1
0
mirror of https://github.com/facebook/zstd.git synced 2025-04-19 00:44:19 +03:00
zstd/tests/fullbench.c
2025-01-15 17:11:27 -08:00

1210 lines
46 KiB
C

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*_************************************
* Includes
**************************************/
#define _CRT_SECURE_NO_WARNINGS /* disable Visual warning that it doesn't like fopen() */
#define ZSTD_DISABLE_DEPRECATE_WARNINGS /* No deprecation warnings, we still bench some deprecated functions */
#include <limits.h>
#include "util.h" /* Compiler options, UTIL_GetFileSize */
#include <stdlib.h> /* malloc */
#include <stdio.h> /* fprintf, fopen, ftello64 */
#include <assert.h>
#include "mem.h" /* U32 */
#include "compress/zstd_compress_internal.h"
#ifndef ZSTD_DLL_IMPORT
#include "zstd_internal.h" /* ZSTD_decodeSeqHeaders, ZSTD_blockHeaderSize, ZSTD_getcBlockSize, blockType_e, KB, MB */
#include "decompress/zstd_decompress_internal.h" /* ZSTD_DCtx struct */
#else
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
#endif
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressBegin, ZSTD_compressContinue, etc. */
#include "zstd.h" /* ZSTD_versionString */
#include "util.h" /* time functions */
#include "datagen.h"
#include "lorem.h"
#include "benchfn.h" /* CustomBench */
#include "benchzstd.h" /* MB_UNIT */
/*_************************************
* Constants
**************************************/
#define PROGRAM_DESCRIPTION "Zstandard speed analyzer"
#define AUTHOR "Yann Collet"
#define WELCOME_MESSAGE "*** %s %s %i-bits, by %s (%s) ***\n", PROGRAM_DESCRIPTION, ZSTD_versionString(), (int)(sizeof(void*)*8), AUTHOR, __DATE__
#define NBLOOPS 6
#define TIMELOOP_S 2
#define MAX_MEM (1984 MB)
#define DEFAULT_CLEVEL 1
#define COMPRESSIBILITY_DEFAULT (-1.0)
static const size_t kSampleSizeDefault = 10000000;
#define TIMELOOP_NANOSEC (1*1000000000ULL) /* 1 second */
/*_************************************
* Macros
**************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define CONTROL(c) { if (!(c)) { abort(); } } /* like assert(), but cannot be disabled */
/*_************************************
* Benchmark Parameters
**************************************/
static unsigned g_nbIterations = NBLOOPS;
/*_*******************************************************
* Private functions
*********************************************************/
static size_t BMK_findMaxMem(U64 requiredMem)
{
size_t const step = 64 MB;
void* testmem = NULL;
requiredMem = (((requiredMem >> 26) + 1) << 26);
if (requiredMem > MAX_MEM) requiredMem = MAX_MEM;
requiredMem += step;
do {
testmem = malloc ((size_t)requiredMem);
requiredMem -= step;
} while (!testmem);
free (testmem);
return (size_t) requiredMem;
}
/*_*******************************************************
* Benchmark wrappers
*********************************************************/
static ZSTD_CCtx* g_zcc = NULL;
static size_t
local_ZSTD_compress(const void* src, size_t srcSize,
void* dst, size_t dstSize,
void* payload)
{
ZSTD_parameters p;
ZSTD_frameParameters f = { 1 /* contentSizeHeader*/, 0, 0 };
p.fParams = f;
p.cParams = *(ZSTD_compressionParameters*)payload;
return ZSTD_compress_advanced (g_zcc, dst, dstSize, src, srcSize, NULL ,0, p);
}
static size_t
local_ZSTD_compress_freshCCtx(const void* src, size_t srcSize,
void* dst, size_t dstSize,
void* payload)
{
ZSTD_parameters p;
ZSTD_frameParameters f = { 1 /* contentSizeHeader*/, 0, 0 };
p.fParams = f;
p.cParams = *(ZSTD_compressionParameters*)payload;
if (g_zcc != NULL) ZSTD_freeCCtx(g_zcc);
g_zcc = ZSTD_createCCtx();
assert(g_zcc != NULL);
{ size_t const r = ZSTD_compress_advanced (g_zcc, dst, dstSize, src, srcSize, NULL ,0, p);
ZSTD_freeCCtx(g_zcc);
g_zcc = NULL;
return r;
}
}
typedef struct {
void* prepBuffer;
size_t prepSize;
void* dst;
size_t dstCapacity;
size_t fixedOrigSize; /* optional, 0 means "no modification" */
} PrepResult;
#define PREPRESULT_INIT { NULL, 0, NULL, 0, 0 }
static PrepResult prepDecompress(const void* src, size_t srcSize, int cLevel)
{
size_t prepCapacity = ZSTD_compressBound(srcSize);
void* prepBuffer = malloc(prepCapacity);
size_t cSize = ZSTD_compress(prepBuffer, prepCapacity, src, srcSize, cLevel);
void* dst = malloc(srcSize);
PrepResult r = PREPRESULT_INIT;
assert(dst != NULL);
r.prepBuffer = prepBuffer;
r.prepSize = cSize;
r.dst = dst;
r.dstCapacity = srcSize;
return r;
}
static size_t local_ZSTD_decompress(const void* src, size_t srcSize,
void* dst, size_t dstSize,
void* unused)
{
(void)unused;
return ZSTD_decompress(dst, dstSize, src, srcSize);
}
static ZSTD_DCtx* g_zdc = NULL; /* will be initialized within benchMem */
static size_t local_ZSTD_decompressDCtx(const void* src, size_t srcSize,
void* dst, size_t dstSize,
void* unused)
{
(void)unused;
return ZSTD_decompressDCtx(g_zdc, dst, dstSize, src, srcSize);
}
#ifndef ZSTD_DLL_IMPORT
static PrepResult prepLiterals(const void* src, size_t srcSize, int cLevel)
{
PrepResult r = PREPRESULT_INIT;
size_t dstCapacity = srcSize;
void* dst = malloc(dstCapacity);
void* prepBuffer;
size_t prepSize = ZSTD_compress(dst, dstCapacity, src, srcSize, cLevel);
size_t frameHeaderSize = ZSTD_frameHeaderSize(dst, ZSTD_FRAMEHEADERSIZE_PREFIX(ZSTD_f_zstd1));
CONTROL(!ZSTD_isError(frameHeaderSize));
/* check block is compressible, hence contains a literals section */
{ blockProperties_t bp;
ZSTD_getcBlockSize((char*)dst+frameHeaderSize, dstCapacity, &bp); /* Get 1st block type */
if (bp.blockType != bt_compressed) {
DISPLAY("no compressed literals\n");
return r;
} }
{ size_t const skippedSize = frameHeaderSize + ZSTD_blockHeaderSize;
prepSize -= skippedSize;
prepBuffer = malloc(prepSize);
CONTROL(prepBuffer != NULL);
memmove(prepBuffer, (char*)dst+skippedSize, prepSize);
}
ZSTD_decompressBegin(g_zdc);
r.prepBuffer = prepBuffer;
r.prepSize = prepSize;
r.dst = dst;
r.dstCapacity = dstCapacity;
r.fixedOrigSize = srcSize > 128 KB ? 128 KB : srcSize; /* speed relative to block */
return r;
}
extern size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
const void* src, size_t srcSize,
void* dst, size_t dstCapacity);
static size_t
local_ZSTD_decodeLiteralsBlock(const void* src, size_t srcSize, void* dst, size_t dstCapacity, void* unused)
{
(void)unused;
return ZSTD_decodeLiteralsBlock_wrapper(g_zdc, src, srcSize, dst, dstCapacity);
}
FORCE_NOINLINE size_t ZSTD_decodeLiteralsHeader(ZSTD_DCtx* dctx, void const* src, size_t srcSize)
{
RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
{
BYTE const* istart = (BYTE const*)src;
SymbolEncodingType_e const litEncType = (SymbolEncodingType_e)(istart[0] & 3);
if (litEncType == set_compressed) {
RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
{
size_t lhSize, litSize, litCSize;
U32 const lhlCode = (istart[0] >> 2) & 3;
U32 const lhc = MEM_readLE32(istart);
int const flags = ZSTD_DCtx_get_bmi2(dctx) ? HUF_flags_bmi2 : 0;
switch(lhlCode)
{
case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */
/* 2 - 2 - 10 - 10 */
lhSize = 3;
litSize = (lhc >> 4) & 0x3FF;
litCSize = (lhc >> 14) & 0x3FF;
break;
case 2:
/* 2 - 2 - 14 - 14 */
lhSize = 4;
litSize = (lhc >> 4) & 0x3FFF;
litCSize = lhc >> 18;
break;
case 3:
/* 2 - 2 - 18 - 18 */
lhSize = 5;
litSize = (lhc >> 4) & 0x3FFFF;
litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
break;
}
RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
#ifndef HUF_FORCE_DECOMPRESS_X2
return HUF_readDTableX1_wksp(
dctx->entropy.hufTable,
istart+lhSize, litCSize,
dctx->workspace, sizeof(dctx->workspace),
flags);
#else
return HUF_readDTableX2_wksp(
dctx->entropy.hufTable,
istart+lhSize, litCSize,
dctx->workspace, sizeof(dctx->workspace), flags);
#endif
}
}
}
return 0;
}
static size_t
local_ZSTD_decodeLiteralsHeader(const void* src, size_t srcSize, void* dst, size_t dstCapacity, void* unused)
{
(void)dst; (void)dstCapacity; (void)unused;
return ZSTD_decodeLiteralsHeader(g_zdc, src, srcSize);
}
static PrepResult prepSequences1stBlock(const void* src, size_t srcSize, int cLevel)
{
PrepResult r = PREPRESULT_INIT;
size_t const dstCapacity = srcSize;
void* dst = malloc(dstCapacity);
const BYTE* ip = dst;
const BYTE* iend;
{ size_t const cSize = ZSTD_compress(dst, dstCapacity, src, srcSize, cLevel);
CONTROL(cSize > ZSTD_FRAMEHEADERSIZE_PREFIX(ZSTD_f_zstd1));
}
/* Skip frame Header */
{ size_t const frameHeaderSize = ZSTD_frameHeaderSize(dst, ZSTD_FRAMEHEADERSIZE_PREFIX(ZSTD_f_zstd1));
CONTROL(!ZSTD_isError(frameHeaderSize));
ip += frameHeaderSize;
}
/* Find end of block */
{ blockProperties_t bp;
size_t const cBlockSize = ZSTD_getcBlockSize(ip, dstCapacity, &bp); /* Get 1st block type */
if (bp.blockType != bt_compressed) {
DISPLAY("no compressed sequences\n");
return r;
}
iend = ip + ZSTD_blockHeaderSize + cBlockSize; /* End of first block */
}
ip += ZSTD_blockHeaderSize; /* skip block header */
ZSTD_decompressBegin(g_zdc);
CONTROL(iend > ip);
ip += ZSTD_decodeLiteralsBlock_wrapper(g_zdc, ip, (size_t)(iend-ip), dst, dstCapacity); /* skip literal segment */
r.prepSize = (size_t)(iend-ip);
r.prepBuffer = malloc(r.prepSize);
CONTROL(r.prepBuffer != NULL);
memmove(r.prepBuffer, ip, r.prepSize); /* copy rest of block (it starts by SeqHeader) */
r.dst = dst;
r.dstCapacity = dstCapacity;
r.fixedOrigSize = srcSize > 128 KB ? 128 KB : srcSize; /* speed relative to block */
return r;
}
static size_t
local_ZSTD_decodeSeqHeaders(const void* src, size_t srcSize, void* dst, size_t dstCapacity, void* unused)
{
int nbSeq;
(void)unused; (void)dst; (void)dstCapacity;
return ZSTD_decodeSeqHeaders(g_zdc, &nbSeq, src, srcSize);
}
#endif
static ZSTD_CStream* g_cstream= NULL;
static size_t
local_ZSTD_compressStream(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* payload)
{
ZSTD_outBuffer buffOut;
ZSTD_inBuffer buffIn;
ZSTD_parameters p;
ZSTD_frameParameters f = {1 /* contentSizeHeader*/, 0, 0};
p.fParams = f;
p.cParams = *(ZSTD_compressionParameters*)payload;
ZSTD_initCStream_advanced(g_cstream, NULL, 0, p, ZSTD_CONTENTSIZE_UNKNOWN);
buffOut.dst = dst;
buffOut.size = dstCapacity;
buffOut.pos = 0;
buffIn.src = src;
buffIn.size = srcSize;
buffIn.pos = 0;
ZSTD_compressStream(g_cstream, &buffOut, &buffIn);
ZSTD_endStream(g_cstream, &buffOut);
return buffOut.pos;
}
static size_t
local_ZSTD_compressStream_freshCCtx(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* payload)
{
if (g_cstream != NULL) ZSTD_freeCCtx(g_cstream);
g_cstream = ZSTD_createCCtx();
assert(g_cstream != NULL);
{ size_t const r = local_ZSTD_compressStream(src, srcSize, dst, dstCapacity, payload);
ZSTD_freeCCtx(g_cstream);
g_cstream = NULL;
return r;
}
}
static size_t
local_ZSTD_compress2(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* payload)
{
(void)payload;
return ZSTD_compress2(g_cstream, dst, dstCapacity, src, srcSize);
}
static size_t
local_ZSTD_compressStream2_end(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* payload)
{
ZSTD_outBuffer buffOut;
ZSTD_inBuffer buffIn;
(void)payload;
buffOut.dst = dst;
buffOut.size = dstCapacity;
buffOut.pos = 0;
buffIn.src = src;
buffIn.size = srcSize;
buffIn.pos = 0;
ZSTD_compressStream2(g_cstream, &buffOut, &buffIn, ZSTD_e_end);
return buffOut.pos;
}
static size_t
local_ZSTD_compressStream2_continue(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* payload)
{
ZSTD_outBuffer buffOut;
ZSTD_inBuffer buffIn;
(void)payload;
buffOut.dst = dst;
buffOut.size = dstCapacity;
buffOut.pos = 0;
buffIn.src = src;
buffIn.size = srcSize;
buffIn.pos = 0;
ZSTD_compressStream2(g_cstream, &buffOut, &buffIn, ZSTD_e_continue);
ZSTD_compressStream2(g_cstream, &buffOut, &buffIn, ZSTD_e_end);
return buffOut.pos;
}
static size_t
local_ZSTD_compress_generic_T2_end(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* payload)
{
(void)payload;
ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_nbWorkers, 2);
return ZSTD_compress2(g_cstream, dst, dstCapacity, src, srcSize);
}
static size_t
local_ZSTD_compress_generic_T2_continue(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* payload)
{
ZSTD_outBuffer buffOut;
ZSTD_inBuffer buffIn;
(void)payload;
ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_nbWorkers, 2);
buffOut.dst = dst;
buffOut.size = dstCapacity;
buffOut.pos = 0;
buffIn.src = src;
buffIn.size = srcSize;
buffIn.pos = 0;
ZSTD_compressStream2(g_cstream, &buffOut, &buffIn, ZSTD_e_continue);
while(ZSTD_compressStream2(g_cstream, &buffOut, &buffIn, ZSTD_e_end)) {}
return buffOut.pos;
}
static ZSTD_DStream* g_dstream= NULL;
static size_t
local_ZSTD_decompressStream(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* unused)
{
ZSTD_outBuffer buffOut;
ZSTD_inBuffer buffIn;
(void)unused;
ZSTD_initDStream(g_dstream);
buffOut.dst = dst;
buffOut.size = dstCapacity;
buffOut.pos = 0;
buffIn.src = src;
buffIn.size = srcSize;
buffIn.pos = 0;
ZSTD_decompressStream(g_dstream, &buffOut, &buffIn);
return buffOut.pos;
}
static size_t local_ZSTD_compressContinue(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* payload)
{
ZSTD_parameters p;
ZSTD_frameParameters f = { 1 /* contentSizeHeader*/, 0, 0 };
p.fParams = f;
p.cParams = *(ZSTD_compressionParameters*)payload;
ZSTD_compressBegin_advanced(g_zcc, NULL, 0, p, srcSize);
return ZSTD_compressEnd(g_zcc, dst, dstCapacity, src, srcSize);
}
#define FIRST_BLOCK_SIZE 8
static size_t
local_ZSTD_compressContinue_extDict(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* payload)
{
BYTE firstBlockBuf[FIRST_BLOCK_SIZE];
ZSTD_parameters p;
ZSTD_frameParameters const f = { 1, 0, 0 };
p.fParams = f;
p.cParams = *(ZSTD_compressionParameters*)payload;
ZSTD_compressBegin_advanced(g_zcc, NULL, 0, p, srcSize);
memcpy(firstBlockBuf, src, FIRST_BLOCK_SIZE);
{ size_t const compressResult = ZSTD_compressContinue(g_zcc,
dst, dstCapacity,
firstBlockBuf, FIRST_BLOCK_SIZE);
if (ZSTD_isError(compressResult)) {
DISPLAY("local_ZSTD_compressContinue_extDict error : %s\n",
ZSTD_getErrorName(compressResult));
return compressResult;
}
dst = (BYTE*)dst + compressResult;
dstCapacity -= compressResult;
}
return ZSTD_compressEnd(g_zcc, dst, dstCapacity,
(const BYTE*)src + FIRST_BLOCK_SIZE,
srcSize - FIRST_BLOCK_SIZE);
}
static size_t local_ZSTD_decompressContinue(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* unused)
{
size_t regeneratedSize = 0;
const BYTE* ip = (const BYTE*)src;
const BYTE* const iend = ip + srcSize;
BYTE* op = (BYTE*)dst;
size_t remainingCapacity = dstCapacity;
(void)unused;
ZSTD_decompressBegin(g_zdc);
while (ip < iend) {
size_t const iSize = ZSTD_nextSrcSizeToDecompress(g_zdc);
size_t const decodedSize = ZSTD_decompressContinue(g_zdc, op, remainingCapacity, ip, iSize);
ip += iSize;
regeneratedSize += decodedSize;
op += decodedSize;
remainingCapacity -= decodedSize;
}
return regeneratedSize;
}
static PrepResult prepSequences(const void* src, size_t srcSize, int cLevel)
{
PrepResult r = PREPRESULT_INIT;
size_t const dstCapacity = ZSTD_compressBound(srcSize);
void* const dst = malloc(dstCapacity);
size_t const prepCapacity = dstCapacity * 4;
void* prepBuffer = malloc(prepCapacity);
void* sequencesStart = (char*)prepBuffer + 2*sizeof(unsigned);
ZSTD_Sequence* const seqs = sequencesStart;
size_t const seqsCapacity = prepCapacity / sizeof(ZSTD_Sequence);
size_t nbSeqs;
ZSTD_CCtx_reset(g_zcc, ZSTD_reset_session_and_parameters);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_compressionLevel, cLevel);
nbSeqs = ZSTD_generateSequences(g_zcc, seqs, seqsCapacity, src, srcSize);
CONTROL(srcSize < UINT_MAX);
MEM_write32(prepBuffer, (U32)srcSize);
MEM_write32((char*)prepBuffer+4, (U32)nbSeqs);
memcpy(seqs + nbSeqs, src, srcSize);
r.prepBuffer = prepBuffer;
r.prepSize = 8 + sizeof(ZSTD_Sequence)*nbSeqs + srcSize;
r.dst = dst;
r.dstCapacity = dstCapacity;
return r;
}
static size_t local_compressSequences(const void* input, size_t inputSize,
void* dst, size_t dstCapacity,
void* payload)
{
const char* ip = input;
size_t srcSize = MEM_read32(ip);
size_t nbSeqs = MEM_read32(ip+=4);
const ZSTD_Sequence* seqs = (const ZSTD_Sequence*)(const void*)(ip+=4);
const void* src = (ip+=nbSeqs * sizeof(ZSTD_Sequence));
ZSTD_CCtx_reset(g_zcc, ZSTD_reset_session_and_parameters);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_blockDelimiters, ZSTD_sf_explicitBlockDelimiters);
assert(8 + nbSeqs * sizeof(ZSTD_Sequence) + srcSize == inputSize); (void)inputSize;
(void)payload;
return ZSTD_compressSequences(g_zcc, dst, dstCapacity, seqs, nbSeqs, src, srcSize);
}
static PrepResult prepSequencesAndLiterals(const void* src, size_t srcSize, int cLevel)
{
PrepResult r = PREPRESULT_INIT;
size_t const dstCapacity = ZSTD_compressBound(srcSize);
void* const dst = malloc(dstCapacity);
size_t const prepCapacity = dstCapacity * 4;
void* prepBuffer = malloc(prepCapacity);
void* sequencesStart = (char*)prepBuffer + 3*sizeof(unsigned);
ZSTD_Sequence* const seqs = sequencesStart;
size_t const seqsCapacity = prepCapacity / sizeof(ZSTD_Sequence);
size_t nbSeqs;
ZSTD_CCtx_reset(g_zcc, ZSTD_reset_session_and_parameters);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_compressionLevel, cLevel);
nbSeqs = ZSTD_generateSequences(g_zcc, seqs, seqsCapacity, src, srcSize);
CONTROL(srcSize < UINT_MAX);
MEM_write32(prepBuffer, (U32)srcSize);
MEM_write32((char*)prepBuffer+4, (U32)nbSeqs);
/* copy literals */
{ char* const litStart = (char*)(seqs + nbSeqs);
size_t nbLiterals = 0;
const char* ip = src;
size_t n;
for (n=0; n<nbSeqs; n++) {
size_t const litSize = seqs[n].litLength;
memcpy(litStart + nbLiterals, ip, litSize);
ip += litSize + seqs[n].matchLength;
nbLiterals += litSize;
}
MEM_write32((char*)prepBuffer+8, (U32)nbLiterals);
r.prepBuffer = prepBuffer;
r.prepSize = 12 + sizeof(ZSTD_Sequence)*nbSeqs + nbLiterals;
r.dst = dst;
r.dstCapacity = dstCapacity;
}
return r;
}
static size_t
local_compressSequencesAndLiterals(const void* input, size_t inputSize,
void* dst, size_t dstCapacity,
void* payload)
{
const char* ip = input;
size_t decompressedSize = MEM_read32(ip);
size_t nbSeqs = MEM_read32(ip+=4);
size_t nbLiterals = MEM_read32(ip+=4);
const ZSTD_Sequence* seqs = (const ZSTD_Sequence*)(const void*)(ip+=4);
const void* literals = (ip+=nbSeqs * sizeof(ZSTD_Sequence));
ZSTD_CCtx_reset(g_zcc, ZSTD_reset_session_and_parameters);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_blockDelimiters, ZSTD_sf_explicitBlockDelimiters);
# if 0 /* for tests */
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_repcodeResolution, ZSTD_ps_enable);
#endif
assert(12 + nbSeqs * sizeof(ZSTD_Sequence) + nbLiterals == inputSize); (void)inputSize;
(void)payload;
return ZSTD_compressSequencesAndLiterals(g_zcc, dst, dstCapacity, seqs, nbSeqs, literals, nbLiterals, nbLiterals + 8, decompressedSize);
}
static PrepResult prepConvertSequences(const void* src, size_t srcSize, int cLevel)
{
PrepResult r = PREPRESULT_INIT;
size_t const prepCapacity = srcSize * 4;
void* prepBuffer = malloc(prepCapacity);
void* sequencesStart = (char*)prepBuffer + 2*sizeof(unsigned);
ZSTD_Sequence* const seqs = sequencesStart;
size_t const seqsCapacity = prepCapacity / sizeof(ZSTD_Sequence);
size_t totalNbSeqs, nbSeqs, blockSize=0;
ZSTD_CCtx_reset(g_zcc, ZSTD_reset_session_and_parameters);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_compressionLevel, cLevel);
totalNbSeqs = ZSTD_generateSequences(g_zcc, seqs, seqsCapacity, src, srcSize);
CONTROL(!ZSTD_isError(totalNbSeqs));
/* find nb sequences in first block */
{ size_t n;
for (n=0; n<totalNbSeqs; n++) {
if (seqs[n].matchLength == 0) break;
blockSize += seqs[n].litLength + seqs[n].matchLength;
}
blockSize += seqs[n].litLength;
nbSeqs = n+1;
#if 0
printf("found %zu sequences representing a first block of size %zu\n", nbSeqs, blockSize);
#endif
}
/* generate benchmarked input */
CONTROL(blockSize < UINT_MAX);
MEM_write32(prepBuffer, (U32)blockSize);
MEM_write32((char*)prepBuffer+4, (U32)nbSeqs);
memcpy(seqs + nbSeqs, src, srcSize);
r.prepBuffer = prepBuffer;
r.prepSize = 8 + sizeof(ZSTD_Sequence) * nbSeqs;
r.fixedOrigSize = blockSize;
return r;
}
static size_t
local_convertSequences(const void* input, size_t inputSize,
void* dst, size_t dstCapacity,
void* payload)
{
const char* ip = input;
size_t const blockSize = MEM_read32(ip);
size_t const nbSeqs = MEM_read32(ip+=4);
const ZSTD_Sequence* seqs = (const ZSTD_Sequence*)(const void*)(ip+=4);
ZSTD_CCtx_reset(g_zcc, ZSTD_reset_session_and_parameters);
ZSTD_resetSeqStore(&g_zcc->seqStore);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_blockDelimiters, ZSTD_sf_explicitBlockDelimiters);
# if 0 /* for tests */
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_repcodeResolution, ZSTD_ps_enable);
#endif
assert(8 + nbSeqs * sizeof(ZSTD_Sequence) == inputSize); (void)inputSize;
(void)dst; (void)dstCapacity;
(void)payload; (void)blockSize;
(void)ZSTD_convertBlockSequences(g_zcc, seqs, nbSeqs, 0);
return nbSeqs;
}
static size_t
check_compressedSequences(const void* compressed, size_t cSize, const void* orig, size_t origSize)
{
size_t decSize;
int diff;
void* decompressed = malloc(origSize);
if (decompressed == NULL) return 2;
decSize = ZSTD_decompress(decompressed, origSize, compressed, cSize);
if (decSize != origSize) { free(decompressed); DISPLAY("ZSTD_decompress failed (%zu) ", decSize); return 1; }
diff = memcmp(decompressed, orig, origSize);
if (diff) { free(decompressed); return 1; }
free(decompressed);
return 0;
}
static size_t
local_get1BlockSummary(const void* input, size_t inputSize,
void* dst, size_t dstCapacity,
void* payload)
{
const char* ip = input;
size_t const blockSize = MEM_read32(ip);
size_t const nbSeqs = MEM_read32(ip+=4);
const ZSTD_Sequence* seqs = (const ZSTD_Sequence*)(const void*)(ip+=4);
ZSTD_CCtx_reset(g_zcc, ZSTD_reset_session_and_parameters);
ZSTD_resetSeqStore(&g_zcc->seqStore);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_blockDelimiters, ZSTD_sf_explicitBlockDelimiters);
assert(8 + nbSeqs * sizeof(ZSTD_Sequence) == inputSize); (void)inputSize;
(void)dst; (void)dstCapacity;
(void)payload; (void)blockSize;
(void)ZSTD_get1BlockSummary(seqs, nbSeqs);
return nbSeqs;
}
static PrepResult prepCopy(const void* src, size_t srcSize, int cLevel)
{
PrepResult r = PREPRESULT_INIT;
(void)cLevel;
r.prepSize = srcSize;
r.prepBuffer = malloc(srcSize);
CONTROL(r.prepBuffer != NULL);
memcpy(r.prepBuffer, src, srcSize);
r.dstCapacity = ZSTD_compressBound(srcSize);
r.dst = malloc(r.dstCapacity);
CONTROL(r.dst != NULL);
return r;
}
static PrepResult prepShorterDstCapacity(const void* src, size_t srcSize, int cLevel)
{
PrepResult r = prepCopy(src, srcSize, cLevel);
assert(r.dstCapacity > 1);
r.dstCapacity -= 1;
return r;
}
/*_*******************************************************
* List of Scenarios
*********************************************************/
/* if PrepFunction_f returns PrepResult.prepBuffSize == 0, benchmarking is cancelled */
typedef PrepResult (*PrepFunction_f)(const void* src, size_t srcSize, int cLevel);
typedef size_t (*BenchedFunction_f)(const void* src, size_t srcSize, void* dst, size_t dstSize, void* opaque);
/* must return 0, otherwise verification is considered failed */
typedef size_t (*VerifFunction_f)(const void* processed, size_t procSize, const void* input, size_t inputSize);
typedef struct {
const char* name;
PrepFunction_f preparation_f;
BenchedFunction_f benched_f;
VerifFunction_f verif_f; /* optional */
} BenchScenario;
static BenchScenario kScenarios[] = {
{ "compress", NULL, local_ZSTD_compress, check_compressedSequences },
{ "decompress", prepDecompress, local_ZSTD_decompress, NULL },
{ "compress_freshCCtx", NULL, local_ZSTD_compress_freshCCtx, check_compressedSequences },
{ "decompressDCtx", prepDecompress, local_ZSTD_decompressDCtx, NULL },
{ "compressContinue", NULL, local_ZSTD_compressContinue, check_compressedSequences },
{ "compressContinue_extDict", NULL, local_ZSTD_compressContinue_extDict, NULL },
{ "decompressContinue", prepDecompress, local_ZSTD_decompressContinue, NULL },
{ "compressStream", NULL, local_ZSTD_compressStream, check_compressedSequences },
{ "compressStream_freshCCtx", NULL, local_ZSTD_compressStream_freshCCtx, check_compressedSequences },
{ "decompressStream", prepDecompress, local_ZSTD_decompressStream, NULL },
{ "compress2", NULL, local_ZSTD_compress2, check_compressedSequences },
{ "compressStream2, end", NULL, local_ZSTD_compressStream2_end, check_compressedSequences },
{ "compressStream2, end & short", prepShorterDstCapacity, local_ZSTD_compressStream2_end, check_compressedSequences },
{ "compressStream2, continue", NULL, local_ZSTD_compressStream2_continue, check_compressedSequences },
{ "compressStream2, -T2, continue", NULL, local_ZSTD_compress_generic_T2_continue, check_compressedSequences },
{ "compressStream2, -T2, end", NULL, local_ZSTD_compress_generic_T2_end, check_compressedSequences },
{ "compressSequences", prepSequences, local_compressSequences, check_compressedSequences },
{ "compressSequencesAndLiterals", prepSequencesAndLiterals, local_compressSequencesAndLiterals, check_compressedSequences },
{ "convertSequences (1st block)", prepConvertSequences, local_convertSequences, NULL },
{ "get1BlockSummary (1st block)", prepConvertSequences, local_get1BlockSummary, NULL },
#ifndef ZSTD_DLL_IMPORT
{ "decodeLiteralsHeader (1st block)", prepLiterals, local_ZSTD_decodeLiteralsHeader, NULL },
{ "decodeLiteralsBlock (1st block)", prepLiterals, local_ZSTD_decodeLiteralsBlock, NULL },
{ "decodeSeqHeaders (1st block)", prepSequences1stBlock, local_ZSTD_decodeSeqHeaders, NULL },
#endif
};
#define NB_SCENARIOS (sizeof(kScenarios) / sizeof(kScenarios[0]))
/*_*******************************************************
* Bench loop
*********************************************************/
static int benchMem(unsigned scenarioID,
const void* origSrc, size_t origSrcSize,
int cLevel, ZSTD_compressionParameters cparams)
{
size_t dstCapacity = 0;
void* dst = NULL;
void* prepBuff = NULL;
size_t prepBuffSize = 0;
void* payload;
const char* benchName;
BMK_benchFn_t benchFunction;
PrepFunction_f prep_f;
VerifFunction_f verif_f;
int errorcode = 0;
if (scenarioID >= NB_SCENARIOS) return 0; /* scenario doesn't exist */
benchName = kScenarios[scenarioID].name;
benchFunction = kScenarios[scenarioID].benched_f;
prep_f = kScenarios[scenarioID].preparation_f;
verif_f = kScenarios[scenarioID].verif_f;
if (prep_f == NULL) prep_f = prepCopy; /* default */
/* Initialization */
if (g_zcc==NULL) g_zcc = ZSTD_createCCtx();
if (g_zdc==NULL) g_zdc = ZSTD_createDCtx();
if (g_cstream==NULL) g_cstream = ZSTD_createCStream();
if (g_dstream==NULL) g_dstream = ZSTD_createDStream();
/* DISPLAY("params: cLevel %d, wlog %d hlog %d clog %d slog %d mml %d tlen %d strat %d \n",
cLevel, cparams->windowLog, cparams->hashLog, cparams->chainLog, cparams->searchLog,
cparams->minMatch, cparams->targetLength, cparams->strategy); */
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_compressionLevel, cLevel);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_windowLog, (int)cparams.windowLog);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_hashLog, (int)cparams.hashLog);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_chainLog, (int)cparams.chainLog);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_searchLog, (int)cparams.searchLog);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_minMatch, (int)cparams.minMatch);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_targetLength, (int)cparams.targetLength);
ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_strategy, (int)cparams.strategy);
ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_compressionLevel, cLevel);
ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_windowLog, (int)cparams.windowLog);
ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_hashLog, (int)cparams.hashLog);
ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_chainLog, (int)cparams.chainLog);
ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_searchLog, (int)cparams.searchLog);
ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_minMatch, (int)cparams.minMatch);
ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_targetLength, (int)cparams.targetLength);
ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_strategy, (int)cparams.strategy);
/* Preparation */
payload = &cparams;
{ PrepResult pr = prep_f(origSrc, origSrcSize, cLevel);
dst = pr.dst;
dstCapacity = pr.dstCapacity;
prepBuff = pr.prepBuffer;
prepBuffSize = pr.prepSize;
if (pr.fixedOrigSize) origSrcSize = pr.fixedOrigSize;
}
if (prepBuffSize==0) goto _cleanOut; /* failed preparation */
/* warming up dstBuff */
{ size_t i; for (i=0; i<dstCapacity; i++) ((BYTE*)dst)[i]=(BYTE)i; }
/* benchmark loop */
{ BMK_timedFnState_t* const tfs = BMK_createTimedFnState(g_nbIterations * 1000, 1000);
void* const avoidStrictAliasingPtr = &dst;
const void* prepSrc = prepBuff;
BMK_benchParams_t bp;
BMK_runTime_t bestResult;
bestResult.sumOfReturn = 0;
bestResult.nanoSecPerRun = (double)TIMELOOP_NANOSEC * 2000000000; /* hopefully large enough : must be larger than any potential measurement */
CONTROL(tfs != NULL);
bp.benchFn = benchFunction;
bp.benchPayload = payload;
bp.initFn = NULL;
bp.initPayload = NULL;
bp.errorFn = ZSTD_isError;
bp.blockCount = 1;
bp.srcBuffers = &prepSrc;
bp.srcSizes = &prepBuffSize;
bp.dstBuffers = (void* const*) avoidStrictAliasingPtr; /* circumvent strict aliasing warning on gcc-8,
* because gcc considers that `void* const *` and `void**` are 2 different types */
bp.dstCapacities = &dstCapacity;
bp.blockResults = NULL;
for (;;) {
BMK_runOutcome_t const bOutcome = BMK_benchTimedFn(tfs, bp);
if (!BMK_isSuccessful_runOutcome(bOutcome)) {
DISPLAY("ERROR: Scenario %u: %s \n", scenarioID, ZSTD_getErrorName(BMK_extract_errorResult(bOutcome)));
errorcode = 1;
goto _cleanOut;
}
{ BMK_runTime_t const newResult = BMK_extract_runTime(bOutcome);
if (newResult.nanoSecPerRun < bestResult.nanoSecPerRun )
bestResult.nanoSecPerRun = newResult.nanoSecPerRun;
DISPLAY("\r%2u#%-31.31s:%8.1f MB/s (%8u) ",
scenarioID, benchName,
(double)origSrcSize * TIMELOOP_NANOSEC / bestResult.nanoSecPerRun / MB_UNIT,
(unsigned)newResult.sumOfReturn );
if (verif_f) {
size_t const vRes = verif_f(dst, newResult.sumOfReturn, origSrc, origSrcSize);
if (vRes) {
DISPLAY(" validation failed ! (%zu)\n", vRes);
break;
}
}
}
if ( BMK_isCompleted_TimedFn(tfs) ) break;
}
BMK_freeTimedFnState(tfs);
}
DISPLAY("\n");
_cleanOut:
free(prepBuff);
free(dst);
ZSTD_freeCCtx(g_zcc); g_zcc=NULL;
ZSTD_freeDCtx(g_zdc); g_zdc=NULL;
ZSTD_freeCStream(g_cstream); g_cstream=NULL;
ZSTD_freeDStream(g_dstream); g_dstream=NULL;
return errorcode;
}
#define BENCH_ALL_SCENARIOS 999
/*
* if @compressibility < 0.0, use Lorem Ipsum generator
* otherwise, @compressibility is expected to be between 0.0 and 1.0
* if scenarioID == BENCH_ALL_SCENARIOS, all scenarios will be run on the sample
*/
static int benchSample(U32 scenarioID,
size_t benchedSize, double compressibility,
int cLevel, ZSTD_compressionParameters cparams)
{
/* Allocation */
void* const origBuff = malloc(benchedSize);
if (!origBuff) { DISPLAY("\nError: not enough memory!\n"); return 12; }
/* Fill buffer */
if (compressibility < 0.0) {
LOREM_genBuffer(origBuff, benchedSize, 0);
} else {
RDG_genBuffer(origBuff, benchedSize, compressibility, 0.0, 0);
}
/* bench */
DISPLAY("\r%70s\r", "");
DISPLAY(" Sample %u bytes : \n", (unsigned)benchedSize);
if (scenarioID == BENCH_ALL_SCENARIOS) {
for (scenarioID=0; scenarioID<100; scenarioID++) {
benchMem(scenarioID, origBuff, benchedSize, cLevel, cparams);
}
} else {
benchMem(scenarioID, origBuff, benchedSize, cLevel, cparams);
}
free(origBuff);
return 0;
}
static int benchFiles(U32 scenarioID,
const char** fileNamesTable, const int nbFiles,
int cLevel, ZSTD_compressionParameters cparams)
{
/* Loop for each file */
int fileIdx;
for (fileIdx=0; fileIdx<nbFiles; fileIdx++) {
const char* const inFileName = fileNamesTable[fileIdx];
FILE* const inFile = fopen( inFileName, "rb" );
size_t benchedSize;
/* Check file existence */
if (inFile==NULL) { DISPLAY( "Pb opening %s\n", inFileName); return 11; }
/* Memory allocation & restrictions */
{ U64 const inFileSize = UTIL_getFileSize(inFileName);
if (inFileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAY( "Cannot measure size of %s\n", inFileName);
fclose(inFile);
return 11;
}
benchedSize = BMK_findMaxMem(inFileSize*3) / 3;
if ((U64)benchedSize > inFileSize)
benchedSize = (size_t)inFileSize;
if ((U64)benchedSize < inFileSize) {
DISPLAY("Not enough memory for '%s' full size; testing %u MB only... \n",
inFileName, (unsigned)(benchedSize>>20));
} }
/* Alloc */
{ void* const origBuff = malloc(benchedSize);
if (!origBuff) { DISPLAY("\nError: not enough memory!\n"); fclose(inFile); return 12; }
/* Fill input buffer */
DISPLAY("Loading %s... \r", inFileName);
{ size_t const readSize = fread(origBuff, 1, benchedSize, inFile);
fclose(inFile);
if (readSize != benchedSize) {
DISPLAY("\nError: problem reading file '%s' !! \n", inFileName);
free(origBuff);
return 13;
} }
/* bench */
DISPLAY("\r%70s\r", ""); /* blank line */
DISPLAY(" %s : \n", inFileName);
if (scenarioID == BENCH_ALL_SCENARIOS) {
for (scenarioID=0; scenarioID<100; scenarioID++) {
benchMem(scenarioID, origBuff, benchedSize, cLevel, cparams);
}
} else {
benchMem(scenarioID, origBuff, benchedSize, cLevel, cparams);
}
free(origBuff);
} }
return 0;
}
/*_*******************************************************
* Argument Parsing
*********************************************************/
#define ERROR_OUT(msg) { DISPLAY("%s \n", msg); exit(1); }
static unsigned readU32FromChar(const char** stringPtr)
{
const char errorMsg[] = "error: numeric value too large";
unsigned result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9')) {
unsigned const max = (((unsigned)(-1)) / 10) - 1;
if (result > max) ERROR_OUT(errorMsg);
result *= 10;
result += (unsigned)(**stringPtr - '0');
(*stringPtr)++ ;
}
if ((**stringPtr=='K') || (**stringPtr=='M')) {
unsigned const maxK = ((unsigned)(-1)) >> 10;
if (result > maxK) ERROR_OUT(errorMsg);
result <<= 10;
if (**stringPtr=='M') {
if (result > maxK) ERROR_OUT(errorMsg);
result <<= 10;
}
(*stringPtr)++; /* skip `K` or `M` */
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
return result;
}
static int longCommandWArg(const char** stringPtr, const char* longCommand)
{
size_t const comSize = strlen(longCommand);
int const result = !strncmp(*stringPtr, longCommand, comSize);
if (result) *stringPtr += comSize;
return result;
}
/*_*******************************************************
* Command line
*********************************************************/
static int usage(const char* exename)
{
DISPLAY( "Usage :\n");
DISPLAY( " %s [arg] file1 file2 ... fileX\n", exename);
DISPLAY( "Arguments :\n");
DISPLAY( " -H/-h : Help (this text + advanced options)\n");
return 0;
}
static int usage_advanced(const char* exename)
{
usage(exename);
DISPLAY( "\nAdvanced options :\n");
DISPLAY( " -b# : test only function # \n");
DISPLAY( " -l# : benchmark functions at that compression level (default : %i)\n", DEFAULT_CLEVEL);
DISPLAY( "--zstd= : custom parameter selection. Format same as zstdcli \n");
DISPLAY( " -P# : sample compressibility (default : %.1f%%)\n", COMPRESSIBILITY_DEFAULT * 100);
DISPLAY( " -B# : sample size (default : %u)\n", (unsigned)kSampleSizeDefault);
DISPLAY( " -i# : iteration loops [1-9](default : %i)\n", NBLOOPS);
return 0;
}
static int badusage(const char* exename)
{
DISPLAY("Wrong parameters\n");
usage(exename);
return 1;
}
int main(int argc, const char** argv)
{
int argNb, filenamesStart=0, result;
const char* const exename = argv[0];
const char* input_filename = NULL;
U32 scenarioID = BENCH_ALL_SCENARIOS, main_pause = 0;
int cLevel = DEFAULT_CLEVEL;
ZSTD_compressionParameters cparams = ZSTD_getCParams(cLevel, 0, 0);
size_t sampleSize = kSampleSizeDefault;
double compressibility = COMPRESSIBILITY_DEFAULT;
DISPLAY(WELCOME_MESSAGE);
if (argc<1) return badusage(exename);
for (argNb=1; argNb<argc; argNb++) {
const char* argument = argv[argNb];
CONTROL(argument != NULL);
if (longCommandWArg(&argument, "--zstd=")) {
for ( ; ;) {
if (longCommandWArg(&argument, "windowLog=") || longCommandWArg(&argument, "wlog=")) { cparams.windowLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "chainLog=") || longCommandWArg(&argument, "clog=")) { cparams.chainLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "hashLog=") || longCommandWArg(&argument, "hlog=")) { cparams.hashLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "searchLog=") || longCommandWArg(&argument, "slog=")) { cparams.searchLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "minMatch=") || longCommandWArg(&argument, "mml=")) { cparams.minMatch = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "targetLength=") || longCommandWArg(&argument, "tlen=")) { cparams.targetLength = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "strategy=") || longCommandWArg(&argument, "strat=")) { cparams.strategy = (ZSTD_strategy)(readU32FromChar(&argument)); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "level=") || longCommandWArg(&argument, "lvl=")) { cLevel = (int)readU32FromChar(&argument); cparams = ZSTD_getCParams(cLevel, 0, 0); if (argument[0]==',') { argument++; continue; } else break; }
DISPLAY("invalid compression parameter \n");
return 1;
}
/* check end of string */
if (argument[0] != 0) {
DISPLAY("invalid --zstd= format \n");
return 1;
} else {
continue;
}
} else if (argument[0]=='-') { /* Commands (note : aggregated commands are allowed) */
argument++;
while (argument[0]!=0) {
switch(argument[0])
{
/* Display help on usage */
case 'h':
case 'H': return usage_advanced(exename);
/* Pause at the end (hidden option) */
case 'p': main_pause = 1; break;
/* Select specific algorithm to bench */
case 'b':
argument++;
scenarioID = readU32FromChar(&argument);
break;
/* Select compression level to use */
case 'l':
argument++;
cLevel = (int)readU32FromChar(&argument);
cparams = ZSTD_getCParams(cLevel, 0, 0);
break;
/* Select compressibility of synthetic sample */
case 'P':
argument++;
compressibility = (double)readU32FromChar(&argument) / 100.;
break;
/* Select size of synthetic sample */
case 'B':
argument++;
sampleSize = (size_t)readU32FromChar(&argument);
break;
/* Modify Nb Iterations */
case 'i':
argument++;
g_nbIterations = readU32FromChar(&argument);
break;
/* Unknown command */
default : return badusage(exename);
}
}
continue;
}
/* first provided filename is input */
if (!input_filename) { input_filename=argument; filenamesStart=argNb; continue; }
}
if (filenamesStart==0) /* no input file */
result = benchSample(scenarioID, sampleSize, compressibility, cLevel, cparams);
else
result = benchFiles(scenarioID, argv+filenamesStart, argc-filenamesStart, cLevel, cparams);
if (main_pause) { int unused; printf("press enter...\n"); unused = getchar(); (void)unused; }
return result;
}