1
0
mirror of https://github.com/facebook/zstd.git synced 2025-08-07 06:23:00 +03:00

Comply with suggested comments by @terrelln

created FSE_CTABLE_SIZE() and FSE_DTABLE_SIZE()
This commit is contained in:
Yann Collet
2017-04-26 11:39:35 -07:00
parent 7271203bdb
commit e42afbc6fa
4 changed files with 78 additions and 75 deletions

View File

@@ -57,46 +57,46 @@
<pre><b>size_t ZSTD_compress( void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel);
</b><p> Compresses `src` content as a single zstd compressed frame into already allocated `dst`.
Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
@return : compressed size written into `dst` (<= `dstCapacity),
or an error code if it fails (which can be tested using ZSTD_isError()).
</b><p> Compresses `src` content as a single zstd compressed frame into already allocated `dst`.
Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
@return : compressed size written into `dst` (<= `dstCapacity),
or an error code if it fails (which can be tested using ZSTD_isError()).
</p></pre><BR>
<pre><b>size_t ZSTD_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
</b><p> `compressedSize` : must be the _exact_ size of some number of compressed and/or skippable frames.
`dstCapacity` is an upper bound of originalSize.
If user cannot imply a maximum upper bound, it's better to use streaming mode to decompress data.
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
or an errorCode if it fails (which can be tested using ZSTD_isError()).
</b><p> `compressedSize` : must be the _exact_ size of some number of compressed and/or skippable frames.
`dstCapacity` is an upper bound of originalSize.
If user cannot imply a maximum upper bound, it's better to use streaming mode to decompress data.
@return : the number of bytes decompressed into `dst` (<= `dstCapacity`),
or an errorCode if it fails (which can be tested using ZSTD_isError()).
</p></pre><BR>
<pre><b>unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize);
</b><p> NOTE: This function is planned to be obsolete, in favour of ZSTD_getFrameContentSize.
ZSTD_getFrameContentSize functions the same way, returning the decompressed size of a single
frame, but distinguishes empty frames from frames with an unknown size, or errors.
</b><p> NOTE: This function is planned to be obsolete, in favour of ZSTD_getFrameContentSize.
ZSTD_getFrameContentSize functions the same way, returning the decompressed size of a single
frame, but distinguishes empty frames from frames with an unknown size, or errors.
Additionally, ZSTD_findDecompressedSize can be used instead. It can handle multiple
concatenated frames in one buffer, and so is more general.
As a result however, it requires more computation and entire frames to be passed to it,
as opposed to ZSTD_getFrameContentSize which requires only a single frame's header.
Additionally, ZSTD_findDecompressedSize can be used instead. It can handle multiple
concatenated frames in one buffer, and so is more general.
As a result however, it requires more computation and entire frames to be passed to it,
as opposed to ZSTD_getFrameContentSize which requires only a single frame's header.
'src' is the start of a zstd compressed frame.
@return : content size to be decompressed, as a 64-bits value _if known_, 0 otherwise.
note 1 : decompressed size is an optional field, that may not be present, especially in streaming mode.
When `return==0`, data to decompress could be any size.
In which case, it's necessary to use streaming mode to decompress data.
Optionally, application can still use ZSTD_decompress() while relying on implied limits.
(For example, data may be necessarily cut into blocks <= 16 KB).
note 2 : decompressed size is always present when compression is done with ZSTD_compress()
note 3 : decompressed size can be very large (64-bits value),
potentially larger than what local system can handle as a single memory segment.
In which case, it's necessary to use streaming mode to decompress data.
note 4 : If source is untrusted, decompressed size could be wrong or intentionally modified.
Always ensure result fits within application's authorized limits.
Each application can set its own limits.
note 5 : when `return==0`, if precise failure cause is needed, use ZSTD_getFrameParams() to know more.
'src' is the start of a zstd compressed frame.
@return : content size to be decompressed, as a 64-bits value _if known_, 0 otherwise.
note 1 : decompressed size is an optional field, that may not be present, especially in streaming mode.
When `return==0`, data to decompress could be any size.
In which case, it's necessary to use streaming mode to decompress data.
Optionally, application can still use ZSTD_decompress() while relying on implied limits.
(For example, data may be necessarily cut into blocks <= 16 KB).
note 2 : decompressed size is always present when compression is done with ZSTD_compress()
note 3 : decompressed size can be very large (64-bits value),
potentially larger than what local system can handle as a single memory segment.
In which case, it's necessary to use streaming mode to decompress data.
note 4 : If source is untrusted, decompressed size could be wrong or intentionally modified.
Always ensure result fits within application's authorized limits.
Each application can set its own limits.
note 5 : when `return==0`, if precise failure cause is needed, use ZSTD_getFrameParams() to know more.
</p></pre><BR>
<h3>Helper functions</h3><pre></pre><b><pre>int ZSTD_maxCLevel(void); </b>/*!< maximum compression level available */<b>
@@ -106,28 +106,28 @@ const char* ZSTD_getErrorName(size_t code); </b>/*!< provides readable strin
</pre></b><BR>
<a name="Chapter4"></a><h2>Explicit memory management</h2><pre></pre>
<h3>Compression context</h3><pre> When compressing many times,
it is recommended to allocate a context just once, and re-use it for each successive compression operation.
This will make workload friendlier for system's memory.
Use one context per thread for parallel execution in multi-threaded environments.
<h3>Compression context</h3><pre> When compressing many times,
it is recommended to allocate a context just once, and re-use it for each successive compression operation.
This will make workload friendlier for system's memory.
Use one context per thread for parallel execution in multi-threaded environments.
</pre><b><pre>typedef struct ZSTD_CCtx_s ZSTD_CCtx;
ZSTD_CCtx* ZSTD_createCCtx(void);
size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx);
</pre></b><BR>
<pre><b>size_t ZSTD_compressCCtx(ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel);
</b><p> Same as ZSTD_compress(), requires an allocated ZSTD_CCtx (see ZSTD_createCCtx()).
</b><p> Same as ZSTD_compress(), requires an allocated ZSTD_CCtx (see ZSTD_createCCtx()).
</p></pre><BR>
<h3>Decompression context</h3><pre> When decompressing many times,
it is recommended to allocate a context just once, and re-use it for each successive compression operation.
This will make workload friendlier for system's memory.
Use one context per thread for parallel execution in multi-threaded environments.
<h3>Decompression context</h3><pre> When decompressing many times,
it is recommended to allocate a context just once, and re-use it for each successive compression operation.
This will make workload friendlier for system's memory.
Use one context per thread for parallel execution in multi-threaded environments.
</pre><b><pre>typedef struct ZSTD_DCtx_s ZSTD_DCtx;
ZSTD_DCtx* ZSTD_createDCtx(void);
size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx);
</pre></b><BR>
<pre><b>size_t ZSTD_decompressDCtx(ZSTD_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize);
</b><p> Same as ZSTD_decompress(), requires an allocated ZSTD_DCtx (see ZSTD_createDCtx()).
</b><p> Same as ZSTD_decompress(), requires an allocated ZSTD_DCtx (see ZSTD_createDCtx()).
</p></pre><BR>
<a name="Chapter5"></a><h2>Simple dictionary API</h2><pre></pre>