1
0
mirror of https://github.com/redis/go-redis.git synced 2025-12-02 06:22:31 +03:00

fix(pool): correct turn management in putIdleConn to prevent connection leaks (#3626)

* fix(pool): prevent double freeTurn in queuedNewConn

This commit fixes a critical race condition where freeTurn() could be
called twice in the connection pool's queuedNewConn flow, causing turn
counter inconsistency.

Problem:
- When a new connection creation failed in queuedNewConn, both the
  defer handler and the dialing goroutine could call freeTurn()
- This led to turn counter underflow and queue length inconsistency

Solution:
- Modified putIdleConn to return a boolean indicating whether the
  caller needs to call freeTurn()
  - Returns true: connection was put back to pool, caller must free turn
  - Returns false: connection was delivered to a waiting request,
    turn will be freed by the receiving goroutine
- Updated queuedNewConn to only call freeTurn() when putIdleConn
  returns true
- Improved error handling flow in the dialing goroutine

Changes:
- putIdleConn now returns bool instead of void
- Added comprehensive documentation for putIdleConn behavior
- Refactored error handling in queuedNewConn goroutine
- Updated test cases to reflect correct turn state expectations

This ensures each turn is freed exactly once, preventing resource
leaks and maintaining correct queue state.

* fix: sync double freeturn bug fix and context calculation from upstream

Synced from https://github.com/redis/go-redis/tree/ndyakov/freeturn-fix

Changes include:
- Add comprehensive tests for double freeTurn bug detection
- Improve context timeout calculation using min(remaining time, DialTimeout)
- Prevent goroutines from waiting longer than necessary

Co-authored-by: Nedyalko Dyakov <1547186+ndyakov@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

---------

Co-authored-by: Nedyalko Dyakov <nedyalko.dyakov@gmail.com>
Co-authored-by: Nedyalko Dyakov <1547186+ndyakov@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
This commit is contained in:
cyningsun
2025-12-01 18:20:58 +08:00
committed by GitHub
parent daabf5cd2a
commit d4ae523eb8
5 changed files with 442 additions and 27 deletions

View File

@@ -0,0 +1,158 @@
package pool_test
import (
"context"
"net"
"sync/atomic"
"testing"
"time"
"github.com/redis/go-redis/v9/internal/pool"
)
// TestDoubleFreeTurnSimple tests the double-free bug with a simple scenario.
// This test FAILS with the OLD code and PASSES with the NEW code.
//
// Scenario:
// 1. Request A times out, Dial A completes and delivers connection to Request B
// 2. Request B's own Dial B completes later
// 3. With the bug: Dial B frees Request B's turn (even though Request B is using connection A)
// 4. Then Request B calls Put() and frees the turn AGAIN (double-free)
// 5. This allows more concurrent operations than PoolSize permits
//
// Detection method:
// - Try to acquire PoolSize+1 connections after the double-free
// - With the bug: All succeed (pool size violated)
// - With the fix: Only PoolSize succeed
func TestDoubleFreeTurnSimple(t *testing.T) {
ctx := context.Background()
var dialCount atomic.Int32
dialBComplete := make(chan struct{})
requestBGotConn := make(chan struct{})
requestBCalledPut := make(chan struct{})
controlledDialer := func(ctx context.Context) (net.Conn, error) {
count := dialCount.Add(1)
if count == 1 {
// Dial A: takes 150ms
time.Sleep(150 * time.Millisecond)
t.Logf("Dial A completed")
} else if count == 2 {
// Dial B: takes 300ms (longer than Dial A)
time.Sleep(300 * time.Millisecond)
t.Logf("Dial B completed")
close(dialBComplete)
} else {
// Other dials: fast
time.Sleep(10 * time.Millisecond)
}
return newDummyConn(), nil
}
testPool := pool.NewConnPool(&pool.Options{
Dialer: controlledDialer,
PoolSize: 2, // Only 2 concurrent operations allowed
MaxConcurrentDials: 5,
DialTimeout: 1 * time.Second,
PoolTimeout: 1 * time.Second,
})
defer testPool.Close()
// Request A: Short timeout (100ms), will timeout before dial completes (150ms)
go func() {
shortCtx, cancel := context.WithTimeout(ctx, 100*time.Millisecond)
defer cancel()
_, err := testPool.Get(shortCtx)
if err != nil {
t.Logf("Request A: Timed out as expected: %v", err)
}
}()
// Wait for Request A to start
time.Sleep(20 * time.Millisecond)
// Request B: Long timeout, will receive connection from Request A's dial
requestBDone := make(chan struct{})
go func() {
defer close(requestBDone)
longCtx, cancel := context.WithTimeout(ctx, 1*time.Second)
defer cancel()
cn, err := testPool.Get(longCtx)
if err != nil {
t.Errorf("Request B: Should have received connection but got error: %v", err)
return
}
t.Logf("Request B: Got connection from Request A's dial")
close(requestBGotConn)
// Wait for dial B to complete
<-dialBComplete
t.Logf("Request B: Dial B completed")
// Wait a bit to allow Dial B goroutine to finish and call freeTurn()
time.Sleep(100 * time.Millisecond)
// Signal that we're ready for the test to check semaphore state
close(requestBCalledPut)
// Wait for the test to check QueueLen
time.Sleep(200 * time.Millisecond)
t.Logf("Request B: Now calling Put()")
testPool.Put(ctx, cn)
t.Logf("Request B: Put() called")
}()
// Wait for Request B to get the connection
<-requestBGotConn
// Wait for Dial B to complete and freeTurn() to be called
<-requestBCalledPut
// NOW WE'RE IN THE CRITICAL WINDOW
// Request B is holding a connection (from Dial A)
// Dial B has completed and returned (freeTurn() has been called)
// With the bug:
// - Dial B freed Request B's turn (BUG!)
// - QueueLen should be 0
// With the fix:
// - Dial B did NOT free Request B's turn
// - QueueLen should be 1 (Request B still holds the turn)
t.Logf("\n=== CRITICAL CHECK: QueueLen ===")
t.Logf("Request B is holding a connection, Dial B has completed and returned")
queueLen := testPool.QueueLen()
t.Logf("QueueLen: %d", queueLen)
// Wait for Request B to finish
select {
case <-requestBDone:
case <-time.After(1 * time.Second):
t.Logf("Request B timed out")
}
t.Logf("\n=== Results ===")
t.Logf("QueueLen during critical window: %d", queueLen)
t.Logf("Expected with fix: 1 (Request B still holds the turn)")
t.Logf("Expected with bug: 0 (Dial B freed Request B's turn)")
if queueLen == 0 {
t.Errorf("DOUBLE-FREE BUG DETECTED!")
t.Errorf("QueueLen is 0, meaning Dial B freed Request B's turn")
t.Errorf("But Request B is still holding a connection, so its turn should NOT be freed yet")
} else if queueLen == 1 {
t.Logf("✓ CORRECT: QueueLen is 1")
t.Logf("Request B is still holding the turn (will be freed when Request B calls Put())")
} else {
t.Logf("Unexpected QueueLen: %d (expected 1 with fix, 0 with bug)", queueLen)
}
}

View File

@@ -0,0 +1,229 @@
package pool
import (
"context"
"net"
"sync"
"sync/atomic"
"testing"
"time"
)
// TestDoubleFreeTurnBug demonstrates the double freeTurn bug where:
// 1. Dial goroutine creates a connection
// 2. Original waiter times out
// 3. putIdleConn delivers connection to another waiter
// 4. Dial goroutine calls freeTurn() (FIRST FREE)
// 5. Second waiter uses connection and calls Put()
// 6. Put() calls freeTurn() (SECOND FREE - BUG!)
//
// This causes the semaphore to be released twice, allowing more concurrent
// operations than PoolSize allows.
func TestDoubleFreeTurnBug(t *testing.T) {
var dialCount atomic.Int32
var putCount atomic.Int32
// Slow dialer - 150ms per dial
slowDialer := func(ctx context.Context) (net.Conn, error) {
dialCount.Add(1)
select {
case <-time.After(150 * time.Millisecond):
server, client := net.Pipe()
go func() {
defer server.Close()
buf := make([]byte, 1024)
for {
_, err := server.Read(buf)
if err != nil {
return
}
}
}()
return client, nil
case <-ctx.Done():
return nil, ctx.Err()
}
}
opt := &Options{
Dialer: slowDialer,
PoolSize: 10, // Small pool to make bug easier to trigger
MaxConcurrentDials: 10,
MinIdleConns: 0,
PoolTimeout: 100 * time.Millisecond,
DialTimeout: 5 * time.Second,
}
connPool := NewConnPool(opt)
defer connPool.Close()
// Scenario:
// 1. Request A starts dial (100ms timeout - will timeout before dial completes)
// 2. Request B arrives (500ms timeout - will wait in queue)
// 3. Request A times out at 100ms
// 4. Dial completes at 150ms
// 5. putIdleConn delivers connection to Request B
// 6. Dial goroutine calls freeTurn() - FIRST FREE
// 7. Request B uses connection and calls Put()
// 8. Put() calls freeTurn() - SECOND FREE (BUG!)
var wg sync.WaitGroup
// Request A: Short timeout, will timeout before dial completes
wg.Add(1)
go func() {
defer wg.Done()
ctx, cancel := context.WithTimeout(context.Background(), 100*time.Millisecond)
defer cancel()
cn, err := connPool.Get(ctx)
if err != nil {
// Expected to timeout
t.Logf("Request A timed out as expected: %v", err)
} else {
// Should not happen
t.Errorf("Request A should have timed out but got connection")
connPool.Put(ctx, cn)
putCount.Add(1)
}
}()
// Wait a bit for Request A to start dialing
time.Sleep(10 * time.Millisecond)
// Request B: Long timeout, will receive the connection from putIdleConn
wg.Add(1)
go func() {
defer wg.Done()
ctx, cancel := context.WithTimeout(context.Background(), 500*time.Millisecond)
defer cancel()
cn, err := connPool.Get(ctx)
if err != nil {
t.Errorf("Request B should have succeeded but got error: %v", err)
} else {
t.Logf("Request B got connection successfully")
// Use the connection briefly
time.Sleep(50 * time.Millisecond)
connPool.Put(ctx, cn)
putCount.Add(1)
}
}()
wg.Wait()
// Check results
t.Logf("\n=== Results ===")
t.Logf("Dials: %d", dialCount.Load())
t.Logf("Puts: %d", putCount.Load())
// The bug is hard to detect directly without instrumenting freeTurn,
// but we can verify the scenario works correctly:
// - Request A should timeout
// - Request B should succeed and get the connection
// - 1-2 dials may occur (Request A starts one, Request B may start another)
// - 1 put should occur (Request B returning the connection)
if putCount.Load() != 1 {
t.Errorf("Expected 1 put, got %d", putCount.Load())
}
t.Logf("✓ Scenario completed successfully")
t.Logf("Note: The double freeTurn bug would cause semaphore to be released twice,")
t.Logf("allowing more concurrent operations than PoolSize permits.")
t.Logf("With the fix, putIdleConn returns true when delivering to a waiter,")
t.Logf("preventing the dial goroutine from calling freeTurn (waiter will call it later).")
}
// TestDoubleFreeTurnHighConcurrency tests the bug under high concurrency
func TestDoubleFreeTurnHighConcurrency(t *testing.T) {
var dialCount atomic.Int32
var getSuccesses atomic.Int32
var getFailures atomic.Int32
slowDialer := func(ctx context.Context) (net.Conn, error) {
dialCount.Add(1)
select {
case <-time.After(200 * time.Millisecond):
server, client := net.Pipe()
go func() {
defer server.Close()
buf := make([]byte, 1024)
for {
_, err := server.Read(buf)
if err != nil {
return
}
}
}()
return client, nil
case <-ctx.Done():
return nil, ctx.Err()
}
}
opt := &Options{
Dialer: slowDialer,
PoolSize: 20,
MaxConcurrentDials: 20,
MinIdleConns: 0,
PoolTimeout: 100 * time.Millisecond,
DialTimeout: 5 * time.Second,
}
connPool := NewConnPool(opt)
defer connPool.Close()
// Create many requests with varying timeouts
// Some will timeout before dial completes, triggering the putIdleConn delivery path
const numRequests = 100
var wg sync.WaitGroup
for i := 0; i < numRequests; i++ {
wg.Add(1)
go func(id int) {
defer wg.Done()
// Vary timeout: some short (will timeout), some long (will succeed)
timeout := 100 * time.Millisecond
if id%3 == 0 {
timeout = 500 * time.Millisecond
}
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
cn, err := connPool.Get(ctx)
if err != nil {
getFailures.Add(1)
} else {
getSuccesses.Add(1)
time.Sleep(10 * time.Millisecond)
connPool.Put(ctx, cn)
}
}(i)
// Stagger requests
if i%10 == 0 {
time.Sleep(5 * time.Millisecond)
}
}
wg.Wait()
t.Logf("\n=== High Concurrency Results ===")
t.Logf("Requests: %d", numRequests)
t.Logf("Successes: %d", getSuccesses.Load())
t.Logf("Failures: %d", getFailures.Load())
t.Logf("Dials: %d", dialCount.Load())
// Verify that some requests succeeded despite timeouts
// This exercises the putIdleConn delivery path
if getSuccesses.Load() == 0 {
t.Errorf("Expected some successful requests, got 0")
}
t.Logf("✓ High concurrency test completed")
t.Logf("Note: This test exercises the putIdleConn delivery path where the bug occurs")
}

View File

@@ -568,8 +568,7 @@ func (p *ConnPool) queuedNewConn(ctx context.Context) (*Conn, error) {
var err error
defer func() {
if err != nil {
if cn := w.cancel(); cn != nil {
p.putIdleConn(ctx, cn)
if cn := w.cancel(); cn != nil && p.putIdleConn(ctx, cn) {
p.freeTurn()
}
}
@@ -593,14 +592,15 @@ func (p *ConnPool) queuedNewConn(ctx context.Context) (*Conn, error) {
dialCtx := w.getCtxForDial()
cn, cnErr := p.newConn(dialCtx, true)
delivered := w.tryDeliver(cn, cnErr)
if cnErr == nil && delivered {
return
} else if cnErr == nil && !delivered {
p.putIdleConn(dialCtx, cn)
if cnErr != nil {
w.tryDeliver(nil, cnErr) // deliver error to caller, notify connection creation failed
p.freeTurn()
freeTurnCalled = true
} else {
return
}
delivered := w.tryDeliver(cn, cnErr)
if !delivered && p.putIdleConn(dialCtx, cn) {
p.freeTurn()
freeTurnCalled = true
}
@@ -616,14 +616,20 @@ func (p *ConnPool) queuedNewConn(ctx context.Context) (*Conn, error) {
}
}
func (p *ConnPool) putIdleConn(ctx context.Context, cn *Conn) {
// putIdleConn puts a connection back to the pool or passes it to the next waiting request.
//
// It returns true if the connection was put back to the pool,
// which means the turn needs to be freed directly by the caller,
// or false if the connection was passed to the next waiting request,
// which means the turn will be freed by the waiting goroutine after it returns.
func (p *ConnPool) putIdleConn(ctx context.Context, cn *Conn) bool {
for {
w, ok := p.dialsQueue.dequeue()
if !ok {
break
}
if w.tryDeliver(cn, nil) {
return
return false
}
}
@@ -632,12 +638,14 @@ func (p *ConnPool) putIdleConn(ctx context.Context, cn *Conn) {
if p.closed() {
_ = cn.Close()
return
return true
}
// poolSize is increased in newConn
p.idleConns = append(p.idleConns, cn)
p.idleConnsLen.Add(1)
return true
}
func (p *ConnPool) waitTurn(ctx context.Context) error {

View File

@@ -1020,22 +1020,22 @@ var _ = Describe("queuedNewConn", func() {
Expect(reqBErr).NotTo(HaveOccurred(), "Request B should receive Request A's connection")
Expect(reqBConn).NotTo(BeNil())
// CRITICAL CHECK: Turn leak detection
// FIRST CRITICAL CHECK: Turn state after connection delivery
// After Request B receives connection from putIdleConn:
// - Request A's turn SHOULD be released (via freeTurn)
// - Request B's turn is still held (will release on Put)
// Expected QueueLen: 1 (only Request B)
// If Bug exists (missing freeTurn): QueueLen: 2 (Request A's turn leaked)
time.Sleep(100 * time.Millisecond) // Allow time for turn release
currentQueueLen := testPool.QueueLen()
// - Request A's turn is held by Request B (connection delivered)
// - Request B's turn is still held by Request B's dial to complete the connection
// Expected QueueLen: 2 (Request B holding turn for connection usage)
time.Sleep(100 * time.Millisecond) // ~300ms total
Expect(testPool.QueueLen()).To(Equal(2))
Expect(currentQueueLen).To(Equal(1),
"QueueLen should be 1 (only Request B holding turn). "+
"If it's 2, Request A's turn leaked due to missing freeTurn()")
// SECOND CRITICAL CHECK: Turn release after dial completion
// Wait for Request B's dial result to complete
time.Sleep(300 * time.Millisecond) // ~600ms total
Expect(testPool.QueueLen()).To(Equal(1))
// Cleanup
// Cleanup and verify turn is released
testPool.Put(ctx, reqBConn)
Eventually(func() int { return testPool.QueueLen() }, "500ms").Should(Equal(0))
Eventually(func() int { return testPool.QueueLen() }, "600ms").Should(Equal(0))
})
})

View File

@@ -399,10 +399,30 @@ func (c *baseClient) initConn(ctx context.Context, cn *pool.Conn) error {
if finalState == pool.StateInitializing {
// Another goroutine is initializing - WAIT for it to complete
// Use AwaitAndTransition to wait for IDLE or IN_USE state
// use DialTimeout as the timeout for the wait
waitCtx, cancel := context.WithTimeout(ctx, c.opt.DialTimeout)
defer cancel()
// Use a context with timeout = min(remaining command timeout, DialTimeout)
// This prevents waiting too long while respecting the caller's deadline
var waitCtx context.Context
var cancel context.CancelFunc
dialTimeout := c.opt.DialTimeout
if cmdDeadline, hasCmdDeadline := ctx.Deadline(); hasCmdDeadline {
// Calculate remaining time until command deadline
remainingTime := time.Until(cmdDeadline)
// Use the minimum of remaining time and DialTimeout
if remainingTime < dialTimeout {
// Command deadline is sooner, use it
waitCtx = ctx
} else {
// DialTimeout is shorter, cap the wait at DialTimeout
waitCtx, cancel = context.WithTimeout(ctx, dialTimeout)
}
} else {
// No command deadline, use DialTimeout to prevent waiting indefinitely
waitCtx, cancel = context.WithTimeout(ctx, dialTimeout)
}
if cancel != nil {
defer cancel()
}
finalState, err := cn.GetStateMachine().AwaitAndTransition(
waitCtx,