/* Fuzzer test tool for zstd Copyright (C) Yann Collet 2014-2016 GPL v2 License This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. You can contact the author at : - ZSTD homepage : http://www.zstd.net */ /*-************************************ * Compiler specific **************************************/ #ifdef _MSC_VER /* Visual Studio */ # define _CRT_SECURE_NO_WARNINGS /* fgets */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ #endif /*-************************************ * Includes **************************************/ #include <stdlib.h> /* free */ #include <stdio.h> /* fgets, sscanf */ #include <sys/timeb.h> /* timeb */ #include <string.h> /* strcmp */ #include <time.h> /* clock_t */ #define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressContinue, ZSTD_compressBlock */ #include "zstd.h" /* ZSTD_VERSION_STRING */ #include "error_public.h" /* ZSTD_getErrorCode */ #include "zdict.h" /* ZDICT_trainFromBuffer */ #include "datagen.h" /* RDG_genBuffer */ #include "mem.h" #define XXH_STATIC_LINKING_ONLY #include "xxhash.h" /* XXH64 */ /*-************************************ * Constants **************************************/ #define KB *(1U<<10) #define MB *(1U<<20) #define GB *(1U<<30) static const U32 FUZ_compressibility_default = 50; static const U32 nbTestsDefault = 30000; /*-************************************ * Display Macros **************************************/ #define DISPLAY(...) fprintf(stderr, __VA_ARGS__) #define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); } static U32 g_displayLevel = 2; #define DISPLAYUPDATE(l, ...) if (g_displayLevel>=l) { \ if ((FUZ_clockSpan(g_displayClock) > g_refreshRate) || (g_displayLevel>=4)) \ { g_displayClock = clock(); DISPLAY(__VA_ARGS__); \ if (g_displayLevel>=4) fflush(stdout); } } static const clock_t g_refreshRate = CLOCKS_PER_SEC * 150 / 1000; static clock_t g_displayClock = 0; /*-******************************************************* * Fuzzer functions *********************************************************/ #define MIN(a,b) ((a)<(b)?(a):(b)) static clock_t FUZ_clockSpan(clock_t cStart) { return clock() - cStart; /* works even when overflow; max span ~ 30mn */ } #define FUZ_rotl32(x,r) ((x << r) | (x >> (32 - r))) static unsigned FUZ_rand(unsigned* src) { static const U32 prime1 = 2654435761U; static const U32 prime2 = 2246822519U; U32 rand32 = *src; rand32 *= prime1; rand32 += prime2; rand32 = FUZ_rotl32(rand32, 13); *src = rand32; return rand32 >> 5; } static unsigned FUZ_highbit32(U32 v32) { unsigned nbBits = 0; if (v32==0) return 0; while (v32) v32 >>= 1, nbBits++; return nbBits; } #define CHECK_V(var, fn) size_t const var = fn; if (ZSTD_isError(var)) goto _output_error #define CHECK(fn) { CHECK_V(err, fn); } #define CHECKPLUS(var, fn, more) { CHECK_V(var, fn); more; } static int basicUnitTests(U32 seed, double compressibility) { size_t const CNBuffSize = 5 MB; void* const CNBuffer = malloc(CNBuffSize); void* const compressedBuffer = malloc(ZSTD_compressBound(CNBuffSize)); void* const decodedBuffer = malloc(CNBuffSize); int testResult = 0; U32 testNb=0; size_t cSize; /* Create compressible noise */ if (!CNBuffer || !compressedBuffer || !decodedBuffer) { DISPLAY("Not enough memory, aborting\n"); testResult = 1; goto _end; } RDG_genBuffer(CNBuffer, CNBuffSize, compressibility, 0., seed); /* Basic tests */ DISPLAYLEVEL(4, "test%3i : ZSTD_getErrorName : ", testNb++); { const char* errorString = ZSTD_getErrorName(0); DISPLAYLEVEL(4, "OK : %s \n", errorString); } DISPLAYLEVEL(4, "test%3i : ZSTD_getErrorName with wrong value : ", testNb++); { const char* errorString = ZSTD_getErrorName(499); DISPLAYLEVEL(4, "OK : %s \n", errorString); } DISPLAYLEVEL(4, "test%3i : compress %u bytes : ", testNb++, (U32)CNBuffSize); CHECKPLUS(r, ZSTD_compress(compressedBuffer, ZSTD_compressBound(CNBuffSize), CNBuffer, CNBuffSize, 1), cSize=r ); DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100); DISPLAYLEVEL(4, "test%3i : decompressed size test : ", testNb++); { unsigned long long const rSize = ZSTD_getDecompressedSize(compressedBuffer, cSize); if (rSize != CNBuffSize) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : decompress %u bytes : ", testNb++, (U32)CNBuffSize); { size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize); if (r != CNBuffSize) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : check decompressed result : ", testNb++); { size_t u; for (u=0; u<CNBuffSize; u++) { if (((BYTE*)decodedBuffer)[u] != ((BYTE*)CNBuffer)[u]) goto _output_error;; } } DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : decompress with 1 missing byte : ", testNb++); { size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize-1); if (!ZSTD_isError(r)) goto _output_error; if (ZSTD_getErrorCode((size_t)r) != ZSTD_error_srcSize_wrong) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : decompress with 1 too much byte : ", testNb++); { size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize+1); if (!ZSTD_isError(r)) goto _output_error; if (ZSTD_getErrorCode(r) != ZSTD_error_srcSize_wrong) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); /* Dictionary and CCtx Duplication tests */ { ZSTD_CCtx* const ctxOrig = ZSTD_createCCtx(); ZSTD_CCtx* const ctxDuplicated = ZSTD_createCCtx(); ZSTD_DCtx* const dctx = ZSTD_createDCtx(); static const size_t dictSize = 551; DISPLAYLEVEL(4, "test%3i : copy context too soon : ", testNb++); { size_t const copyResult = ZSTD_copyCCtx(ctxDuplicated, ctxOrig); if (!ZSTD_isError(copyResult)) goto _output_error; } /* error must be detected */ DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : load dictionary into context : ", testNb++); CHECK( ZSTD_compressBegin_usingDict(ctxOrig, CNBuffer, dictSize, 2) ); CHECK( ZSTD_copyCCtx(ctxDuplicated, ctxOrig) ); DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : compress with flat dictionary : ", testNb++); cSize = 0; CHECKPLUS(r, ZSTD_compressEnd(ctxOrig, compressedBuffer, ZSTD_compressBound(CNBuffSize), (const char*)CNBuffer + dictSize, CNBuffSize - dictSize), cSize += r); DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100); DISPLAYLEVEL(4, "test%3i : frame built with flat dictionary should be decompressible : ", testNb++); CHECKPLUS(r, ZSTD_decompress_usingDict(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize, CNBuffer, dictSize), if (r != CNBuffSize - dictSize) goto _output_error); DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : compress with duplicated context : ", testNb++); { size_t const cSizeOrig = cSize; cSize = 0; CHECKPLUS(r, ZSTD_compressEnd(ctxDuplicated, compressedBuffer, ZSTD_compressBound(CNBuffSize), (const char*)CNBuffer + dictSize, CNBuffSize - dictSize), cSize += r); if (cSize != cSizeOrig) goto _output_error; /* should be identical ==> same size */ } DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100); DISPLAYLEVEL(4, "test%3i : frame built with duplicated context should be decompressible : ", testNb++); CHECKPLUS(r, ZSTD_decompress_usingDict(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize, CNBuffer, dictSize), if (r != CNBuffSize - dictSize) goto _output_error); DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : check content size on duplicated context : ", testNb++); { size_t const testSize = CNBuffSize / 3; { ZSTD_parameters p = ZSTD_getParams(2, testSize, dictSize); p.fParams.contentSizeFlag = 1; CHECK( ZSTD_compressBegin_advanced(ctxOrig, CNBuffer, dictSize, p, testSize-1) ); } CHECK( ZSTD_copyCCtx(ctxDuplicated, ctxOrig) ); CHECKPLUS(r, ZSTD_compressContinue(ctxDuplicated, compressedBuffer, ZSTD_compressBound(testSize), (const char*)CNBuffer + dictSize, CNBuffSize - dictSize), cSize = r); { ZSTD_frameParams fp; if (ZSTD_getFrameParams(&fp, compressedBuffer, cSize)) goto _output_error; if ((fp.frameContentSize != testSize) && (fp.frameContentSize != 0)) goto _output_error; } } DISPLAYLEVEL(4, "OK \n"); ZSTD_freeCCtx(ctxOrig); ZSTD_freeCCtx(ctxDuplicated); ZSTD_freeDCtx(dctx); } /* Dictionary and dictBuilder tests */ { ZSTD_CCtx* const cctx = ZSTD_createCCtx(); ZSTD_DCtx* const dctx = ZSTD_createDCtx(); size_t dictSize = 16 KB; void* dictBuffer = malloc(dictSize); size_t const totalSampleSize = 1 MB; size_t const sampleUnitSize = 8 KB; U32 const nbSamples = (U32)(totalSampleSize / sampleUnitSize); size_t* const samplesSizes = (size_t*) malloc(nbSamples * sizeof(size_t)); if (dictBuffer==NULL || samplesSizes==NULL) { free(dictBuffer); free(samplesSizes); goto _output_error; } DISPLAYLEVEL(4, "test%3i : dictBuilder : ", testNb++); { U32 u; for (u=0; u<nbSamples; u++) samplesSizes[u] = sampleUnitSize; } dictSize = ZDICT_trainFromBuffer(dictBuffer, dictSize, CNBuffer, samplesSizes, nbSamples); if (ZDICT_isError(dictSize)) goto _output_error; DISPLAYLEVEL(4, "OK, created dictionary of size %u \n", (U32)dictSize); DISPLAYLEVEL(4, "test%3i : compress with dictionary : ", testNb++); cSize = ZSTD_compress_usingDict(cctx, compressedBuffer, ZSTD_compressBound(CNBuffSize), CNBuffer, CNBuffSize, dictBuffer, dictSize, 4); if (ZSTD_isError(cSize)) goto _output_error; DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100); DISPLAYLEVEL(4, "test%3i : frame built with dictionary should be decompressible : ", testNb++); CHECKPLUS(r, ZSTD_decompress_usingDict(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize, dictBuffer, dictSize), if (r != CNBuffSize) goto _output_error); DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : compress without dictID : ", testNb++); { ZSTD_parameters p = ZSTD_getParams(3, CNBuffSize, dictSize); p.fParams.noDictIDFlag = 1; cSize = ZSTD_compress_advanced(cctx, compressedBuffer, ZSTD_compressBound(CNBuffSize), CNBuffer, CNBuffSize, dictBuffer, dictSize, p); if (ZSTD_isError(cSize)) goto _output_error; } DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100); DISPLAYLEVEL(4, "test%3i : frame built without dictID should be decompressible : ", testNb++); CHECKPLUS(r, ZSTD_decompress_usingDict(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize, dictBuffer, dictSize), if (r != CNBuffSize) goto _output_error); DISPLAYLEVEL(4, "OK \n"); ZSTD_freeCCtx(cctx); ZSTD_freeDCtx(dctx); free(dictBuffer); free(samplesSizes); } /* Decompression defense tests */ DISPLAYLEVEL(4, "test%3i : Check input length for magic number : ", testNb++); { size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, CNBuffer, 3); if (!ZSTD_isError(r)) goto _output_error; if (r != (size_t)-ZSTD_error_srcSize_wrong) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : Check magic Number : ", testNb++); ((char*)(CNBuffer))[0] = 1; { size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, CNBuffer, 4); if (!ZSTD_isError(r)) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); /* block API tests */ { ZSTD_CCtx* const cctx = ZSTD_createCCtx(); ZSTD_DCtx* const dctx = ZSTD_createDCtx(); static const size_t dictSize = 65 KB; static const size_t blockSize = 100 KB; /* won't cause pb with small dict size */ size_t cSize2; /* basic block compression */ DISPLAYLEVEL(4, "test%3i : Block compression test : ", testNb++); CHECK( ZSTD_compressBegin(cctx, 5) ); cSize = ZSTD_compressBlock(cctx, compressedBuffer, ZSTD_compressBound(blockSize), CNBuffer, blockSize); if (ZSTD_isError(cSize)) goto _output_error; DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : Block decompression test : ", testNb++); CHECK( ZSTD_decompressBegin(dctx) ); { CHECK_V(r, ZSTD_decompressBlock(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize) ); if (r != blockSize) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); /* dictionary block compression */ DISPLAYLEVEL(4, "test%3i : Dictionary Block compression test : ", testNb++); CHECK( ZSTD_compressBegin_usingDict(cctx, CNBuffer, dictSize, 5) ); cSize = ZSTD_compressBlock(cctx, compressedBuffer, ZSTD_compressBound(blockSize), (char*)CNBuffer+dictSize, blockSize); if (ZSTD_isError(cSize)) goto _output_error; cSize2 = ZSTD_compressBlock(cctx, (char*)compressedBuffer+cSize, ZSTD_compressBound(blockSize), (char*)CNBuffer+dictSize+blockSize, blockSize); if (ZSTD_isError(cSize2)) goto _output_error; memcpy((char*)compressedBuffer+cSize, (char*)CNBuffer+dictSize+blockSize, blockSize); /* fake non-compressed block */ cSize2 = ZSTD_compressBlock(cctx, (char*)compressedBuffer+cSize+blockSize, ZSTD_compressBound(blockSize), (char*)CNBuffer+dictSize+2*blockSize, blockSize); if (ZSTD_isError(cSize2)) goto _output_error; DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : Dictionary Block decompression test : ", testNb++); CHECK( ZSTD_decompressBegin_usingDict(dctx, CNBuffer, dictSize) ); { CHECK_V( r, ZSTD_decompressBlock(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize) ); if (r != blockSize) goto _output_error; } ZSTD_insertBlock(dctx, (char*)decodedBuffer+blockSize, blockSize); /* insert non-compressed block into dctx history */ { CHECK_V( r, ZSTD_decompressBlock(dctx, (char*)decodedBuffer+2*blockSize, CNBuffSize, (char*)compressedBuffer+cSize+blockSize, cSize2) ); if (r != blockSize) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); ZSTD_freeCCtx(cctx); ZSTD_freeDCtx(dctx); } /* long rle test */ { size_t sampleSize = 0; DISPLAYLEVEL(4, "test%3i : Long RLE test : ", testNb++); RDG_genBuffer(CNBuffer, sampleSize, compressibility, 0., seed+1); memset((char*)CNBuffer+sampleSize, 'B', 256 KB - 1); sampleSize += 256 KB - 1; RDG_genBuffer((char*)CNBuffer+sampleSize, 96 KB, compressibility, 0., seed+2); sampleSize += 96 KB; cSize = ZSTD_compress(compressedBuffer, ZSTD_compressBound(sampleSize), CNBuffer, sampleSize, 1); if (ZSTD_isError(cSize)) goto _output_error; { CHECK_V(regenSize, ZSTD_decompress(decodedBuffer, sampleSize, compressedBuffer, cSize)); if (regenSize!=sampleSize) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); } /* All zeroes test (test bug #137) */ #define ZEROESLENGTH 100 DISPLAYLEVEL(4, "test%3i : compress %u zeroes : ", testNb++, ZEROESLENGTH); memset(CNBuffer, 0, ZEROESLENGTH); { CHECK_V(r, ZSTD_compress(compressedBuffer, ZSTD_compressBound(ZEROESLENGTH), CNBuffer, ZEROESLENGTH, 1) ); cSize = r; } DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/ZEROESLENGTH*100); DISPLAYLEVEL(4, "test%3i : decompress %u zeroes : ", testNb++, ZEROESLENGTH); { CHECK_V(r, ZSTD_decompress(decodedBuffer, ZEROESLENGTH, compressedBuffer, cSize) ); if (r != ZEROESLENGTH) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); /* nbSeq limit test */ #define _3BYTESTESTLENGTH 131000 #define NB3BYTESSEQLOG 9 #define NB3BYTESSEQ (1 << NB3BYTESSEQLOG) #define NB3BYTESSEQMASK (NB3BYTESSEQ-1) /* creates a buffer full of 3-bytes sequences */ { BYTE _3BytesSeqs[NB3BYTESSEQ][3]; U32 rSeed = 1; /* create batch of 3-bytes sequences */ { int i; for (i=0; i < NB3BYTESSEQ; i++) { _3BytesSeqs[i][0] = (BYTE)(FUZ_rand(&rSeed) & 255); _3BytesSeqs[i][1] = (BYTE)(FUZ_rand(&rSeed) & 255); _3BytesSeqs[i][2] = (BYTE)(FUZ_rand(&rSeed) & 255); } } /* randomly fills CNBuffer with prepared 3-bytes sequences */ { int i; for (i=0; i < _3BYTESTESTLENGTH; i += 3) { /* note : CNBuffer size > _3BYTESTESTLENGTH+3 */ U32 const id = FUZ_rand(&rSeed) & NB3BYTESSEQMASK; ((BYTE*)CNBuffer)[i+0] = _3BytesSeqs[id][0]; ((BYTE*)CNBuffer)[i+1] = _3BytesSeqs[id][1]; ((BYTE*)CNBuffer)[i+2] = _3BytesSeqs[id][2]; } } } DISPLAYLEVEL(4, "test%3i : compress lots 3-bytes sequences : ", testNb++); { CHECK_V(r, ZSTD_compress(compressedBuffer, ZSTD_compressBound(_3BYTESTESTLENGTH), CNBuffer, _3BYTESTESTLENGTH, 19) ); cSize = r; } DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/_3BYTESTESTLENGTH*100); DISPLAYLEVEL(4, "test%3i : decompress lots 3-bytes sequence : ", testNb++); { CHECK_V(r, ZSTD_decompress(decodedBuffer, _3BYTESTESTLENGTH, compressedBuffer, cSize) ); if (r != _3BYTESTESTLENGTH) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); _end: free(CNBuffer); free(compressedBuffer); free(decodedBuffer); return testResult; _output_error: testResult = 1; DISPLAY("Error detected in Unit tests ! \n"); goto _end; } static size_t findDiff(const void* buf1, const void* buf2, size_t max) { const BYTE* b1 = (const BYTE*)buf1; const BYTE* b2 = (const BYTE*)buf2; size_t u; for (u=0; u<max; u++) { if (b1[u] != b2[u]) break; } return u; } static size_t FUZ_rLogLength(U32* seed, U32 logLength) { size_t const lengthMask = ((size_t)1 << logLength) - 1; return (lengthMask+1) + (FUZ_rand(seed) & lengthMask); } static size_t FUZ_randomLength(U32* seed, U32 maxLog) { U32 const logLength = FUZ_rand(seed) % maxLog; return FUZ_rLogLength(seed, logLength); } #undef CHECK #define CHECK(cond, ...) if (cond) { DISPLAY("Error => "); DISPLAY(__VA_ARGS__); \ DISPLAY(" (seed %u, test nb %u) \n", seed, testNb); goto _output_error; } static int fuzzerTests(U32 seed, U32 nbTests, unsigned startTest, U32 const maxDurationS, double compressibility) { static const U32 maxSrcLog = 23; static const U32 maxSampleLog = 22; size_t const srcBufferSize = (size_t)1<<maxSrcLog; size_t const dstBufferSize = (size_t)1<<maxSampleLog; size_t const cBufferSize = ZSTD_compressBound(dstBufferSize); BYTE* cNoiseBuffer[5]; BYTE* srcBuffer; /* jumping pointer */ BYTE* const cBuffer = (BYTE*) malloc (cBufferSize); BYTE* const dstBuffer = (BYTE*) malloc (dstBufferSize); BYTE* const mirrorBuffer = (BYTE*) malloc (dstBufferSize); ZSTD_CCtx* const refCtx = ZSTD_createCCtx(); ZSTD_CCtx* const ctx = ZSTD_createCCtx(); ZSTD_DCtx* const dctx = ZSTD_createDCtx(); U32 result = 0; U32 testNb = 0; U32 coreSeed = seed, lseed = 0; clock_t const startClock = clock(); clock_t const maxClockSpan = maxDurationS * CLOCKS_PER_SEC; /* allocation */ cNoiseBuffer[0] = (BYTE*)malloc (srcBufferSize); cNoiseBuffer[1] = (BYTE*)malloc (srcBufferSize); cNoiseBuffer[2] = (BYTE*)malloc (srcBufferSize); cNoiseBuffer[3] = (BYTE*)malloc (srcBufferSize); cNoiseBuffer[4] = (BYTE*)malloc (srcBufferSize); CHECK (!cNoiseBuffer[0] || !cNoiseBuffer[1] || !cNoiseBuffer[2] || !cNoiseBuffer[3] || !cNoiseBuffer[4] || !dstBuffer || !mirrorBuffer || !cBuffer || !refCtx || !ctx || !dctx, "Not enough memory, fuzzer tests cancelled"); /* Create initial samples */ RDG_genBuffer(cNoiseBuffer[0], srcBufferSize, 0.00, 0., coreSeed); /* pure noise */ RDG_genBuffer(cNoiseBuffer[1], srcBufferSize, 0.05, 0., coreSeed); /* barely compressible */ RDG_genBuffer(cNoiseBuffer[2], srcBufferSize, compressibility, 0., coreSeed); RDG_genBuffer(cNoiseBuffer[3], srcBufferSize, 0.95, 0., coreSeed); /* highly compressible */ RDG_genBuffer(cNoiseBuffer[4], srcBufferSize, 1.00, 0., coreSeed); /* sparse content */ srcBuffer = cNoiseBuffer[2]; /* catch up testNb */ for (testNb=1; testNb < startTest; testNb++) FUZ_rand(&coreSeed); /* main test loop */ for ( ; (testNb <= nbTests) || (FUZ_clockSpan(startClock) < maxClockSpan); testNb++ ) { size_t sampleSize, maxTestSize, totalTestSize; size_t cSize, totalCSize, totalGenSize; XXH64_state_t xxhState; U64 crcOrig; BYTE* sampleBuffer; const BYTE* dict; size_t dictSize; /* notification */ if (nbTests >= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); } else { DISPLAYUPDATE(2, "\r%6u ", testNb); } FUZ_rand(&coreSeed); { U32 const prime1 = 2654435761U; lseed = coreSeed ^ prime1; } /* srcBuffer selection [0-4] */ { U32 buffNb = FUZ_rand(&lseed) & 0x7F; if (buffNb & 7) buffNb=2; /* most common : compressible (P) */ else { buffNb >>= 3; if (buffNb & 7) { const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */ buffNb = tnb[buffNb >> 3]; } else { const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */ buffNb = tnb[buffNb >> 3]; } } srcBuffer = cNoiseBuffer[buffNb]; } /* select src segment */ sampleSize = FUZ_randomLength(&lseed, maxSampleLog); /* create sample buffer (to catch read error with valgrind & sanitizers) */ sampleBuffer = (BYTE*)malloc(sampleSize); CHECK(sampleBuffer==NULL, "not enough memory for sample buffer"); { size_t const sampleStart = FUZ_rand(&lseed) % (srcBufferSize - sampleSize); memcpy(sampleBuffer, srcBuffer + sampleStart, sampleSize); } crcOrig = XXH64(sampleBuffer, sampleSize, 0); /* compression tests */ { unsigned const cLevel = (FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (FUZ_highbit32((U32)sampleSize)/3))) + 1; cSize = ZSTD_compressCCtx(ctx, cBuffer, cBufferSize, sampleBuffer, sampleSize, cLevel); CHECK(ZSTD_isError(cSize), "ZSTD_compressCCtx failed"); /* compression failure test : too small dest buffer */ if (cSize > 3) { const size_t missing = (FUZ_rand(&lseed) % (cSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ const size_t tooSmallSize = cSize - missing; const U32 endMark = 0x4DC2B1A9; memcpy(dstBuffer+tooSmallSize, &endMark, 4); { size_t const errorCode = ZSTD_compressCCtx(ctx, dstBuffer, tooSmallSize, sampleBuffer, sampleSize, cLevel); CHECK(!ZSTD_isError(errorCode), "ZSTD_compressCCtx should have failed ! (buffer too small : %u < %u)", (U32)tooSmallSize, (U32)cSize); } { U32 endCheck; memcpy(&endCheck, dstBuffer+tooSmallSize, 4); CHECK(endCheck != endMark, "ZSTD_compressCCtx : dst buffer overflow"); } } } /* Decompressed size test */ { unsigned long long const rSize = ZSTD_getDecompressedSize(cBuffer, cSize); CHECK(rSize != sampleSize, "decompressed size incorrect"); } /* frame header decompression test */ { ZSTD_frameParams dParams; size_t const check = ZSTD_getFrameParams(&dParams, cBuffer, cSize); CHECK(ZSTD_isError(check), "Frame Parameters extraction failed"); CHECK(dParams.frameContentSize != sampleSize, "Frame content size incorrect"); } /* successful decompression test */ { size_t const margin = (FUZ_rand(&lseed) & 1) ? 0 : (FUZ_rand(&lseed) & 31) + 1; size_t const dSize = ZSTD_decompress(dstBuffer, sampleSize + margin, cBuffer, cSize); CHECK(dSize != sampleSize, "ZSTD_decompress failed (%s) (srcSize : %u ; cSize : %u)", ZSTD_getErrorName(dSize), (U32)sampleSize, (U32)cSize); { U64 const crcDest = XXH64(dstBuffer, sampleSize, 0); CHECK(crcOrig != crcDest, "decompression result corrupted (pos %u / %u)", (U32)findDiff(sampleBuffer, dstBuffer, sampleSize), (U32)sampleSize); } } free(sampleBuffer); /* no longer useful after this point */ /* truncated src decompression test */ { size_t const missing = (FUZ_rand(&lseed) % (cSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ size_t const tooSmallSize = cSize - missing; void* cBufferTooSmall = malloc(tooSmallSize); /* valgrind will catch read overflows */ CHECK(cBufferTooSmall == NULL, "not enough memory !"); memcpy(cBufferTooSmall, cBuffer, tooSmallSize); { size_t const errorCode = ZSTD_decompress(dstBuffer, dstBufferSize, cBufferTooSmall, tooSmallSize); CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed ! (truncated src buffer)"); } free(cBufferTooSmall); } /* too small dst decompression test */ if (sampleSize > 3) { size_t const missing = (FUZ_rand(&lseed) % (sampleSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ size_t const tooSmallSize = sampleSize - missing; static const BYTE token = 0xA9; dstBuffer[tooSmallSize] = token; { size_t const errorCode = ZSTD_decompress(dstBuffer, tooSmallSize, cBuffer, cSize); CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed : %u > %u (dst buffer too small)", (U32)errorCode, (U32)tooSmallSize); } CHECK(dstBuffer[tooSmallSize] != token, "ZSTD_decompress : dst buffer overflow"); } /* noisy src decompression test */ if (cSize > 6) { /* insert noise into src */ { U32 const maxNbBits = FUZ_highbit32((U32)(cSize-4)); size_t pos = 4; /* preserve magic number (too easy to detect) */ for (;;) { /* keep some original src */ { U32 const nbBits = FUZ_rand(&lseed) % maxNbBits; size_t const mask = (1<<nbBits) - 1; size_t const skipLength = FUZ_rand(&lseed) & mask; pos += skipLength; } if (pos <= cSize) break; /* add noise */ { U32 const nbBitsCodes = FUZ_rand(&lseed) % maxNbBits; U32 const nbBits = nbBitsCodes ? nbBitsCodes-1 : 0; size_t const mask = (1<<nbBits) - 1; size_t const rNoiseLength = (FUZ_rand(&lseed) & mask) + 1; size_t const noiseLength = MIN(rNoiseLength, cSize-pos); size_t const noiseStart = FUZ_rand(&lseed) % (srcBufferSize - noiseLength); memcpy(cBuffer + pos, srcBuffer + noiseStart, noiseLength); pos += noiseLength; } } } /* decompress noisy source */ { U32 const endMark = 0xA9B1C3D6; memcpy(dstBuffer+sampleSize, &endMark, 4); { size_t const decompressResult = ZSTD_decompress(dstBuffer, sampleSize, cBuffer, cSize); /* result *may* be an unlikely success, but even then, it must strictly respect dst buffer boundaries */ CHECK((!ZSTD_isError(decompressResult)) && (decompressResult>sampleSize), "ZSTD_decompress on noisy src : result is too large : %u > %u (dst buffer)", (U32)decompressResult, (U32)sampleSize); } { U32 endCheck; memcpy(&endCheck, dstBuffer+sampleSize, 4); CHECK(endMark!=endCheck, "ZSTD_decompress on noisy src : dst buffer overflow"); } } } /* noisy src decompression test */ /*===== Streaming compression test, scattered segments and dictionary =====*/ { U32 const testLog = FUZ_rand(&lseed) % maxSrcLog; int const cLevel = (FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (testLog/3))) + 1; maxTestSize = FUZ_rLogLength(&lseed, testLog); if (maxTestSize >= dstBufferSize) maxTestSize = dstBufferSize-1; dictSize = FUZ_randomLength(&lseed, maxSampleLog); /* needed also for decompression */ dict = srcBuffer + (FUZ_rand(&lseed) % (srcBufferSize - dictSize)); if (FUZ_rand(&lseed) & 0xF) { size_t const errorCode = ZSTD_compressBegin_usingDict(refCtx, dict, dictSize, cLevel); CHECK (ZSTD_isError(errorCode), "ZSTD_compressBegin_usingDict error : %s", ZSTD_getErrorName(errorCode)); } else { ZSTD_compressionParameters const cPar = ZSTD_getCParams(cLevel, 0, dictSize); ZSTD_frameParameters const fpar = { FUZ_rand(&lseed)&1 /* contentSizeFlag */, !(FUZ_rand(&lseed)&3) /* contentChecksumFlag*/, 0 /*NodictID*/ }; /* note : since dictionary is fake, dictIDflag has no impact */ ZSTD_parameters p; size_t errorCode; p.cParams = cPar; p.fParams = fpar; errorCode = ZSTD_compressBegin_advanced(refCtx, dict, dictSize, p, 0); CHECK (ZSTD_isError(errorCode), "ZSTD_compressBegin_advanced error : %s", ZSTD_getErrorName(errorCode)); } { size_t const errorCode = ZSTD_copyCCtx(ctx, refCtx); CHECK (ZSTD_isError(errorCode), "ZSTD_copyCCtx error : %s", ZSTD_getErrorName(errorCode)); } } XXH64_reset(&xxhState, 0); { U32 const nbChunks = (FUZ_rand(&lseed) & 127) + 2; U32 n; for (totalTestSize=0, cSize=0, n=0 ; n<nbChunks ; n++) { size_t const segmentSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const segmentStart = FUZ_rand(&lseed) % (srcBufferSize - segmentSize); if (cBufferSize-cSize < ZSTD_compressBound(segmentSize)) break; /* avoid invalid dstBufferTooSmall */ if (totalTestSize+segmentSize > maxTestSize) break; { size_t const compressResult = ZSTD_compressContinue(ctx, cBuffer+cSize, cBufferSize-cSize, srcBuffer+segmentStart, segmentSize); CHECK (ZSTD_isError(compressResult), "multi-segments compression error : %s", ZSTD_getErrorName(compressResult)); cSize += compressResult; } XXH64_update(&xxhState, srcBuffer+segmentStart, segmentSize); memcpy(mirrorBuffer + totalTestSize, srcBuffer+segmentStart, segmentSize); totalTestSize += segmentSize; } } { size_t const flushResult = ZSTD_compressEnd(ctx, cBuffer+cSize, cBufferSize-cSize, NULL, 0); CHECK (ZSTD_isError(flushResult), "multi-segments epilogue error : %s", ZSTD_getErrorName(flushResult)); cSize += flushResult; } crcOrig = XXH64_digest(&xxhState); /* streaming decompression test */ if (dictSize<8) dictSize=0, dict=NULL; /* disable dictionary */ { size_t const errorCode = ZSTD_decompressBegin_usingDict(dctx, dict, dictSize); CHECK (ZSTD_isError(errorCode), "ZSTD_decompressBegin_usingDict error : %s", ZSTD_getErrorName(errorCode)); } totalCSize = 0; totalGenSize = 0; while (totalCSize < cSize) { size_t const inSize = ZSTD_nextSrcSizeToDecompress(dctx); size_t const genSize = ZSTD_decompressContinue(dctx, dstBuffer+totalGenSize, dstBufferSize-totalGenSize, cBuffer+totalCSize, inSize); CHECK (ZSTD_isError(genSize), "ZSTD_decompressContinue error : %s", ZSTD_getErrorName(genSize)); totalGenSize += genSize; totalCSize += inSize; } CHECK (ZSTD_nextSrcSizeToDecompress(dctx) != 0, "frame not fully decoded"); CHECK (totalGenSize != totalTestSize, "streaming decompressed data : wrong size") CHECK (totalCSize != cSize, "compressed data should be fully read") { U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0); if (crcDest!=crcOrig) { size_t const errorPos = findDiff(mirrorBuffer, dstBuffer, totalTestSize); CHECK (1, "streaming decompressed data corrupted : byte %u / %u (%02X!=%02X)", (U32)errorPos, (U32)totalTestSize, dstBuffer[errorPos], mirrorBuffer[errorPos]); } } } /* for ( ; (testNb <= nbTests) */ DISPLAY("\r%u fuzzer tests completed \n", testNb-1); _cleanup: ZSTD_freeCCtx(refCtx); ZSTD_freeCCtx(ctx); ZSTD_freeDCtx(dctx); free(cNoiseBuffer[0]); free(cNoiseBuffer[1]); free(cNoiseBuffer[2]); free(cNoiseBuffer[3]); free(cNoiseBuffer[4]); free(cBuffer); free(dstBuffer); free(mirrorBuffer); return result; _output_error: result = 1; goto _cleanup; } /*_******************************************************* * Command line *********************************************************/ int FUZ_usage(const char* programName) { DISPLAY( "Usage :\n"); DISPLAY( " %s [args]\n", programName); DISPLAY( "\n"); DISPLAY( "Arguments :\n"); DISPLAY( " -i# : Nb of tests (default:%u) \n", nbTestsDefault); DISPLAY( " -s# : Select seed (default:prompt user)\n"); DISPLAY( " -t# : Select starting test number (default:0)\n"); DISPLAY( " -P# : Select compressibility in %% (default:%u%%)\n", FUZ_compressibility_default); DISPLAY( " -v : verbose\n"); DISPLAY( " -p : pause at the end\n"); DISPLAY( " -h : display help and exit\n"); return 0; } int main(int argc, const char** argv) { U32 seed=0; int seedset=0; int argNb; int nbTests = nbTestsDefault; int testNb = 0; U32 proba = FUZ_compressibility_default; int result=0; U32 mainPause = 0; U32 maxDuration = 0; const char* programName = argv[0]; /* Check command line */ for (argNb=1; argNb<argc; argNb++) { const char* argument = argv[argNb]; if(!argument) continue; /* Protection if argument empty */ /* Handle commands. Aggregated commands are allowed */ if (argument[0]=='-') { argument++; while (*argument!=0) { switch(*argument) { case 'h': return FUZ_usage(programName); case 'v': argument++; g_displayLevel=4; break; case 'q': argument++; g_displayLevel--; break; case 'p': /* pause at the end */ argument++; mainPause = 1; break; case 'i': argument++; maxDuration=0; nbTests=0; while ((*argument>='0') && (*argument<='9')) { nbTests *= 10; nbTests += *argument - '0'; argument++; } break; case 'T': argument++; nbTests=0; maxDuration=0; while ((*argument>='0') && (*argument<='9')) { maxDuration *= 10; maxDuration += *argument - '0'; argument++; } if (*argument=='m') maxDuration *=60, argument++; if (*argument=='n') argument++; break; case 's': argument++; seed=0; seedset=1; while ((*argument>='0') && (*argument<='9')) { seed *= 10; seed += *argument - '0'; argument++; } break; case 't': argument++; testNb=0; while ((*argument>='0') && (*argument<='9')) { testNb *= 10; testNb += *argument - '0'; argument++; } break; case 'P': /* compressibility % */ argument++; proba=0; while ((*argument>='0') && (*argument<='9')) { proba *= 10; proba += *argument - '0'; argument++; } if (proba>100) proba=100; break; default: return FUZ_usage(programName); } } } } /* for (argNb=1; argNb<argc; argNb++) */ /* Get Seed */ DISPLAY("Starting zstd tester (%i-bits, %s)\n", (int)(sizeof(size_t)*8), ZSTD_VERSION_STRING); if (!seedset) { time_t const t = time(NULL); U32 const h = XXH32(&t, sizeof(t), 1); seed = h % 10000; } DISPLAY("Seed = %u\n", seed); if (proba!=FUZ_compressibility_default) DISPLAY("Compressibility : %u%%\n", proba); if (nbTests < testNb) nbTests = testNb; if (testNb==0) result = basicUnitTests(0, ((double)proba) / 100); /* constant seed for predictability */ if (!result) result = fuzzerTests(seed, nbTests, testNb, maxDuration, ((double)proba) / 100); if (mainPause) { int unused; DISPLAY("Press Enter \n"); unused = getchar(); (void)unused; } return result; }