1
0
mirror of https://github.com/facebook/zstd.git synced 2025-07-30 22:23:13 +03:00

refactored fuzzer tests for sequence compression api

add explicit delimiter mode to libfuzzer test
This commit is contained in:
Yann Collet
2022-01-23 22:08:20 -08:00
committed by Yann Collet
parent 87dcd3326a
commit fc2ea97442
4 changed files with 144 additions and 107 deletions

View File

@ -26,8 +26,8 @@
#include "zstd_helpers.h"
#include "fuzz_data_producer.h"
static ZSTD_CCtx *cctx = NULL;
static ZSTD_DCtx *dctx = NULL;
static ZSTD_CCtx* cctx = NULL;
static ZSTD_DCtx* dctx = NULL;
static void* literalsBuffer = NULL;
static void* generatedSrc = NULL;
static ZSTD_Sequence* generatedSequences = NULL;
@ -55,7 +55,7 @@ static uint32_t FUZZ_RDG_rand(uint32_t* src)
/* Make a pseudorandom string - this simple function exists to avoid
* taking a dependency on datagen.h to have RDG_genBuffer().
*/
static char *generatePseudoRandomString(char *str, size_t size) {
static char* generatePseudoRandomString(char* str, size_t size) {
const char charset[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJK1234567890!@#$^&*()_";
uint32_t seed = 0;
if (size) {
@ -69,7 +69,10 @@ static char *generatePseudoRandomString(char *str, size_t size) {
/* Returns size of source buffer */
static size_t decodeSequences(void* dst, size_t nbSequences,
size_t literalsSize, const void* dict, size_t dictSize) {
size_t literalsSize,
const void* dict, size_t dictSize,
ZSTD_sequenceFormat_e mode)
{
const uint8_t* litPtr = literalsBuffer;
const uint8_t* const litBegin = literalsBuffer;
const uint8_t* const litEnd = litBegin + literalsSize;
@ -78,21 +81,20 @@ static size_t decodeSequences(void* dst, size_t nbSequences,
const uint8_t* const oend = (uint8_t*)dst + ZSTD_FUZZ_GENERATED_SRC_MAXSIZE;
size_t generatedSrcBufferSize = 0;
size_t bytesWritten = 0;
uint32_t lastLLSize;
for (size_t i = 0; i < nbSequences; ++i) {
FUZZ_ASSERT(generatedSequences[i].matchLength != 0);
FUZZ_ASSERT(generatedSequences[i].offset != 0);
/* block boundary */
if (generatedSequences[i].offset == 0)
FUZZ_ASSERT(generatedSequences[i].matchLength == 0);
if (litPtr + generatedSequences[i].litLength > litEnd) {
litPtr = litBegin;
}
ZSTD_memcpy(op, litPtr, generatedSequences[i].litLength);
memcpy(op, litPtr, generatedSequences[i].litLength);
bytesWritten += generatedSequences[i].litLength;
op += generatedSequences[i].litLength;
litPtr += generatedSequences[i].litLength;
FUZZ_ASSERT(generatedSequences[i].offset != 0);
/* Copy over the match */
{ size_t matchLength = generatedSequences[i].matchLength;
size_t j = 0;
@ -109,7 +111,7 @@ static size_t decodeSequences(void* dst, size_t nbSequences,
}
}
for (; j < matchLength; ++j) {
op[j] = op[j-(int)generatedSequences[i].offset];
op[j] = op[j - generatedSequences[i].offset];
}
op += j;
FUZZ_ASSERT(generatedSequences[i].matchLength == j + k);
@ -118,55 +120,65 @@ static size_t decodeSequences(void* dst, size_t nbSequences,
}
generatedSrcBufferSize = bytesWritten;
FUZZ_ASSERT(litPtr <= litEnd);
lastLLSize = (uint32_t)(litEnd - litPtr);
if (lastLLSize <= oend - op) {
ZSTD_memcpy(op, litPtr, lastLLSize);
generatedSrcBufferSize += lastLLSize;
}
if (mode == ZSTD_sf_noBlockDelimiters) {
const uint32_t lastLLSize = (uint32_t)(litEnd - litPtr);
if (lastLLSize <= oend - op) {
memcpy(op, litPtr, lastLLSize);
generatedSrcBufferSize += lastLLSize;
} }
return generatedSrcBufferSize;
}
/* Returns nb sequences generated
* TODO: Add repcode fuzzing once we support repcode match splits
* Note : random sequences are always valid in ZSTD_sf_noBlockDelimiters mode.
* However, it can fail with ZSTD_sf_explicitBlockDelimiters,
* due to potential lack of space in
*/
static size_t generateRandomSequences(FUZZ_dataProducer_t* producer,
size_t literalsSizeLimit, size_t dictSize,
size_t windowLog) {
size_t windowLog, ZSTD_sequenceFormat_e mode)
{
const uint32_t repCode = 0; /* not used by sequence ingestion api */
const uint32_t windowSize = 1 << windowLog;
const uint32_t blockSizeMax = MIN(128 << 10, 1 << windowLog);
uint32_t matchLengthMax = ZSTD_FUZZ_MATCHLENGTH_MAXSIZE;
uint32_t bytesGenerated = 0;
uint32_t nbSeqGenerated = 0;
uint32_t litLength;
uint32_t matchLength;
uint32_t matchBound;
uint32_t offset;
uint32_t offsetBound;
uint32_t repCode = 0;
uint32_t isFirstSequence = 1;
uint32_t windowSize = 1 << windowLog;
uint32_t blockSize = 0;
while (nbSeqGenerated < ZSTD_FUZZ_MAX_NBSEQ
if (mode == ZSTD_sf_explicitBlockDelimiters) {
/* ensure that no sequence can be larger than one block */
literalsSizeLimit = MIN(literalsSizeLimit, blockSizeMax/2);
matchLengthMax = MIN(matchLengthMax, blockSizeMax/2);
}
while ( nbSeqGenerated < ZSTD_FUZZ_MAX_NBSEQ-1
&& bytesGenerated < ZSTD_FUZZ_GENERATED_SRC_MAXSIZE
&& !FUZZ_dataProducer_empty(producer)) {
matchBound = ZSTD_FUZZ_MATCHLENGTH_MAXSIZE;
litLength = isFirstSequence && dictSize == 0 ? FUZZ_dataProducer_uint32Range(producer, 1, literalsSizeLimit)
: FUZZ_dataProducer_uint32Range(producer, 0, literalsSizeLimit);
uint32_t matchLength;
uint32_t matchBound = matchLengthMax;
uint32_t offset;
uint32_t offsetBound;
const uint32_t minLitLength = (isFirstSequence && (dictSize == 0));
const uint32_t litLength = FUZZ_dataProducer_uint32Range(producer, minLitLength, (uint32_t)literalsSizeLimit);
bytesGenerated += litLength;
if (bytesGenerated > ZSTD_FUZZ_GENERATED_SRC_MAXSIZE) {
break;
}
offsetBound = bytesGenerated > windowSize ? windowSize : bytesGenerated + dictSize;
offsetBound = (bytesGenerated > windowSize) ? windowSize : bytesGenerated + (uint32_t)dictSize;
offset = FUZZ_dataProducer_uint32Range(producer, 1, offsetBound);
if (dictSize > 0 && bytesGenerated <= windowSize) {
/* Prevent match length from being such that it would be associated with an offset too large
* from the decoder's perspective. If not possible (match would be too small),
* then reduce the offset if necessary.
*/
size_t bytesToReachWindowSize = windowSize - bytesGenerated;
const size_t bytesToReachWindowSize = windowSize - bytesGenerated;
if (bytesToReachWindowSize < ZSTD_MINMATCH_MIN) {
uint32_t newOffsetBound = offsetBound > windowSize ? windowSize : offsetBound;
const uint32_t newOffsetBound = offsetBound > windowSize ? windowSize : offsetBound;
offset = FUZZ_dataProducer_uint32Range(producer, 1, newOffsetBound);
} else {
matchBound = bytesToReachWindowSize > ZSTD_FUZZ_MATCHLENGTH_MAXSIZE ?
ZSTD_FUZZ_MATCHLENGTH_MAXSIZE : bytesToReachWindowSize;
matchBound = MIN(matchLengthMax, (uint32_t)bytesToReachWindowSize);
}
}
matchLength = FUZZ_dataProducer_uint32Range(producer, ZSTD_MINMATCH_MIN, matchBound);
@ -174,9 +186,35 @@ static size_t generateRandomSequences(FUZZ_dataProducer_t* producer,
if (bytesGenerated > ZSTD_FUZZ_GENERATED_SRC_MAXSIZE) {
break;
}
ZSTD_Sequence seq = {offset, litLength, matchLength, repCode};
generatedSequences[nbSeqGenerated++] = seq;
isFirstSequence = 0;
{ ZSTD_Sequence seq = {offset, litLength, matchLength, repCode};
const uint32_t lastLits = FUZZ_dataProducer_uint32Range(producer, 0, litLength);
#define SPLITPROB 6000
#define SPLITMARK 5234
const int split = (FUZZ_dataProducer_uint32Range(producer, 0, SPLITPROB) == SPLITMARK);
if (mode == ZSTD_sf_explicitBlockDelimiters) {
const size_t seqSize = seq.litLength + seq.matchLength;
if (blockSize + seqSize > blockSizeMax) { /* reaching limit : must end block now */
const ZSTD_Sequence endBlock = {0, 0, 0, 0};
generatedSequences[nbSeqGenerated++] = endBlock;
blockSize = seqSize;
}
if (split) {
const ZSTD_Sequence endBlock = {0, lastLits, 0, 0};
generatedSequences[nbSeqGenerated++] = endBlock;
assert(lastLits <= seq.litLength);
seq.litLength -= lastLits;
blockSize = seqSize - lastLits;
} else {
blockSize += seqSize;
}
}
generatedSequences[nbSeqGenerated++] = seq;
isFirstSequence = 0;
} }
if (mode == ZSTD_sf_explicitBlockDelimiters) {
/* always end sequences with a block delimiter */
const ZSTD_Sequence endBlock = {0, 0, 0, 0};
generatedSequences[nbSeqGenerated++] = endBlock;
}
return nbSeqGenerated;
@ -187,12 +225,11 @@ static size_t roundTripTest(void *result, size_t resultCapacity,
size_t srcSize,
const void *dict, size_t dictSize,
size_t generatedSequencesSize,
size_t wLog, unsigned cLevel, unsigned hasDict)
int wLog, int cLevel, unsigned hasDict,
ZSTD_sequenceFormat_e mode)
{
size_t cSize;
size_t dSize;
ZSTD_CDict* cdict = NULL;
ZSTD_DDict* ddict = NULL;
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, 0);
@ -200,8 +237,7 @@ static size_t roundTripTest(void *result, size_t resultCapacity,
ZSTD_CCtx_setParameter(cctx, ZSTD_c_windowLog, wLog);
ZSTD_CCtx_setParameter(cctx, ZSTD_c_minMatch, ZSTD_MINMATCH_MIN);
ZSTD_CCtx_setParameter(cctx, ZSTD_c_validateSequences, 1);
/* TODO: Add block delim mode fuzzing */
ZSTD_CCtx_setParameter(cctx, ZSTD_c_blockDelimiters, ZSTD_sf_noBlockDelimiters);
ZSTD_CCtx_setParameter(cctx, ZSTD_c_blockDelimiters, mode);
if (hasDict) {
FUZZ_ZASSERT(ZSTD_CCtx_loadDictionary(cctx, dict, dictSize));
FUZZ_ZASSERT(ZSTD_DCtx_loadDictionary(dctx, dict, dictSize));
@ -214,16 +250,10 @@ static size_t roundTripTest(void *result, size_t resultCapacity,
dSize = ZSTD_decompressDCtx(dctx, result, resultCapacity, compressed, cSize);
FUZZ_ZASSERT(dSize);
if (cdict) {
ZSTD_freeCDict(cdict);
}
if (ddict) {
ZSTD_freeDDict(ddict);
}
return dSize;
}
int LLVMFuzzerTestOneInput(const uint8_t *src, size_t size)
int LLVMFuzzerTestOneInput(const uint8_t* src, size_t size)
{
void* rBuf;
size_t rBufSize;
@ -231,15 +261,18 @@ int LLVMFuzzerTestOneInput(const uint8_t *src, size_t size)
size_t cBufSize;
size_t generatedSrcSize;
size_t nbSequences;
void* dictBuffer;
void* dictBuffer = NULL;
size_t dictSize = 0;
unsigned hasDict;
unsigned wLog;
int cLevel;
ZSTD_sequenceFormat_e mode;
FUZZ_dataProducer_t *producer = FUZZ_dataProducer_create(src, size);
FUZZ_dataProducer_t* const producer = FUZZ_dataProducer_create(src, size);
FUZZ_ASSERT(producer);
if (literalsBuffer == NULL) {
literalsBuffer = FUZZ_malloc(ZSTD_FUZZ_GENERATED_LITERALS_SIZE);
FUZZ_ASSERT(literalsBuffer);
literalsBuffer = generatePseudoRandomString(literalsBuffer, ZSTD_FUZZ_GENERATED_LITERALS_SIZE);
}
@ -247,11 +280,13 @@ int LLVMFuzzerTestOneInput(const uint8_t *src, size_t size)
if (hasDict) {
dictSize = FUZZ_dataProducer_uint32Range(producer, 1, ZSTD_FUZZ_GENERATED_DICT_MAXSIZE);
dictBuffer = FUZZ_malloc(dictSize);
FUZZ_ASSERT(dictBuffer);
dictBuffer = generatePseudoRandomString(dictBuffer, dictSize);
}
/* Generate window log first so we dont generate offsets too large */
wLog = FUZZ_dataProducer_uint32Range(producer, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX_32);
cLevel = FUZZ_dataProducer_int32Range(producer, -3, 22);
mode = (ZSTD_sequenceFormat_e)FUZZ_dataProducer_int32Range(producer, 0, 1);
if (!generatedSequences) {
generatedSequences = FUZZ_malloc(sizeof(ZSTD_Sequence)*ZSTD_FUZZ_MAX_NBSEQ);
@ -259,8 +294,8 @@ int LLVMFuzzerTestOneInput(const uint8_t *src, size_t size)
if (!generatedSrc) {
generatedSrc = FUZZ_malloc(ZSTD_FUZZ_GENERATED_SRC_MAXSIZE);
}
nbSequences = generateRandomSequences(producer, ZSTD_FUZZ_GENERATED_LITERALS_SIZE, dictSize, wLog);
generatedSrcSize = decodeSequences(generatedSrc, nbSequences, ZSTD_FUZZ_GENERATED_LITERALS_SIZE, dictBuffer, dictSize);
nbSequences = generateRandomSequences(producer, ZSTD_FUZZ_GENERATED_LITERALS_SIZE, dictSize, wLog, mode);
generatedSrcSize = decodeSequences(generatedSrc, nbSequences, ZSTD_FUZZ_GENERATED_LITERALS_SIZE, dictBuffer, dictSize, mode);
cBufSize = ZSTD_compressBound(generatedSrcSize);
cBuf = FUZZ_malloc(cBufSize);
@ -276,14 +311,15 @@ int LLVMFuzzerTestOneInput(const uint8_t *src, size_t size)
FUZZ_ASSERT(dctx);
}
size_t const result = roundTripTest(rBuf, rBufSize,
{ const size_t result = roundTripTest(rBuf, rBufSize,
cBuf, cBufSize,
generatedSrcSize,
dictBuffer, dictSize,
nbSequences,
wLog, cLevel, hasDict);
FUZZ_ZASSERT(result);
FUZZ_ASSERT_MSG(result == generatedSrcSize, "Incorrect regenerated size");
(int)wLog, cLevel, hasDict, mode);
FUZZ_ZASSERT(result);
FUZZ_ASSERT_MSG(result == generatedSrcSize, "Incorrect regenerated size");
}
FUZZ_ASSERT_MSG(!FUZZ_memcmp(generatedSrc, rBuf, generatedSrcSize), "Corruption!");
free(rBuf);