Millisecond)
// Should only reload once (all concurrent calls deduplicated)
if count := reloadCount.Load(); count != 1 {
t.Errorf("Expected 1 reload (deduplication), got %d", count)
}
})
t.Run("PendingReloadDuringCooldown", func(t *testing.T) {
var reloadCount atomic.Int32
holder := newClusterStateHolder(func(ctx context.Context) (*clusterState, error) {
reloadCount.Add(1)
time.Sleep(10 * time.Millisecond) // Simulate reload work
return &clusterState{}, nil
})
// Trigger first reload
holder.LazyReload()
// Wait for reload to complete but still in cooldown
time.Sleep(50 * time.Millisecond)
// Trigger second reload during cooldown period
holder.LazyReload()
// Wait for second reload to complete
time.Sleep(300 * time.Millisecond)
// Should have reloaded twice (second request queued and executed)
if count := reloadCount.Load(); count != 2 {
t.Errorf("Expected 2 reloads (queued during cooldown), got %d", count)
}
})
t.Run("MultiplePendingReloadsCollapsed", func(t *testing.T) {
var reloadCount atomic.Int32
holder := newClusterStateHolder(func(ctx context.Context) (*clusterState, error) {
reloadCount.Add(1)
time.Sleep(10 * time.Millisecond) // Simulate reload work
return &clusterState{}, nil
})
// Trigger first reload
holder.LazyReload()
// Wait for reload to start
time.Sleep(5 * time.Millisecond)
// Trigger multiple reloads during active reload + cooldown
for i := 0; i < 10; i++ {
holder.LazyReload()
time.Sleep(5 * time.Millisecond)
}
// Wait for all to complete
time.Sleep(400 * time.Millisecond)
// Should have reloaded exactly twice:
// 1. Initial reload
// 2. One more reload for all the pending requests (collapsed into one)
if count := reloadCount.Load(); count != 2 {
t.Errorf("Expected 2 reloads (initial + collapsed pending), got %d", count)
}
})
t.Run("ReloadAfterCooldownPeriod", func(t *testing.T) {
var reloadCount atomic.Int32
holder := newClusterStateHolder(func(ctx context.Context) (*clusterState, error) {
reloadCount.Add(1)
time.Sleep(10 * time.Millisecond) // Simulate reload work
return &clusterState{}, nil
})
// Trigger first reload
holder.LazyReload()
// Wait for reload + cooldown to complete
time.Sleep(300 * time.Millisecond)
// Trigger second reload after cooldown
holder.LazyReload()
// Wait for second reload to complete
time.Sleep(300 * time.Millisecond)
// Should have reloaded twice (separate reload cycles)
if count := reloadCount.Load(); count != 2 {
t.Errorf("Expected 2 reloads (separate cycles), got %d", count)
}
})
t.Run("ErrorDuringReload", func(t *testing.T) {
var reloadCount atomic.Int32
var shouldFail atomic.Bool
shouldFail.Store(true)
holder := newClusterStateHolder(func(ctx context.Context) (*clusterState, error) {
reloadCount.Add(1)
if shouldFail.Load() {
return nil, context.DeadlineExceeded
}
return &clusterState{}, nil
})
// Trigger reload that will fail
holder.LazyReload()
// Wait for failed reload
time.Sleep(50 * time.Millisecond)
// Trigger another reload (should succeed now)
shouldFail.Store(false)
holder.LazyReload()
// Wait for successful reload
time.Sleep(300 * time.Millisecond)
// Should have attempted reload twice (first failed, second succeeded)
if count := reloadCount.Load(); count != 2 {
t.Errorf("Expected 2 reload attempts, got %d", count)
}
})
t.Run("CascadingSMigratedScenario", func(t *testing.T) {
// Simulate the real-world scenario: multiple SMIGRATED notifications
// arriving in quick succession from different node clients
var reloadCount atomic.Int32
holder := newClusterStateHolder(func(ctx context.Context) (*clusterState, error) {
reloadCount.Add(1)
time.Sleep(20 * time.Millisecond) // Simulate realistic reload time
return &clusterState{}, nil
})
// Simulate 5 SMIGRATED notifications arriving within 100ms
for i := 0; i < 5; i++ {
go holder.LazyReload()
time.Sleep(20 * time.Millisecond)
}
// Wait for all reloads to complete
time.Sleep(500 * time.Millisecond)
// Should reload at most 2 times:
// 1. First notification triggers reload
// 2. Notifications 2-5 collapse into one pending reload
count := reloadCount.Load()
if count < 1 || count > 2 {
t.Errorf("Expected 1-2 reloads for cascading scenario, got %d", count)
}
})
}