There was no memory barrier between writing and reading `done`, which
would allow reordering to cause races. With so little data to handle
after each job completes, we might as well just join.
Previously, parallel_compression would only handle each job's results
after ALL jobs were successfully queued. This caused all src/dst
buffers to remain in memory until then!
It also polled to check whether a job completed, which is racy without
any memory barrier.
Now, we flush results as a side effect of completing a job. Completed
frames are placed in an ordered linked-list, and any eligible frames
are flushed. This may be zero or multiple frames, depending on the
order in which jobs finish.
This design also makes it simple to support streaming input, so that
is now available. Just pass `-` as the filename, and stdin/stdout will
be used for I/O.
Some of these examples are intended to be parallel, and don't make
sense to link against single-threaded libzstd.
The filename of mt and nomt libzstd are identical, so it's still
possible to link against the single-threaded one, just harder.
Some older Android libc implementations don't support `fseeko` or `ftello`.
This commit adds a new compile-time macro `LIBC_NO_FSEEKO` as well as a usage in CMake for old Android APIs.
Do some include shuffling for `**.h` files within lib, programs, tests, and zlibWrapper.
`lib/legacy` and `lib/deprecated` are untouched.
`#include`s within `extern "C"` blocks in .cpp files are untouched.
todo: shuffling for `xxhash.h`
To the best of my knowledge:
* `_WIN32` and `_WIN64` are defined by the compiler,
* `WIN32` and `WIN64` are defined by the user, to indicate whatever
the user chooses them to indicate. They mean 32-bit and 64-bit Windows
compilation by convention only.
See:
https://accu.org/journals/overload/24/132/wilson_2223/
Windows compilers in general, and MSVC in particular, have been defining
`_WIN32` and `_WIN64` for a long time, provably at least since Visual Studio
2015, and in practice as early as in the days of 16-bit Windows.
See:
https://learn.microsoft.com/en-us/cpp/preprocessor/predefined-macros?view=msvc-140https://learn.microsoft.com/en-us/windows/win32/winprog64/the-tools
Tests used to be inconsistent, sometimes testing `_WIN32`, sometimes
`_WIN32` and `WIN32`. This brings consistency to Windows detection.
This does the following:
1. Compress test data into multiple frames
2. Perform a series of small decompressions and seeks forward, checking
that compressed data wasn't reread unnecessarily.
3. Perform some seeks forward and backward to ensure correctness.
When decompressing a seekable file, if seeking forward within
a frame (by issuing multiple ZSTD_seekable_decompress calls
with a small gap between them), the frame will be unnecessarily
reread from the beginning. This patch makes it continue using
the current frame data and simply skip over the unneeded bytes.
As reported by @P-E-Meunier in https://github.com/facebook/zstd/issues/2662#issuecomment-1443836186,
seekable format ingestion speed can be particularly slow
when selected `FRAME_SIZE` is very small,
especially in combination with the recent row_hash compression mode.
The specific scenario mentioned was `pijul`,
using frame sizes of 256 bytes and level 10.
This is improved in this PR,
by providing approximate parameter adaptation to the compression process.
Tested locally on a M1 laptop,
ingestion of `enwik8` using `pijul` parameters
went from 35sec. (before this PR) to 2.5sec (with this PR).
For the specific corner case of a file full of zeroes,
this is even more pronounced, going from 45sec. to 0.5sec.
These benefits are unrelated to (and come on top of) other improvement efforts currently being made by @yoniko for the row_hash compression method specifically.
The `seekable_compress` test program has been updated to allows setting compression level,
in order to produce these performance results.
```
for f in $(find . \( -path ./.git -o -path ./tests/fuzz/corpora \) -prune -o -type f);
do
sed -i 's/Facebook, Inc\./Meta Platforms, Inc. and affiliates./' $f;
done
```
* seekable_format: fix from-file reading (not in-memory)
It tries to check the buffer boundary, but there is no buffer for
from-file reading.
* seekable_decompression: break when ZSTD_seekable_decompress() returns zero
* seekable_decompression_mem: break when ZSTD_seekable_decompress() returns zero
* seekable_format: cap the offset+len up to the last dOffset
This will allow to read the whole file w/o gotting corruption error if
the offset is more then the data left in file, i.e.:
$ ./seekable_compression seekable_compression.c 8192 | head
$ zstd -cdq seekable_compression.c.zst | wc -c
4737
Before this patch:
$ ./seekable_decompression seekable_compression.c.zst 0 10000000 | wc -c
ZSTD_seekable_decompress() error : Corrupted block detected
0
After:
$ ./seekable_decompression seekable_compression.c.zst 0 10000000 | wc -c
4737
These are replaced by the corresponding context resets. When
converting resetCStream, CCtx_setPledgedSrcSize isn't called if the
source size is "unknown".
This helps reduce the reliance on "static only" symbols, as well as
reducing the use of deprecated functions.
Signed-off-by: Stephen Kitt <steve@sk2.org>