Warn users of the planned deprecation of 'docker commit --run', and hide it from the docs and usage message. The option continues to work. Note that an alternative to 'commit --run' is being implemented but is not yet available. We are printing the warning anyway because on the basis that it never hurts to give more advance warning. The 'commit --run' flag is a leftover from the very early days of Docker, and has several problems: 1) It is very user unfriendly. You have to pass a literal json dict which is poorly documented and changes regularly (see PortSpecs vs ExposedPorts). The merge behavior is not clear and also changes regularly. it's not possible to unset a value. 2) It overlaps with the Dockerfile syntax. There are 2 ways to set a default command, expose a port or change an env variable. Some things can be done in a Dockerfile but not in --run. Some things can be done in --run but not in a Dockerfile. It would be better to push a single syntax, allow using it both in a file and via the command line, and make improvements in a single place. 3) It exposes data structures which should not be publicly exposed. There are several planned improvements to Docker which require moving around the content and schema of the various Config, Image and Container structures. The less of those we expose in public interfaces, the easier it is to move things around without a reverse compatibility nightmare. Docker-DCO-1.1-Signed-off-by: Solomon Hykes <solomon@docker.com> (github: shykes)
17 KiB
- title
- Dockerfile Reference
- description
- Dockerfiles use a simple DSL which allows you to automate the steps you would normally manually take to create an image.
- keywords
- builder, docker, Dockerfile, automation, image creation
Dockerfile Reference
Docker can act as a builder and read instructions
from a text Dockerfile to automate the steps you would
otherwise take manually to create an image. Executing
docker build will run your steps and commit them along the
way, giving you a final image.
Usage
To build <cli_build> an image from a source
repository, create a description file called Dockerfile at
the root of your repository. This file will describe the steps to
assemble the image.
Then call docker build with the path of your source
repository as argument (for example, .):
sudo docker build .
The path to the source repository defines where to find the context of the build. The build is run by the Docker daemon, not by the CLI, so the whole context must be transferred to the daemon. The Docker CLI reports "Uploading context" when the context is sent to the daemon.
You can specify a repository and tag at which to save the new image if the build succeeds:
sudo docker build -t shykes/myapp .
The Docker daemon will run your steps one-by-one, committing the result to a new image if necessary, before finally outputting the ID of your new image. The Docker daemon will automatically clean up the context you sent.
Note that each instruction is run independently, and causes a new
image to be created - so RUN cd /tmp will not have any
effect on the next instructions.
Whenever possible, Docker will re-use the intermediate images,
accelerating docker build significantly (indicated by
Using cache):
$ docker build -t SvenDowideit/ambassador .
Uploading context 10.24 kB
Uploading context
Step 1 : FROM docker-ut
---> cbba202fe96b
Step 2 : MAINTAINER SvenDowideit@home.org.au
---> Using cache
---> 51182097be13
Step 3 : CMD env | grep _TCP= | sed 's/.*_PORT_\([0-9]*\)_TCP=tcp:\/\/\(.*\):\(.*\)/socat TCP4-LISTEN:\1,fork,reuseaddr TCP4:\2:\3 \&/' | sh && top
---> Using cache
---> 1a5ffc17324d
Successfully built 1a5ffc17324dWhen you're done with your build, you're ready to look into image_push.
Format
Here is the format of the Dockerfile:
# Comment
INSTRUCTION arguments
The Instruction is not case-sensitive, however convention is for them to be UPPERCASE in order to distinguish them from arguments more easily.
Docker evaluates the instructions in a Dockerfile in order.
The first instruction must be `FROM` in order to
specify the base_image_def from which you are building.
Docker will treat lines that begin with # as a
comment. A # marker anywhere else in the line will be
treated as an argument. This allows statements like:
# Comment
RUN echo 'we are running some # of cool things'
Here is the set of instructions you can use in a
Dockerfile for building images.
FROM
FROM <image>
Or
FROM <image>:<tag>
The FROM instruction sets the base_image_def for subsequent
instructions. As such, a valid Dockerfile must have FROM as
its first instruction. The image can be any valid image -- it is
especially easy to start by pulling an image from the
using_public_repositories.
FROM must be the first non-comment instruction in the
Dockerfile.
FROM can appear multiple times within a single
Dockerfile in order to create multiple images. Simply make a note of the
last image id output by the commit before each new FROM
command.
If no tag is given to the FROM instruction,
latest is assumed. If the used tag does not exist, an error
will be returned.
MAINTAINER
MAINTAINER <name>
The MAINTAINER instruction allows you to set the
Author field of the generated images.
RUN
RUN has 2 forms:
RUN <command>(the command is run in a shell -/bin/sh -c)RUN ["executable", "param1", "param2"](exec form)
The RUN instruction will execute any commands in a new
layer on top of the current image and commit the results. The resulting
committed image will be used for the next step in the Dockerfile.
Layering RUN instructions and generating commits
conforms to the core concepts of Docker where commits are cheap and
containers can be created from any point in an image's history, much
like source control.
The exec form makes it possible to avoid shell string
munging, and to RUN commands using a base image that does
not contain /bin/sh.
Known Issues (RUN)
783is about file permissions problems that can occur when using the AUFS file system. You might notice it during an attempt torma file, for example. The issue describes a workaround.2424Locale will not be set automatically.
CMD
CMD has three forms:
CMD ["executable","param1","param2"](like an exec, preferred form)CMD ["param1","param2"](as default parameters to ENTRYPOINT)CMD command param1 param2(as a shell)
There can only be one CMD in a Dockerfile. If you list more than one CMD then only the last CMD will take effect.
The main purpose of a CMD is to provide defaults for an executing container. These defaults can include an executable, or they can omit the executable, in which case you must specify an ENTRYPOINT as well.
When used in the shell or exec formats, the CMD
instruction sets the command to be executed when running the image.
If you use the shell form of the CMD, then the
<command> will execute in
/bin/sh -c:
FROM ubuntu
CMD echo "This is a test." | wc -If you want to run your <command>
without a shell then you must express the command as a
JSON array and give the full path to the executable. This array
form is the preferred format of CMD. Any additional parameters
must be individually expressed as strings in the array:
FROM ubuntu
CMD ["/usr/bin/wc","--help"]If you would like your container to run the same executable every
time, then you should consider using ENTRYPOINT in
combination with CMD. See dockerfile_entrypoint.
If the user specifies arguments to docker run then they
will override the default specified in CMD.
Note
Don't confuse RUN with CMD.
RUN actually runs a command and commits the result;
CMD does not execute anything at build time, but specifies
the intended command for the image.
EXPOSE
EXPOSE <port> [<port>...]
The EXPOSE instructions informs Docker that the
container will listen on the specified network ports at runtime. Docker
uses this information to interconnect containers using links (see links <working_with_links_names>), and to setup
port redirection on the host system (see port_redirection).
ENV
ENV <key> <value>
The ENV instruction sets the environment variable
<key> to the value <value>. This
value will be passed to all future RUN instructions. This
is functionally equivalent to prefixing the command with
<key>=<value>
The environment variables set using ENV will persist
when a container is run from the resulting image. You can view the
values using docker inspect, and change them using
docker run --env <key>=<value>.
Note
One example where this can cause unexpected consequenses, is setting
ENV DEBIAN_FRONTEND noninteractive. Which will persist when
the container is run interactively; for example:
docker run -t -i image bash
ADD
ADD <src> <dest>
The ADD instruction will copy new files from <src>
and add them to the container's filesystem at path
<dest>.
<src> must be the path to a file or directory
relative to the source directory being built (also called the
context of the build) or a remote file URL.
<dest> is the absolute path to which the source
will be copied inside the destination container.
All new files and directories are created with mode 0755, uid and gid 0.
Note
if you build using STDIN (docker build - < somefile),
there is no build context, so the Dockerfile can only contain an URL
based ADD statement.
Note
if your URL files are protected using authentication, you will need
to use an RUN wget , RUN curl or other tool
from within the container as ADD does not support authentication.
The copy obeys the following rules:
The
<src>path must be inside the context of the build; you cannotADD ../something /something, because the first step of adocker buildis to send the context directory (and subdirectories) to the docker daemon.If
<src>is a URL and<dest>does not end with a trailing slash, then a file is downloaded from the URL and copied to<dest>.If
<src>is a URL and<dest>does end with a trailing slash, then the filename is inferred from the URL and the file is downloaded to<dest>/<filename>. For instance,ADD http://example.com/foobar /would create the file/foobar. The URL must have a nontrivial path so that an appropriate filename can be discovered in this case (http://example.comwill not work).If
<src>is a directory, the entire directory is copied, including filesystem metadata.If
<src>is a local tar archive in a recognized compression format (identity, gzip, bzip2 or xz) then it is unpacked as a directory. Resources from remote URLs are not decompressed.When a directory is copied or unpacked, it has the same behavior as
tar -x: the result is the union of- whatever existed at the destination path and
- the contents of the source tree,
with conflicts resolved in favor of "2." on a file-by-file basis.
If
<src>is any other kind of file, it is copied individually along with its metadata. In this case, if<dest>ends with a trailing slash/, it will be considered a directory and the contents of<src>will be written at<dest>/base(<src>).If
<dest>does not end with a trailing slash, it will be considered a regular file and the contents of<src>will be written at<dest>.If
<dest>doesn't exist, it is created along with all missing directories in its path.
ENTRYPOINT
ENTRYPOINT has two forms:
ENTRYPOINT ["executable", "param1", "param2"](like an exec, preferred form)ENTRYPOINT command param1 param2(as a shell)
There can only be one ENTRYPOINT in a Dockerfile. If you
have more than one ENTRYPOINT, then only the last one in
the Dockerfile will have an effect.
An ENTRYPOINT helps you to configure a container that
you can run as an executable. That is, when you specify an
ENTRYPOINT, then the whole container runs as if it was just
that executable.
The ENTRYPOINT instruction adds an entry command that
will not be overwritten when arguments are passed to
docker run, unlike the behavior of CMD. This
allows arguments to be passed to the entrypoint. i.e.
docker run <image> -d will pass the "-d" argument to
the ENTRYPOINT.
You can specify parameters either in the ENTRYPOINT JSON array (as in
"like an exec" above), or by using a CMD statement. Parameters in the
ENTRYPOINT will not be overridden by the docker run
arguments, but parameters specified via CMD will be overridden by
docker run arguments.
Like a CMD, you can specify a plain string for the
ENTRYPOINT and it will execute in /bin/sh -c:
FROM ubuntu
ENTRYPOINT wc -l -For example, that Dockerfile's image will always take stdin as input ("-") and print the number of lines ("-l"). If you wanted to make this optional but default, you could use a CMD:
FROM ubuntu
CMD ["-l", "-"]
ENTRYPOINT ["/usr/bin/wc"]VOLUME
VOLUME ["/data"]
The VOLUME instruction will create a mount point with
the specified name and mark it as holding externally mounted volumes
from native host or other containers. For more information/examples and
mounting instructions via docker client, refer to volume_def documentation.
USER
USER daemon
The USER instruction sets the username or UID to use
when running the image.
WORKDIR
WORKDIR /path/to/workdir
The WORKDIR instruction sets the working directory for
the RUN, CMD and ENTRYPOINT
Dockerfile commands that follow it.
It can be used multiple times in the one Dockerfile. If a relative
path is provided, it will be relative to the path of the previous
WORKDIR instruction. For example:
WORKDIR /a WORKDIR b WORKDIR c RUN pwd
The output of the final pwd command in this Dockerfile
would be /a/b/c.
ONBUILD
ONBUILD [INSTRUCTION]
The ONBUILD instruction adds to the image a "trigger"
instruction to be executed at a later time, when the image is used as
the base for another build. The trigger will be executed in the context
of the downstream build, as if it had been inserted immediately after
the FROM instruction in the downstream Dockerfile.
Any build instruction can be registered as a trigger.
This is useful if you are building an image which will be used as a base to build other images, for example an application build environment or a daemon which may be customized with user-specific configuration.
For example, if your image is a reusable python application builder, it will require application source code to be added in a particular directory, and it might require a build script to be called after that. You can't just call ADD and RUN now, because you don't yet have access to the application source code, and it will be different for each application build. You could simply provide application developers with a boilerplate Dockerfile to copy-paste into their application, but that is inefficient, error-prone and difficult to update because it mixes with application-specific code.
The solution is to use ONBUILD to register in advance instructions to run later, during the next build stage.
Here's how it works:
- When it encounters an ONBUILD instruction, the builder adds a trigger to the metadata of the image being built. The instruction does not otherwise affect the current build.
- At the end of the build, a list of all triggers is stored in the image manifest, under the key OnBuild. They can be inspected with docker inspect.
- Later the image may be used as a base for a new build, using the FROM instruction. As part of processing the FROM instruction, the downstream builder looks for ONBUILD triggers, and executes them in the same order they were registered. If any of the triggers fail, the FROM instruction is aborted which in turn causes the build to fail. If all triggers succeed, the FROM instruction completes and the build continues as usual.
- Triggers are cleared from the final image after being executed. In other words they are not inherited by "grand-children" builds.
For example you might add something like this:
[...]
ONBUILD ADD . /app/src
ONBUILD RUN /usr/local/bin/python-build --dir /app/src
[...]Warning
Chaining ONBUILD instructions using ONBUILD ONBUILD isn't allowed.
Warning
ONBUILD may not trigger FROM or MAINTAINER instructions.
Dockerfile Examples
# Nginx
#
# VERSION 0.0.1
FROM ubuntu
MAINTAINER Guillaume J. Charmes <guillaume@docker.com>
# make sure the package repository is up to date
RUN echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/sources.list
RUN apt-get update
RUN apt-get install -y inotify-tools nginx apache2 openssh-server# Firefox over VNC
#
# VERSION 0.3
FROM ubuntu
# make sure the package repository is up to date
RUN echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/sources.list
RUN apt-get update
# Install vnc, xvfb in order to create a 'fake' display and firefox
RUN apt-get install -y x11vnc xvfb firefox
RUN mkdir /.vnc
# Setup a password
RUN x11vnc -storepasswd 1234 ~/.vnc/passwd
# Autostart firefox (might not be the best way, but it does the trick)
RUN bash -c 'echo "firefox" >> /.bashrc'
EXPOSE 5900
CMD ["x11vnc", "-forever", "-usepw", "-create"]# Multiple images example
#
# VERSION 0.1
FROM ubuntu
RUN echo foo > bar
# Will output something like ===> 907ad6c2736f
FROM ubuntu
RUN echo moo > oink
# Will output something like ===> 695d7793cbe4
# You'll now have two images, 907ad6c2736f with /bar, and 695d7793cbe4 with
# /oink.