1
0
mirror of https://github.com/matrix-org/matrix-authentication-service.git synced 2025-11-24 23:01:05 +03:00
Files
authentication-service/crates/keystore/src/lib.rs
Quentin Gliech 3798f25f7d Fix rustdoc lints
2023-01-18 12:25:49 +01:00

628 lines
21 KiB
Rust

// Copyright 2022 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! A crate to store keys which can then be used to sign and verify JWTs.
#![forbid(unsafe_code)]
#![deny(clippy::all, clippy::str_to_string, rustdoc::broken_intra_doc_links)]
#![warn(clippy::pedantic)]
use std::{ops::Deref, sync::Arc};
use der::{zeroize::Zeroizing, Decode};
use elliptic_curve::pkcs8::EncodePrivateKey;
use mas_iana::jose::{JsonWebKeyType, JsonWebSignatureAlg};
pub use mas_jose::jwk::{JsonWebKey, JsonWebKeySet};
use mas_jose::{
jwa::{AsymmetricSigningKey, AsymmetricVerifyingKey},
jwk::{JsonWebKeyPublicParameters, ParametersInfo, PublicJsonWebKeySet},
};
use pem_rfc7468::PemLabel;
use pkcs1::EncodeRsaPrivateKey;
use pkcs8::{AssociatedOid, PrivateKeyInfo};
use rand::{CryptoRng, RngCore};
use rsa::BigUint;
use sec1::EncodeEcPrivateKey;
use thiserror::Error;
mod encrypter;
pub use aead;
pub use self::encrypter::{DecryptError, Encrypter};
/// Error type used when a key could not be loaded
#[derive(Debug, Error)]
pub enum LoadError {
#[error("Failed to read PEM document")]
Pem {
#[from]
inner: pem_rfc7468::Error,
},
#[error("Invalid RSA private key")]
Rsa {
#[from]
inner: rsa::errors::Error,
},
#[error("Failed to decode PKCS1-encoded RSA key")]
Pkcs1 {
#[from]
inner: pkcs1::Error,
},
#[error("Failed to decode PKCS8-encoded key")]
Pkcs8 {
#[from]
inner: pkcs8::Error,
},
#[error(transparent)]
Der {
#[from]
inner: der::Error,
},
#[error(transparent)]
Spki {
#[from]
inner: spki::Error,
},
#[error("Unknown Elliptic Curve OID {oid}")]
UnknownEllipticCurveOid { oid: const_oid::ObjectIdentifier },
#[error("Unknown algorithm OID {oid}")]
UnknownAlgorithmOid { oid: const_oid::ObjectIdentifier },
#[error("Unsupported PEM label {label:?}")]
UnsupportedPemLabel { label: String },
#[error("Missing parameters in SEC1 key")]
MissingSec1Parameters,
#[error("Missing curve name in SEC1 parameters")]
MissingSec1CurveName,
#[error("Key is encrypted and no password was provided")]
Encrypted,
#[error("Key is not encrypted but a password was provided")]
Unencrypted,
#[error("Unsupported format")]
UnsupportedFormat,
#[error("Could not decode encrypted payload")]
InEncrypted {
#[source]
inner: Box<LoadError>,
},
}
impl LoadError {
/// Returns `true` if the load error is [`Encrypted`].
///
/// [`Encrypted`]: LoadError::Encrypted
#[must_use]
pub fn is_encrypted(&self) -> bool {
matches!(self, Self::Encrypted)
}
/// Returns `true` if the load error is [`Unencrypted`].
///
/// [`Unencrypted`]: LoadError::Unencrypted
#[must_use]
pub fn is_unencrypted(&self) -> bool {
matches!(self, Self::Unencrypted)
}
}
/// A single private key
#[non_exhaustive]
#[derive(Debug)]
pub enum PrivateKey {
Rsa(Box<rsa::RsaPrivateKey>),
EcP256(Box<elliptic_curve::SecretKey<p256::NistP256>>),
EcP384(Box<elliptic_curve::SecretKey<p384::NistP384>>),
EcK256(Box<elliptic_curve::SecretKey<k256::Secp256k1>>),
}
/// Error returned when the key can't be used for the requested algorithm
#[derive(Debug, Error)]
#[error("Wrong algorithm for key")]
pub struct WrongAlgorithmError;
impl PrivateKey {
fn from_pkcs1_private_key(pkcs1_key: &pkcs1::RsaPrivateKey) -> Result<Self, LoadError> {
// Taken from `TryFrom<pkcs8::PrivateKeyInfo<'_>> for RsaPrivateKey`
// Multi-prime RSA keys not currently supported
if pkcs1_key.version() != pkcs1::Version::TwoPrime {
return Err(pkcs1::Error::Version.into());
}
let n = BigUint::from_bytes_be(pkcs1_key.modulus.as_bytes());
let e = BigUint::from_bytes_be(pkcs1_key.public_exponent.as_bytes());
let d = BigUint::from_bytes_be(pkcs1_key.private_exponent.as_bytes());
let first_prime = BigUint::from_bytes_be(pkcs1_key.prime1.as_bytes());
let second_prime = BigUint::from_bytes_be(pkcs1_key.prime2.as_bytes());
let primes = vec![first_prime, second_prime];
let key = rsa::RsaPrivateKey::from_components(n, e, d, primes)?;
Ok(Self::Rsa(Box::new(key)))
}
fn from_private_key_info(info: PrivateKeyInfo) -> Result<Self, LoadError> {
match info.algorithm.oid {
pkcs1::ALGORITHM_OID => Ok(Self::Rsa(Box::new(info.try_into()?))),
elliptic_curve::ALGORITHM_OID => match info.algorithm.parameters_oid()? {
p256::NistP256::OID => Ok(Self::EcP256(Box::new(info.try_into()?))),
p384::NistP384::OID => Ok(Self::EcP384(Box::new(info.try_into()?))),
k256::Secp256k1::OID => Ok(Self::EcK256(Box::new(info.try_into()?))),
oid => Err(LoadError::UnknownEllipticCurveOid { oid }),
},
oid => Err(LoadError::UnknownAlgorithmOid { oid }),
}
}
fn from_ec_private_key(key: sec1::EcPrivateKey) -> Result<Self, LoadError> {
let curve = key
.parameters
.ok_or(LoadError::MissingSec1Parameters)?
.named_curve()
.ok_or(LoadError::MissingSec1CurveName)?;
match curve {
p256::NistP256::OID => Ok(Self::EcP256(Box::new(key.try_into()?))),
p384::NistP384::OID => Ok(Self::EcP384(Box::new(key.try_into()?))),
k256::Secp256k1::OID => Ok(Self::EcK256(Box::new(key.try_into()?))),
oid => Err(LoadError::UnknownEllipticCurveOid { oid }),
}
}
/// Serialize the key as a DER document
///
/// It will use the most common format depending on the key type: PKCS1 for
/// RSA keys and SEC1 for elliptic curve keys
///
/// # Errors
///
/// Returns an error if the encoding failed
pub fn to_der(&self) -> Result<Zeroizing<Vec<u8>>, anyhow::Error> {
let der = match self {
PrivateKey::Rsa(key) => key.to_pkcs1_der()?.to_bytes(),
PrivateKey::EcP256(key) => key.to_sec1_der()?,
PrivateKey::EcP384(key) => key.to_sec1_der()?,
PrivateKey::EcK256(key) => key.to_sec1_der()?,
};
Ok(der)
}
/// Serialize the key as a PKCS8 DER document
///
/// # Errors
///
/// Returns an error if the encoding failed
pub fn to_pkcs8_der(&self) -> Result<Zeroizing<Vec<u8>>, anyhow::Error> {
let der = match self {
PrivateKey::Rsa(key) => key.to_pkcs8_der()?,
PrivateKey::EcP256(key) => key.to_pkcs8_der()?,
PrivateKey::EcP384(key) => key.to_pkcs8_der()?,
PrivateKey::EcK256(key) => key.to_pkcs8_der()?,
};
Ok(der.to_bytes())
}
/// Serialize the key as a PEM document
///
/// It will use the most common format depending on the key type: PKCS1 for
/// RSA keys and SEC1 for elliptic curve keys
///
/// # Errors
///
/// Returns an error if the encoding failed
pub fn to_pem(
&self,
line_ending: pem_rfc7468::LineEnding,
) -> Result<Zeroizing<String>, anyhow::Error> {
let pem = match self {
PrivateKey::Rsa(key) => key.to_pkcs1_pem(line_ending)?,
PrivateKey::EcP256(key) => key.to_sec1_pem(line_ending)?,
PrivateKey::EcP384(key) => key.to_sec1_pem(line_ending)?,
PrivateKey::EcK256(key) => key.to_sec1_pem(line_ending)?,
};
Ok(pem)
}
/// Load an unencrypted PEM or DER encoded key
///
/// # Errors
///
/// Returns the same kind of errors as [`Self::load_pem`] and
/// [`Self::load_der`].
pub fn load(bytes: &[u8]) -> Result<Self, LoadError> {
if let Ok(pem) = std::str::from_utf8(bytes) {
match Self::load_pem(pem) {
Ok(s) => return Ok(s),
// If there was an error loading the document as PEM, ignore it and continue by
// trying to load it as DER
Err(LoadError::Pem { .. }) => {}
Err(e) => return Err(e),
}
}
Self::load_der(bytes)
}
/// Load an encrypted PEM or DER encoded key, and decrypt it with the given
/// password
///
/// # Errors
///
/// Returns the same kind of errors as [`Self::load_encrypted_pem`] and
/// [`Self::load_encrypted_der`].
pub fn load_encrypted(bytes: &[u8], password: impl AsRef<[u8]>) -> Result<Self, LoadError> {
if let Ok(pem) = std::str::from_utf8(bytes) {
match Self::load_encrypted_pem(pem, password.as_ref()) {
Ok(s) => return Ok(s),
// If there was an error loading the document as PEM, ignore it and continue by
// trying to load it as DER
Err(LoadError::Pem { .. }) => {}
Err(e) => return Err(e),
}
}
Self::load_encrypted_der(bytes, password)
}
/// Load an encrypted key from DER-encoded bytes, and decrypt it with the
/// given password
///
/// # Errors
///
/// Returns an error if:
/// - the key is in an non-encrypted format
/// - the key could not be decrypted
/// - the PKCS8 key could not be loaded
pub fn load_encrypted_der(der: &[u8], password: impl AsRef<[u8]>) -> Result<Self, LoadError> {
if let Ok(info) = pkcs8::EncryptedPrivateKeyInfo::from_der(der) {
let decrypted = info.decrypt(password)?;
return Self::load_der(decrypted.as_bytes()).map_err(|inner| LoadError::InEncrypted {
inner: Box::new(inner),
});
}
if pkcs8::PrivateKeyInfo::from_der(der).is_ok()
|| sec1::EcPrivateKey::from_der(der).is_ok()
|| pkcs1::RsaPrivateKey::from_der(der).is_ok()
{
return Err(LoadError::Unencrypted);
}
Err(LoadError::UnsupportedFormat)
}
/// Load an unencrypted key from DER-encoded bytes
///
/// It tries to decode the bytes from the various known DER formats (PKCS8,
/// SEC1 and PKCS1, in that order), and return the first one that works.
///
/// # Errors
///
/// Returns an error if:
/// - the PKCS8 key is encrypted
/// - none of the formats could be decoded
/// - the PKCS8/SEC1/PKCS1 key could not be loaded
pub fn load_der(der: &[u8]) -> Result<Self, LoadError> {
// Let's try evey known DER format one after the other
if pkcs8::EncryptedPrivateKeyInfo::from_der(der).is_ok() {
return Err(LoadError::Encrypted);
}
if let Ok(info) = pkcs8::PrivateKeyInfo::from_der(der) {
return Self::from_private_key_info(info);
}
if let Ok(info) = sec1::EcPrivateKey::from_der(der) {
return Self::from_ec_private_key(info);
}
if let Ok(pkcs1_key) = pkcs1::RsaPrivateKey::from_der(der) {
return Self::from_pkcs1_private_key(&pkcs1_key);
}
Err(LoadError::UnsupportedFormat)
}
/// Load an encrypted key from a PEM-encode string, and decrypt it with the
/// given password
///
/// # Errors
///
/// Returns an error if:
/// - the file is not a signel PEM document
/// - the PEM label is not a supported format
/// - the underlying key is not encrypted (use [`Self::load`] instead)
/// - the decryption failed
/// - the pkcs8 key could not be loaded
pub fn load_encrypted_pem(pem: &str, password: impl AsRef<[u8]>) -> Result<Self, LoadError> {
let (label, doc) = pem_rfc7468::decode_vec(pem.as_bytes())?;
match label {
pkcs8::EncryptedPrivateKeyInfo::PEM_LABEL => {
let info = pkcs8::EncryptedPrivateKeyInfo::from_der(&doc)?;
let decrypted = info.decrypt(password)?;
return Self::load_der(decrypted.as_bytes()).map_err(|inner| {
LoadError::InEncrypted {
inner: Box::new(inner),
}
});
}
pkcs1::RsaPrivateKey::PEM_LABEL
| pkcs8::PrivateKeyInfo::PEM_LABEL
| sec1::EcPrivateKey::PEM_LABEL => Err(LoadError::Unencrypted),
label => Err(LoadError::UnsupportedPemLabel {
label: label.to_owned(),
}),
}
}
/// Load an unencrypted key from a PEM-encode string
///
/// # Errors
///
/// Returns an error if:
/// - the file is not a signel PEM document
/// - the PEM label is not a supported format
/// - the underlying key is encrypted (use [`Self::load_encrypted`]
/// instead)
/// - the PKCS8/PKCS1/SEC1 key could not be loaded
pub fn load_pem(pem: &str) -> Result<Self, LoadError> {
let (label, doc) = pem_rfc7468::decode_vec(pem.as_bytes())?;
match label {
pkcs1::RsaPrivateKey::PEM_LABEL => {
let pkcs1_key = pkcs1::RsaPrivateKey::from_der(&doc)?;
Self::from_pkcs1_private_key(&pkcs1_key)
}
pkcs8::PrivateKeyInfo::PEM_LABEL => {
let info = pkcs8::PrivateKeyInfo::from_der(&doc)?;
Self::from_private_key_info(info)
}
sec1::EcPrivateKey::PEM_LABEL => {
let key = sec1::EcPrivateKey::from_der(&doc)?;
Self::from_ec_private_key(key)
}
pkcs8::EncryptedPrivateKeyInfo::PEM_LABEL => Err(LoadError::Encrypted),
label => Err(LoadError::UnsupportedPemLabel {
label: label.to_owned(),
}),
}
}
/// Get an [`AsymmetricVerifyingKey`] out of this key, for the specified
/// [`JsonWebSignatureAlg`]
///
/// # Errors
///
/// Returns an error if the key is not suited for the selected algorithm
pub fn verifying_key_for_alg(
&self,
alg: &JsonWebSignatureAlg,
) -> Result<AsymmetricVerifyingKey, WrongAlgorithmError> {
let key = match (self, alg) {
(Self::Rsa(key), _) => {
let key: rsa::RsaPublicKey = key.to_public_key();
match alg {
JsonWebSignatureAlg::Rs256 => AsymmetricVerifyingKey::rs256(key),
JsonWebSignatureAlg::Rs384 => AsymmetricVerifyingKey::rs384(key),
JsonWebSignatureAlg::Rs512 => AsymmetricVerifyingKey::rs512(key),
JsonWebSignatureAlg::Ps256 => AsymmetricVerifyingKey::ps256(key),
JsonWebSignatureAlg::Ps384 => AsymmetricVerifyingKey::ps384(key),
JsonWebSignatureAlg::Ps512 => AsymmetricVerifyingKey::ps512(key),
_ => return Err(WrongAlgorithmError),
}
}
(Self::EcP256(key), JsonWebSignatureAlg::Es256) => {
AsymmetricVerifyingKey::es256(key.public_key())
}
(Self::EcP384(key), JsonWebSignatureAlg::Es384) => {
AsymmetricVerifyingKey::es384(key.public_key())
}
(Self::EcK256(key), JsonWebSignatureAlg::Es256K) => {
AsymmetricVerifyingKey::es256k(key.public_key())
}
_ => return Err(WrongAlgorithmError),
};
Ok(key)
}
/// Get a [`AsymmetricSigningKey`] out of this key, for the specified
/// [`JsonWebSignatureAlg`]
///
/// # Errors
///
/// Returns an error if the key is not suited for the selected algorithm
pub fn signing_key_for_alg(
&self,
alg: &JsonWebSignatureAlg,
) -> Result<AsymmetricSigningKey, WrongAlgorithmError> {
let key = match (self, alg) {
(Self::Rsa(key), _) => {
let key: rsa::RsaPrivateKey = *key.clone();
match alg {
JsonWebSignatureAlg::Rs256 => AsymmetricSigningKey::rs256(key),
JsonWebSignatureAlg::Rs384 => AsymmetricSigningKey::rs384(key),
JsonWebSignatureAlg::Rs512 => AsymmetricSigningKey::rs512(key),
JsonWebSignatureAlg::Ps256 => AsymmetricSigningKey::ps256(key),
JsonWebSignatureAlg::Ps384 => AsymmetricSigningKey::ps384(key),
JsonWebSignatureAlg::Ps512 => AsymmetricSigningKey::ps512(key),
_ => return Err(WrongAlgorithmError),
}
}
(Self::EcP256(key), JsonWebSignatureAlg::Es256) => {
AsymmetricSigningKey::es256(*key.clone())
}
(Self::EcP384(key), JsonWebSignatureAlg::Es384) => {
AsymmetricSigningKey::es384(*key.clone())
}
(Self::EcK256(key), JsonWebSignatureAlg::Es256K) => {
AsymmetricSigningKey::es256k(*key.clone())
}
_ => return Err(WrongAlgorithmError),
};
Ok(key)
}
/// Generate a RSA key with 2048 bit size
///
/// # Errors
///
/// Returns any error from the underlying key generator
pub fn generate_rsa<R: RngCore + CryptoRng>(mut rng: R) -> Result<Self, rsa::errors::Error> {
let key = rsa::RsaPrivateKey::new(&mut rng, 2048)?;
Ok(Self::Rsa(Box::new(key)))
}
/// Generate an Elliptic Curve key for the P-256 curve
pub fn generate_ec_p256<R: RngCore + CryptoRng>(rng: R) -> Self {
let key = elliptic_curve::SecretKey::random(rng);
Self::EcP256(Box::new(key))
}
/// Generate an Elliptic Curve key for the P-384 curve
pub fn generate_ec_p384<R: RngCore + CryptoRng>(rng: R) -> Self {
let key = elliptic_curve::SecretKey::random(rng);
Self::EcP384(Box::new(key))
}
/// Generate an Elliptic Curve key for the secp256k1 curve
pub fn generate_ec_k256<R: RngCore + CryptoRng>(rng: R) -> Self {
let key = elliptic_curve::SecretKey::random(rng);
Self::EcK256(Box::new(key))
}
}
impl From<&PrivateKey> for JsonWebKeyPublicParameters {
fn from(val: &PrivateKey) -> Self {
match val {
PrivateKey::Rsa(key) => key.to_public_key().into(),
PrivateKey::EcP256(key) => key.public_key().into(),
PrivateKey::EcP384(key) => key.public_key().into(),
PrivateKey::EcK256(key) => key.public_key().into(),
}
}
}
impl ParametersInfo for PrivateKey {
fn kty(&self) -> JsonWebKeyType {
match self {
PrivateKey::Rsa(_) => JsonWebKeyType::Rsa,
PrivateKey::EcP256(_) | PrivateKey::EcP384(_) | PrivateKey::EcK256(_) => {
JsonWebKeyType::Ec
}
}
}
fn possible_algs(&self) -> &'static [JsonWebSignatureAlg] {
match self {
PrivateKey::Rsa(_) => &[
JsonWebSignatureAlg::Rs256,
JsonWebSignatureAlg::Rs384,
JsonWebSignatureAlg::Rs512,
JsonWebSignatureAlg::Ps256,
JsonWebSignatureAlg::Ps384,
JsonWebSignatureAlg::Ps512,
],
PrivateKey::EcP256(_) => &[JsonWebSignatureAlg::Es256],
PrivateKey::EcP384(_) => &[JsonWebSignatureAlg::Es384],
PrivateKey::EcK256(_) => &[JsonWebSignatureAlg::Es256K],
}
}
}
/// A structure to store a list of [`PrivateKey`]. The keys are held in an
/// [`Arc`] to ensure they are only loaded once in memory and allow cheap
/// cloning
#[derive(Clone, Default)]
pub struct Keystore {
keys: Arc<JsonWebKeySet<PrivateKey>>,
}
impl Keystore {
/// Create a keystore out of a JSON Web Key Set
///
/// ```rust
/// use mas_keystore::{Keystore, PrivateKey, JsonWebKey, JsonWebKeySet};
/// let rsa = PrivateKey::load_pem(include_str!("../tests/keys/rsa.pkcs1.pem")).unwrap();
/// let rsa = JsonWebKey::new(rsa);
///
/// let ec_p256 = PrivateKey::load_pem(include_str!("../tests/keys/ec-p256.sec1.pem")).unwrap();
/// let ec_p256 = JsonWebKey::new(ec_p256);
///
/// let ec_p384 = PrivateKey::load_pem(include_str!("../tests/keys/ec-p384.sec1.pem")).unwrap();
/// let ec_p384 = JsonWebKey::new(ec_p384);
///
/// let ec_k256 = PrivateKey::load_pem(include_str!("../tests/keys/ec-k256.sec1.pem")).unwrap();
/// let ec_k256 = JsonWebKey::new(ec_k256);
///
/// let jwks = JsonWebKeySet::new(vec![rsa, ec_p256, ec_p384, ec_k256]);
/// let keystore = Keystore::new(jwks);
/// ```
#[must_use]
pub fn new(keys: JsonWebKeySet<PrivateKey>) -> Self {
let keys = Arc::new(keys);
Self { keys }
}
/// Get the public JSON Web Key Set for the keys stored in this [`Keystore`]
#[must_use]
pub fn public_jwks(&self) -> PublicJsonWebKeySet {
self.keys
.iter()
.map(|key| {
key.cloned_map(|params: &PrivateKey| JsonWebKeyPublicParameters::from(params))
})
.collect()
}
}
impl Deref for Keystore {
type Target = JsonWebKeySet<PrivateKey>;
fn deref(&self) -> &Self::Target {
&self.keys
}
}