1
0
mirror of https://github.com/codership/wsrep-lib.git synced 2025-07-05 03:41:13 +03:00
Files
wsrep-lib/src/server_state.cpp
Daniele Sciascia d68650acf5 Retrieve provider options before provider is initialized
Change provider_options so that it does not depend on provider.
Call into config_service when provider is created, i.e. after
library is loaded, before it is initialized, so that we can
inject additional options at startup.
Change the signature of the call provider options callback to
take provider_options object as parameter.
2025-07-01 14:01:08 +02:00

1665 lines
57 KiB
C++

/*
* Copyright (C) 2018-2023 Codership Oy <info@codership.com>
*
* This file is part of wsrep-lib.
*
* Wsrep-lib is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* Wsrep-lib is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with wsrep-lib. If not, see <https://www.gnu.org/licenses/>.
*/
#include "wsrep/server_state.hpp"
#include "wsrep/client_state.hpp"
#include "wsrep/server_service.hpp"
#include "wsrep/client_service.hpp"
#include "wsrep/high_priority_service.hpp"
#include "wsrep/transaction.hpp"
#include "wsrep/view.hpp"
#include "wsrep/logger.hpp"
#include "wsrep/compiler.hpp"
#include "wsrep/id.hpp"
#include <cassert>
#include <sstream>
#include <algorithm>
//////////////////////////////////////////////////////////////////////////////
// Helpers //
//////////////////////////////////////////////////////////////////////////////
//
// This method is used to deal with historical burden of several
// ways to bootstrap the cluster. Bootstrap happens if
//
// * bootstrap option is given
// * cluster_address is "gcomm://" (Galera provider)
//
static bool is_bootstrap(const std::string& cluster_address, bool bootstrap)
{
return (bootstrap || cluster_address == "gcomm://");
}
// Helper method to provide detailed error message if transaction
// adopt for fragment removal fails.
static void log_adopt_error(const wsrep::transaction& transaction)
{
wsrep::log_warning() << "Adopting a transaction ("
<< transaction.server_id() << "," << transaction.id()
<< ") for rollback failed, "
<< "this may leave stale entries to streaming log "
<< "which may need to be removed manually.";
}
// resolve which of the two errors return to caller
static inline int resolve_return_error(bool const vote,
int const vote_err,
int const apply_err)
{
if (vote) return vote_err;
return vote_err != 0 ? vote_err : apply_err;
}
static void
discard_streaming_applier(wsrep::server_state& server_state,
wsrep::high_priority_service& high_priority_service,
wsrep::high_priority_service* streaming_applier,
const wsrep::ws_meta& ws_meta)
{
server_state.stop_streaming_applier(
ws_meta.server_id(), ws_meta.transaction_id());
server_state.server_service().release_high_priority_service(
streaming_applier);
high_priority_service.store_globals();
}
static int apply_fragment(wsrep::server_state& server_state,
wsrep::high_priority_service& high_priority_service,
wsrep::high_priority_service* streaming_applier,
const wsrep::ws_handle& ws_handle,
const wsrep::ws_meta& ws_meta,
const wsrep::const_buffer& data)
{
int ret(0);
int apply_err;
wsrep::mutable_buffer err;
{
wsrep::high_priority_switch sw(high_priority_service,
*streaming_applier);
apply_err = streaming_applier->apply_write_set(ws_meta, data, err);
if (!apply_err)
{
assert(err.size() == 0);
streaming_applier->after_apply();
}
else
{
bool const remove_fragments(streaming_applier->transaction(
).streaming_context().fragments().size() > 0);
ret = streaming_applier->rollback(ws_handle, ws_meta);
ret = ret || (streaming_applier->after_apply(), 0);
if (remove_fragments)
{
ret = ret || streaming_applier->start_transaction(ws_handle,
ws_meta);
ret = ret || (streaming_applier->adopt_apply_error(err), 0);
ret = ret || streaming_applier->remove_fragments(ws_meta);
ret = ret || streaming_applier->commit(ws_handle, ws_meta);
ret = ret || (streaming_applier->after_apply(), 0);
}
else
{
ret = streaming_applier->log_dummy_write_set(ws_handle,
ws_meta, err);
}
}
}
if (!ret)
{
if (!apply_err)
{
high_priority_service.debug_crash("crash_apply_cb_before_append_frag");
const wsrep::xid xid(streaming_applier->transaction().xid());
ret = high_priority_service.append_fragment_and_commit(
ws_handle, ws_meta, data, xid);
high_priority_service.debug_crash("crash_apply_cb_after_append_frag");
ret = ret || (high_priority_service.after_apply(), 0);
}
else
{
discard_streaming_applier(server_state,
high_priority_service,
streaming_applier,
ws_meta);
ret = resolve_return_error(err.size() > 0, ret, apply_err);
}
}
return ret;
}
static int commit_fragment(wsrep::server_state& server_state,
wsrep::high_priority_service& high_priority_service,
wsrep::high_priority_service* streaming_applier,
const wsrep::ws_handle& ws_handle,
const wsrep::ws_meta& ws_meta,
const wsrep::const_buffer& data)
{
int ret(0);
{
wsrep::high_priority_switch sw(
high_priority_service, *streaming_applier);
wsrep::mutable_buffer err;
int const apply_err(
streaming_applier->apply_write_set(ws_meta, data, err));
if (apply_err)
{
assert(streaming_applier->transaction(
).streaming_context().fragments().size() > 0);
ret = streaming_applier->rollback(ws_handle, ws_meta);
ret = ret || (streaming_applier->after_apply(), 0);
ret = ret || streaming_applier->start_transaction(
ws_handle, ws_meta);
ret = ret || (streaming_applier->adopt_apply_error(err),0);
}
else
{
assert(err.size() == 0);
}
const wsrep::transaction& trx(streaming_applier->transaction());
// Fragment removal for XA is going to happen in after_commit
if (trx.state() != wsrep::transaction::s_prepared)
{
streaming_applier->debug_crash(
"crash_apply_cb_before_fragment_removal");
ret = ret || streaming_applier->remove_fragments(ws_meta);
streaming_applier->debug_crash(
"crash_apply_cb_after_fragment_removal");
}
streaming_applier->debug_crash(
"crash_commit_cb_before_last_fragment_commit");
ret = ret || streaming_applier->commit(ws_handle, ws_meta);
streaming_applier->debug_crash(
"crash_commit_cb_last_fragment_commit_success");
ret = ret || (streaming_applier->after_apply(), 0);
ret = resolve_return_error(err.size() > 0, ret, apply_err);
}
if (!ret)
{
discard_streaming_applier(server_state, high_priority_service,
streaming_applier, ws_meta);
}
return ret;
}
static int rollback_fragment(wsrep::server_state& server_state,
wsrep::high_priority_service& high_priority_service,
wsrep::high_priority_service* streaming_applier,
const wsrep::ws_handle& ws_handle,
const wsrep::ws_meta& ws_meta)
{
int ret(0);
int adopt_error(0);
bool const remove_fragments(streaming_applier->transaction().
streaming_context().fragments().size() > 0);
// If fragment removal is needed, adopt transaction state
// and start a transaction for it.
if (remove_fragments &&
(adopt_error = high_priority_service.adopt_transaction(
streaming_applier->transaction())))
{
log_adopt_error(streaming_applier->transaction());
}
// Even if the adopt above fails we roll back the streaming transaction.
// Adopt failure will leave stale entries in streaming log which can
// be removed manually.
wsrep::const_buffer no_error;
{
wsrep::high_priority_switch ws(
high_priority_service, *streaming_applier);
// Streaming applier rolls back out of order. Fragment
// removal grabs commit order below.
ret = streaming_applier->rollback(wsrep::ws_handle(), wsrep::ws_meta());
ret = ret || (streaming_applier->after_apply(), 0);
}
if (!ret)
{
discard_streaming_applier(server_state, high_priority_service,
streaming_applier, ws_meta);
if (adopt_error == 0)
{
if (remove_fragments)
{
ret = high_priority_service.remove_fragments(ws_meta);
ret = ret || high_priority_service.commit(ws_handle, ws_meta);
if (ret)
{
high_priority_service.rollback(ws_handle, ws_meta);
}
high_priority_service.after_apply();
}
else
{
if (ws_meta.ordered())
{
wsrep::mutable_buffer no_error;
ret = high_priority_service.log_dummy_write_set(
ws_handle, ws_meta, no_error);
}
}
}
}
return ret;
}
static int apply_write_set(wsrep::server_state& server_state,
wsrep::high_priority_service& high_priority_service,
const wsrep::ws_handle& ws_handle,
const wsrep::ws_meta& ws_meta,
const wsrep::const_buffer& data)
{
int ret(0);
if (wsrep::rolls_back_transaction(ws_meta.flags()))
{
wsrep::mutable_buffer no_error;
if (wsrep::starts_transaction(ws_meta.flags()))
{
// No transaction existed before, log a dummy write set
ret = high_priority_service.log_dummy_write_set(
ws_handle, ws_meta, no_error);
}
else
{
wsrep::high_priority_service* sa(
server_state.find_streaming_applier(
ws_meta.server_id(), ws_meta.transaction_id()));
if (sa == 0)
{
// It is a known limitation that galera provider
// cannot always determine if certification test
// for interrupted transaction will pass or fail
// (see comments in transaction::certify_fragment()).
// As a consequence, unnecessary rollback fragments
// may be delivered here. The message below has
// been intentionally turned into a debug message,
// rather than warning.
WSREP_LOG_DEBUG(wsrep::log::debug_log_level(),
wsrep::log::debug_level_server_state,
"Could not find applier context for "
<< ws_meta.server_id()
<< ": " << ws_meta.transaction_id()
<< ", " << ws_meta.seqno());
ret = high_priority_service.log_dummy_write_set(
ws_handle, ws_meta, no_error);
}
else
{
// rollback_fragment() consumes sa
ret = rollback_fragment(server_state,
high_priority_service,
sa,
ws_handle,
ws_meta);
}
}
}
else if (wsrep::starts_transaction(ws_meta.flags()) &&
wsrep::commits_transaction(ws_meta.flags()))
{
ret = high_priority_service.start_transaction(ws_handle, ws_meta);
if (!ret)
{
wsrep::mutable_buffer err;
int const apply_err(high_priority_service.apply_write_set(
ws_meta, data, err));
if (!apply_err)
{
assert(err.size() == 0);
ret = high_priority_service.commit(ws_handle, ws_meta);
ret = ret || (high_priority_service.after_apply(), 0);
}
else
{
ret = high_priority_service.rollback(ws_handle, ws_meta);
ret = ret || (high_priority_service.after_apply(), 0);
ret = ret || high_priority_service.log_dummy_write_set(
ws_handle, ws_meta, err);
ret = resolve_return_error(err.size() > 0, ret, apply_err);
}
}
}
else if (wsrep::starts_transaction(ws_meta.flags()))
{
assert(server_state.find_streaming_applier(
ws_meta.server_id(), ws_meta.transaction_id()) == 0);
wsrep::high_priority_service* sa(
server_state.server_service().streaming_applier_service(
high_priority_service));
server_state.start_streaming_applier(
ws_meta.server_id(), ws_meta.transaction_id(), sa);
sa->start_transaction(ws_handle, ws_meta);
ret = apply_fragment(server_state,
high_priority_service,
sa,
ws_handle,
ws_meta,
data);
}
else if (ws_meta.flags() == 0 || ws_meta.flags() == wsrep::provider::flag::pa_unsafe ||
wsrep::prepares_transaction(ws_meta.flags()))
{
wsrep::high_priority_service* sa(
server_state.find_streaming_applier(
ws_meta.server_id(), ws_meta.transaction_id()));
if (sa == 0)
{
// It is possible that rapid group membership changes
// may cause streaming transaction be rolled back before
// commit fragment comes in. Although this is a valid
// situation, log a warning if a sac cannot be found as
// it may be an indication of a bug too.
wsrep::log_warning() << "Could not find applier context for "
<< ws_meta.server_id()
<< ": " << ws_meta.transaction_id()
<< ", " << ws_meta.seqno();
wsrep::mutable_buffer no_error;
ret = high_priority_service.log_dummy_write_set(
ws_handle, ws_meta, no_error);
}
else
{
sa->next_fragment(ws_meta);
ret = apply_fragment(server_state,
high_priority_service,
sa,
ws_handle,
ws_meta,
data);
}
}
else if (wsrep::commits_transaction(ws_meta.flags()))
{
if (high_priority_service.is_replaying())
{
wsrep::mutable_buffer unused;
ret = high_priority_service.start_transaction(
ws_handle, ws_meta) ||
high_priority_service.apply_write_set(ws_meta, data, unused) ||
high_priority_service.commit(ws_handle, ws_meta);
}
else
{
wsrep::high_priority_service* sa(
server_state.find_streaming_applier(
ws_meta.server_id(), ws_meta.transaction_id()));
if (sa == 0)
{
// It is possible that rapid group membership changes
// may cause streaming transaction be rolled back before
// commit fragment comes in. Although this is a valid
// situation, log a warning if a sac cannot be found as
// it may be an indication of a bug too.
wsrep::log_warning()
<< "Could not find applier context for "
<< ws_meta.server_id()
<< ": " << ws_meta.transaction_id()
<< ", " << ws_meta.seqno();
wsrep::mutable_buffer no_error;
ret = high_priority_service.log_dummy_write_set(
ws_handle, ws_meta, no_error);
}
else
{
// Commit fragment consumes sa
sa->next_fragment(ws_meta);
ret = commit_fragment(server_state,
high_priority_service,
sa,
ws_handle,
ws_meta,
data);
}
}
}
else
{
assert(0);
}
if (ret)
{
wsrep::log_error() << "Failed to apply write set: " << ws_meta;
}
return ret;
}
static int apply_toi(wsrep::provider& provider,
wsrep::high_priority_service& high_priority_service,
const wsrep::ws_handle& ws_handle,
const wsrep::ws_meta& ws_meta,
const wsrep::const_buffer& data)
{
if (wsrep::starts_transaction(ws_meta.flags()) &&
wsrep::commits_transaction(ws_meta.flags()))
{
//
// Regular TOI.
//
provider.commit_order_enter(ws_handle, ws_meta);
wsrep::mutable_buffer err;
int const apply_err(high_priority_service.apply_toi(ws_meta,data,err));
int const vote_err(provider.commit_order_leave(ws_handle, ws_meta,err));
return resolve_return_error(err.size() > 0, vote_err, apply_err);
}
else if (wsrep::starts_transaction(ws_meta.flags()))
{
provider.commit_order_enter(ws_handle, ws_meta);
wsrep::mutable_buffer err;
int const apply_err(high_priority_service.apply_nbo_begin(ws_meta, data, err));
int const vote_err(provider.commit_order_leave(ws_handle, ws_meta, err));
return resolve_return_error(err.size() > 0, vote_err, apply_err);
}
else if (wsrep::commits_transaction(ws_meta.flags()))
{
// NBO end event is ignored here, both local and applied
// have NBO end handled via local TOI calls.
provider.commit_order_enter(ws_handle, ws_meta);
wsrep::mutable_buffer err;
provider.commit_order_leave(ws_handle, ws_meta, err);
return 0;
}
else
{
assert(0);
return 0;
}
}
//////////////////////////////////////////////////////////////////////////////
// Server State //
//////////////////////////////////////////////////////////////////////////////
int wsrep::server_state::load_provider(
const std::string& provider_spec,
const std::function<std::string(provider_options&)>& provider_options_cb,
const wsrep::provider::services& services)
{
wsrep::log_info() << "Loading provider " << provider_spec
<< " initial position: " << initial_position_;
provider_ = provider_factory_(*this, provider_spec, provider_options_cb,
services);
return (provider_ ? 0 : 1);
}
void wsrep::server_state::set_provider_factory(
const provider_factory_func& provider_factory)
{
assert(provider_factory);
provider_factory_ = provider_factory;
}
void wsrep::server_state::unload_provider()
{
provider_.reset();
}
int wsrep::server_state::connect(const std::string& cluster_name,
const std::string& cluster_address,
const std::string& state_donor,
bool bootstrap)
{
bootstrap_ = is_bootstrap(cluster_address, bootstrap);
wsrep::log_info() << "Connecting with bootstrap option: " << bootstrap_;
return provider().connect(cluster_name, cluster_address, state_donor,
bootstrap_);
}
int wsrep::server_state::disconnect()
{
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
// In case of failure situations which are caused by provider
// being shut down some failing operation may also try to shut
// down the replication. Check the state here and
// return success if the provider disconnect is already in progress
// or has completed.
if (state(lock) == s_disconnecting || state(lock) == s_disconnected)
{
return 0;
}
state(lock, s_disconnecting);
interrupt_state_waiters(lock);
}
return provider().disconnect();
}
std::vector<wsrep::provider::status_variable>
wsrep::server_state::status() const
{
return provider().status();
}
wsrep::seqno wsrep::server_state::pause()
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
// Disallow concurrent calls to pause to in order to have non-concurrent
// access to desynced_on_pause_ which is checked in resume() call.
wsrep::log_info() << "pause";
while (pause_count_ > 0)
{
cond_.wait(lock);
}
++pause_count_;
assert(pause_seqno_.is_undefined());
lock.unlock();
pause_seqno_ = provider().pause();
lock.lock();
if (pause_seqno_.is_undefined())
{
--pause_count_;
}
return pause_seqno_;
}
void wsrep::server_state::resume()
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
wsrep::log_info() << "resume";
assert(pause_seqno_.is_undefined() == false);
assert(pause_count_ == 1);
if (provider().resume())
{
throw wsrep::runtime_error("Failed to resume provider");
}
pause_seqno_ = wsrep::seqno::undefined();
--pause_count_;
cond_.notify_all();
}
wsrep::seqno wsrep::server_state::desync_and_pause()
{
wsrep::log_info() << "Desyncing and pausing the provider";
// Temporary variable to store desync() return status. This will be
// assigned to desynced_on_pause_ after pause() call to prevent
// concurrent access to member variable desynced_on_pause_.
bool desync_successful;
if (desync())
{
// Desync may give transient error if the provider cannot
// communicate with the rest of the cluster. However, this
// error can be tolerated because if the provider can be
// paused successfully below.
WSREP_LOG_DEBUG(wsrep::log::debug_log_level(),
wsrep::log::debug_level_server_state,
"Failed to desync server before pause");
desync_successful = false;
}
else
{
desync_successful = true;
}
wsrep::seqno ret(pause());
if (ret.is_undefined())
{
wsrep::log_warning() << "Failed to pause provider";
resync();
return wsrep::seqno::undefined();
}
else
{
desynced_on_pause_ = desync_successful;
}
wsrep::log_info() << "Provider paused at: " << ret;
return ret;
}
void wsrep::server_state::resume_and_resync()
{
wsrep::log_info() << "Resuming and resyncing the provider";
try
{
// Assign desynced_on_pause_ to local variable before resuming
// in order to avoid concurrent access to desynced_on_pause_ member
// variable.
bool do_resync = desynced_on_pause_;
desynced_on_pause_ = false;
resume();
if (do_resync)
{
resync();
}
}
catch (const wsrep::runtime_error& e)
{
wsrep::log_warning()
<< "Resume and resync failed, server may have to be restarted";
}
}
std::string wsrep::server_state::prepare_for_sst()
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
state(lock, s_joiner);
lock.unlock();
return server_service_.sst_request();
}
int wsrep::server_state::start_sst(const std::string& sst_request,
const wsrep::gtid& gtid,
bool bypass)
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
state(lock, s_donor);
int ret(0);
lock.unlock();
if (server_service_.start_sst(sst_request, gtid, bypass))
{
lock.lock();
wsrep::log_warning() << "SST preparation failed";
return_from_donor_state(lock);
ret = 1;
}
return ret;
}
void wsrep::server_state::sst_sent(const wsrep::gtid& gtid, int error)
{
if (0 == error)
wsrep::log_info() << "SST sent: " << gtid;
else
wsrep::log_info() << "SST sending failed: " << error;
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
return_from_donor_state(lock);
lock.unlock();
enum provider::status const retval(provider().sst_sent(gtid, error));
if (retval != provider::success)
{
std::string msg("wsrep::sst_sent() returned an error: ");
msg += wsrep::provider::to_string(retval);
server_service_.log_message(wsrep::log::warning, msg.c_str());
}
}
int wsrep::server_state::sst_received(wsrep::client_service& cs,
int const error)
try
{
wsrep::log_info() << "SST received";
wsrep::gtid gtid(wsrep::gtid::undefined());
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
assert(state_ == s_joiner || state_ == s_initialized);
// Run initialization only if the SST was successful.
// In case of SST failure the system is in undefined state
// may not be recoverable.
if (error == 0)
{
if (server_service_.sst_before_init())
{
if (init_initialized_ == false)
{
state(lock, s_initializing);
lock.unlock();
server_service_.debug_sync("on_view_wait_initialized");
lock.lock();
wait_until_state(lock, s_initialized);
assert(init_initialized_);
}
}
lock.unlock();
if (id_.is_undefined())
{
assert(0);
throw wsrep::runtime_error(
"wsrep::sst_received() called before connection to cluster");
}
gtid = server_service_.get_position(cs);
wsrep::log_info() << "Recovered position from storage: " << gtid;
lock.lock();
if (gtid.seqno() >= connected_gtid().seqno())
{
/* Now the node has all the data the cluster has: part in
* storage, part in replication event queue. */
state(lock, s_joined);
}
lock.unlock();
wsrep::view const v(server_service_.get_view(cs, id_));
wsrep::log_info() << "Recovered view from SST:\n" << v;
/*
* If the state id from recovered view has undefined ID, we may
* be upgrading from earlier version which does not provide
* view stored in stable storage. In this case we skip
* sanity checks and assigning the current view and wait
* until the first view delivery.
*/
if (v.state_id().id().is_undefined() == false)
{
if (v.state_id().id() != gtid.id() ||
v.state_id().seqno() > gtid.seqno())
{
/* Since IN GENERAL we may not be able to recover SST GTID from
* the state data, we have to rely on SST script passing the
* GTID value explicitly.
* Here we check if the passed GTID makes any sense: it should
* have the same UUID and greater or equal seqno than the last
* logged view. */
std::ostringstream msg;
msg << "SST script passed bogus GTID: " << gtid
<< ". Preceding view GTID: " << v.state_id();
throw wsrep::runtime_error(msg.str());
}
if (current_view_.status() == wsrep::view::primary)
{
previous_primary_view_ = current_view_;
}
current_view_ = v;
server_service_.log_view(NULL /* this view is stored already */, v);
}
else
{
wsrep::log_warning()
<< "View recovered from stable storage was empty. If the "
<< "server is doing rolling upgrade from previous version "
<< "which does not support storing view info into stable "
<< "storage, this is ok. Otherwise this may be a sign of "
<< "malfunction.";
}
lock.lock();
recover_streaming_appliers_if_not_recovered(lock, cs);
lock.unlock();
}
enum provider::status const retval(provider().sst_received(gtid, error));
if (retval != provider::success)
{
wsrep::log_error() << "provider.sst_received() failed: "
<< wsrep::provider::to_string(retval);
return 1;
}
return 0;
}
catch (const wsrep::runtime_error& e)
{
wsrep::log_error() << "sst_received failed: " << e.what();
if (provider_)
{
provider_->sst_received(wsrep::gtid::undefined(), -EINTR);
}
return 1;
}
void wsrep::server_state::initialized()
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
wsrep::log_info() << "Server initialized";
init_initialized_ = true;
if (server_service_.sst_before_init())
{
state(lock, s_initialized);
}
else
{
state(lock, s_initializing);
state(lock, s_initialized);
}
}
enum wsrep::provider::status
wsrep::server_state::wait_for_gtid(const wsrep::gtid& gtid, int timeout)
const
{
return provider().wait_for_gtid(gtid, timeout);
}
int
wsrep::server_state::set_encryption_key(std::vector<unsigned char>& key)
{
encryption_key_ = key;
if (provider_)
{
wsrep::const_buffer const key(encryption_key_.data(),
encryption_key_.size());
enum provider::status const retval(provider_->enc_set_key(key));
if (retval != provider::success)
{
wsrep::log_error() << "Failed to set encryption key: "
<< provider::to_string(retval);
return 1;
}
}
return 0;
}
std::pair<wsrep::gtid, enum wsrep::provider::status>
wsrep::server_state::causal_read(int timeout) const
{
return provider().causal_read(timeout);
}
void wsrep::server_state::on_connect(const wsrep::view& view)
{
// Sanity checks
if (view.own_index() < 0 ||
size_t(view.own_index()) >= view.members().size())
{
std::ostringstream os;
os << "Invalid view on connect: own index out of range: " << view;
#ifndef NDEBUG
wsrep::log_error() << os.str();
assert(0);
#endif
throw wsrep::runtime_error(os.str());
}
const size_t own_index(static_cast<size_t>(view.own_index()));
if (id_.is_undefined() == false && id_ != view.members()[own_index].id())
{
std::ostringstream os;
os << "Connection in connected state.\n"
<< "Connected view:\n" << view
<< "Previous view:\n" << current_view_
<< "Current own ID: " << id_;
#ifndef NDEBUG
wsrep::log_error() << os.str();
assert(0);
#endif
throw wsrep::runtime_error(os.str());
}
else
{
id_ = view.members()[own_index].id();
}
wsrep::log_info() << "Server "
<< name_
<< " connected to cluster at position "
<< view.state_id()
<< " with ID "
<< id_;
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
connected_gtid_ = view.state_id();
state(lock, s_connected);
}
void wsrep::server_state::on_primary_view(
const wsrep::view& view,
wsrep::high_priority_service* high_priority_service)
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
assert(view.is_final() == false);
//
// Reached primary from connected state. This may mean the following
//
// 1) Server was joined to the cluster and got SST transfer
// 2) Server was partitioned from the cluster and got back
// 3) A new cluster was bootstrapped from non-prim cluster
//
// There is no enough information here what was the cause
// of the primary component, so we need to walk through
// all states leading to joined to notify possible state
// waiters in other threads.
//
if (server_service_.sst_before_init())
{
if (state_ == s_connected)
{
state(lock, s_joiner);
// We need to assign init_initialized_ here to local
// variable. If the value here was false, we need to skip
// the initializing -> initialized -> joined state cycle
// below. However, if we don't assign the value to
// local, it is possible that the main thread gets control
// between changing the state to initializing and checking
// initialized flag, which may cause the initialzing -> initialized
// state change to be executed even if it should not be.
const bool was_initialized(init_initialized_);
state(lock, s_initializing);
if (was_initialized)
{
// If server side has already been initialized,
// skip directly to s_joined.
state(lock, s_initialized);
}
}
}
else
{
if (state_ == s_connected)
{
state(lock, s_joiner);
}
}
if (init_initialized_ == false)
{
lock.unlock();
server_service_.debug_sync("on_view_wait_initialized");
lock.lock();
wait_until_state(lock, s_initialized);
}
assert(init_initialized_);
if (bootstrap_)
{
server_service_.bootstrap();
bootstrap_ = false;
}
assert(high_priority_service);
if (high_priority_service)
{
recover_streaming_appliers_if_not_recovered(lock,
*high_priority_service);
close_orphaned_sr_transactions(lock, *high_priority_service);
}
if (state(lock) < s_joined &&
view.state_id().seqno() >= connected_gtid().seqno())
{
// If we progressed beyond connected seqno, it means we have full state
state(lock, s_joined);
}
}
void wsrep::server_state::on_non_primary_view(
const wsrep::view& view,
wsrep::high_priority_service* high_priority_service)
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
wsrep::log_info() << "Non-primary view";
if (view.is_final())
{
go_final(lock, view, high_priority_service);
}
else if (state_ != s_disconnecting)
{
state(lock, s_connected);
}
}
void wsrep::server_state::go_final(wsrep::unique_lock<wsrep::mutex>& lock,
const wsrep::view& view,
wsrep::high_priority_service* hps)
{
(void)view; // avoid compiler warning "unused parameter 'view'"
assert(view.is_final());
assert(hps);
if (hps)
{
close_transactions_at_disconnect(*hps);
}
state(lock, s_disconnected);
id_ = wsrep::id::undefined();
}
void wsrep::server_state::on_view(const wsrep::view& view,
wsrep::high_priority_service* high_priority_service)
{
wsrep::log_info()
<< "================================================\nView:\n"
<< view
<< "=================================================";
if (current_view_.status() == wsrep::view::primary)
{
previous_primary_view_ = current_view_;
}
current_view_ = view;
switch (view.status())
{
case wsrep::view::primary:
on_primary_view(view, high_priority_service);
break;
case wsrep::view::non_primary:
on_non_primary_view(view, high_priority_service);
break;
case wsrep::view::disconnected:
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
go_final(lock, view, high_priority_service);
break;
}
default:
wsrep::log_warning() << "Unrecognized view status: " << view.status();
assert(0);
}
server_service_.log_view(high_priority_service, view);
}
void wsrep::server_state::on_sync()
{
wsrep::log_info() << "Server " << name_ << " synced with group";
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
// Initial sync
if (server_service_.sst_before_init() && init_synced_ == false)
{
switch (state_)
{
case s_disconnecting:
break;
case s_synced:
break;
case s_connected: // Seed node path: provider becomes
state(lock, s_joiner); // synced with itself before anything
WSREP_FALLTHROUGH; // else. Then goes DB initialization.
case s_joiner: // |
state(lock, s_initializing); // V
break;
case s_donor:
assert(false); // this should never happen
state(lock, s_joined);
state(lock, s_synced);
break;
case s_initialized:
state(lock, s_joined);
WSREP_FALLTHROUGH;
default:
/* State */
state(lock, s_synced);
};
}
else
{
// Calls to on_sync() in synced state are possible if
// server desyncs itself from the group. Provider does not
// inform about this through callbacks.
if (state_ != s_synced && state_ != s_disconnecting)
{
state(lock, s_synced);
}
}
init_synced_ = true;
enum wsrep::provider::status status(send_pending_rollback_events(lock));
if (status)
{
// TODO should be retried?
wsrep::log_warning()
<< "Failed to flush rollback event cache: " << status;
}
}
int wsrep::server_state::on_apply(
wsrep::high_priority_service& high_priority_service,
const wsrep::ws_handle& ws_handle,
const wsrep::ws_meta& ws_meta,
const wsrep::const_buffer& data)
{
if (is_toi(ws_meta.flags()))
{
return apply_toi(provider(), high_priority_service,
ws_handle, ws_meta, data);
}
else if (is_commutative(ws_meta.flags()) || is_native(ws_meta.flags()))
{
// Not implemented yet.
assert(0);
return 0;
}
else
{
return apply_write_set(*this, high_priority_service,
ws_handle, ws_meta, data);
}
}
enum wsrep::server_state::state wsrep::server_state::state(
wsrep::unique_lock<wsrep::mutex>& lock WSREP_UNUSED) const
{
assert(lock.owns_lock());
return state_;
}
void wsrep::server_state::start_streaming_client(
wsrep::client_state* client_state)
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
WSREP_LOG_DEBUG(wsrep::log::debug_log_level(),
wsrep::log::debug_level_server_state,
"Start streaming client: " << client_state->id());
if (streaming_clients_.insert(
std::make_pair(client_state->id(), client_state)).second == false)
{
wsrep::log_warning() << "Failed to insert streaming client "
<< client_state->id();
assert(0);
}
}
void wsrep::server_state::convert_streaming_client_to_applier(
wsrep::client_state* client_state)
{
// create streaming_applier beforehand as server_state lock should
// not be held when calling server_service methods
wsrep::high_priority_service* streaming_applier(
server_service_.streaming_applier_service(
client_state->client_service()));
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
WSREP_LOG_DEBUG(wsrep::log::debug_log_level(),
wsrep::log::debug_level_server_state,
"Convert streaming client to applier "
<< client_state->id());
streaming_clients_map::iterator i(
streaming_clients_.find(client_state->id()));
assert(i != streaming_clients_.end());
if (i == streaming_clients_.end())
{
wsrep::log_warning() << "Unable to find streaming client "
<< client_state->id();
assert(0);
}
else
{
streaming_clients_.erase(i);
}
// Convert to applier only if the state is not disconnected. In
// disconnected state the applier map is supposed to be empty
// and it will be reconstructed from fragment storage when
// joining back to cluster.
if (state(lock) != s_disconnected)
{
if (streaming_applier->adopt_transaction(client_state->transaction()))
{
log_adopt_error(client_state->transaction());
streaming_applier->after_apply();
server_service_.release_high_priority_service(streaming_applier);
return;
}
if (streaming_appliers_.insert(
std::make_pair(
std::make_pair(client_state->transaction().server_id(),
client_state->transaction().id()),
streaming_applier)).second == false)
{
wsrep::log_warning() << "Could not insert streaming applier "
<< id_
<< ", "
<< client_state->transaction().id();
assert(0);
}
}
else
{
server_service_.release_high_priority_service(streaming_applier);
client_state->client_service().store_globals();
}
}
void wsrep::server_state::stop_streaming_client(
wsrep::client_state* client_state)
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
WSREP_LOG_DEBUG(wsrep::log::debug_log_level(),
wsrep::log::debug_level_server_state,
"Stop streaming client: " << client_state->id());
streaming_clients_map::iterator i(
streaming_clients_.find(client_state->id()));
assert(i != streaming_clients_.end());
if (i == streaming_clients_.end())
{
wsrep::log_warning() << "Unable to find streaming client "
<< client_state->id();
assert(0);
return;
}
else
{
streaming_clients_.erase(i);
cond_.notify_all();
}
}
void wsrep::server_state::start_streaming_applier(
const wsrep::id& server_id,
const wsrep::transaction_id& transaction_id,
wsrep::high_priority_service* sa)
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
if (streaming_appliers_.insert(
std::make_pair(std::make_pair(server_id, transaction_id),
sa)).second == false)
{
wsrep::log_error() << "Could not insert streaming applier";
throw wsrep::fatal_error();
}
}
void wsrep::server_state::stop_streaming_applier(
const wsrep::id& server_id,
const wsrep::transaction_id& transaction_id)
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
streaming_appliers_map::iterator i(
streaming_appliers_.find(std::make_pair(server_id, transaction_id)));
assert(i != streaming_appliers_.end());
if (i == streaming_appliers_.end())
{
wsrep::log_warning() << "Could not find streaming applier for "
<< server_id << ":" << transaction_id;
}
else
{
streaming_appliers_.erase(i);
cond_.notify_all();
}
}
wsrep::high_priority_service* wsrep::server_state::find_streaming_applier(
const wsrep::id& server_id,
const wsrep::transaction_id& transaction_id) const
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
streaming_appliers_map::const_iterator i(
streaming_appliers_.find(std::make_pair(server_id, transaction_id)));
return (i == streaming_appliers_.end() ? 0 : i->second);
}
wsrep::high_priority_service* wsrep::server_state::find_streaming_applier(
const wsrep::xid& xid) const
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
streaming_appliers_map::const_iterator i(streaming_appliers_.begin());
while (i != streaming_appliers_.end())
{
wsrep::high_priority_service* sa(i->second);
if (sa->transaction().xid() == xid)
{
return sa;
}
i++;
}
return NULL;
}
//////////////////////////////////////////////////////////////////////////////
// Private //
//////////////////////////////////////////////////////////////////////////////
int wsrep::server_state::desync(wsrep::unique_lock<wsrep::mutex>& lock)
{
assert(lock.owns_lock());
++desync_count_;
lock.unlock();
int ret(provider().desync());
lock.lock();
if (ret)
{
--desync_count_;
}
return ret;
}
void wsrep::server_state::resync(wsrep::unique_lock<wsrep::mutex>&
lock WSREP_UNUSED)
{
assert(lock.owns_lock());
assert(desync_count_ > 0);
if (desync_count_ > 0)
{
--desync_count_;
if (provider().resync())
{
throw wsrep::runtime_error("Failed to resync");
}
}
else
{
wsrep::log_warning() << "desync_count " << desync_count_
<< " on resync";
}
}
void wsrep::server_state::state(
wsrep::unique_lock<wsrep::mutex>& lock WSREP_UNUSED,
enum wsrep::server_state::state state)
{
assert(lock.owns_lock());
static const char allowed[n_states_][n_states_] =
{
/* dis, ing, ized, cted, jer, jed, dor, sed, ding to/from */
{ 0, 1, 0, 1, 0, 0, 0, 0, 0}, /* dis */
{ 1, 0, 1, 0, 0, 0, 0, 0, 1}, /* ing */
{ 1, 0, 0, 1, 0, 1, 0, 0, 1}, /* ized */
{ 1, 0, 0, 1, 1, 0, 0, 1, 1}, /* cted */
{ 1, 1, 0, 0, 0, 1, 0, 0, 1}, /* jer */
{ 1, 0, 0, 1, 0, 0, 1, 1, 1}, /* jed */
{ 1, 0, 0, 1, 0, 1, 0, 0, 1}, /* dor */
{ 1, 0, 0, 1, 0, 1, 1, 0, 1}, /* sed */
{ 1, 0, 0, 0, 0, 0, 0, 0, 0} /* ding */
};
if (allowed[state_][state] == false)
{
/* If we are disconnecting ignore any remaining state events from
* the replication queue */
if (s_disconnecting == state_) return;
std::ostringstream os;
os << "server: " << name_ << " unallowed state transition: "
<< wsrep::to_string(state_) << " -> " << wsrep::to_string(state);
wsrep::log_warning() << os.str() << "\n";
assert(0);
}
WSREP_LOG_DEBUG(wsrep::log::debug_log_level(),
wsrep::log::debug_level_server_state,
"server " << name_ << " state change: "
<< to_c_string(state_) << " -> "
<< to_c_string(state));
state_hist_.push_back(state_);
server_service_.log_state_change(state_, state);
state_ = state;
cond_.notify_all();
while (state_waiters_[state_])
{
cond_.wait(lock);
}
}
void wsrep::server_state::wait_until_state(
wsrep::unique_lock<wsrep::mutex>& lock,
enum wsrep::server_state::state state) const
{
++state_waiters_[state];
while (state_ != state)
{
cond_.wait(lock);
// If the waiter waits for any other state than disconnecting
// or disconnected and the state has been changed to disconnecting,
// this usually means that some error was encountered
if (state != s_disconnecting && state != s_disconnected
&& (state_ == s_disconnecting || state_ == s_disconnected))
{
--state_waiters_[state];
throw wsrep::runtime_error("State wait was interrupted");
}
}
--state_waiters_[state];
cond_.notify_all();
}
int wsrep::server_state::wait_until_state(enum state state) const
try
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
wait_until_state(lock, state);
return 0;
}
catch (...)
{
return 1;
}
void wsrep::server_state::interrupt_state_waiters(
wsrep::unique_lock<wsrep::mutex>& lock WSREP_UNUSED)
{
assert(lock.owns_lock());
cond_.notify_all();
}
template <class C>
void wsrep::server_state::recover_streaming_appliers_if_not_recovered(
wsrep::unique_lock<wsrep::mutex>& lock, C& c)
{
assert(lock.owns_lock());
if (streaming_appliers_recovered_ == false)
{
lock.unlock();
server_service_.recover_streaming_appliers(c);
lock.lock();
}
streaming_appliers_recovered_ = true;
}
class transaction_state_cmp
{
public:
transaction_state_cmp(const enum wsrep::transaction::state s)
: state_(s) { }
bool operator()(const std::pair<wsrep::client_id,
wsrep::client_state*>& vt) const
{
return vt.second->transaction().state() == state_;
}
private:
enum wsrep::transaction::state state_;
};
void wsrep::server_state::close_orphaned_sr_transactions(
wsrep::unique_lock<wsrep::mutex>& lock,
wsrep::high_priority_service& high_priority_service)
{
assert(lock.owns_lock());
// When the originator of an SR transaction leaves the primary
// component of the cluster, that SR must be rolled back. When two
// consecutive primary views have the same membership, the system
// may have been in a state with no primary components.
// Example with 2 node cluster:
// - (1,2 primary)
// - (1 non-primary) and (2 non-primary)
// - (1,2 primary)
// We need to rollback SRs owned by both 1 and 2.
// Notice that since the introduction of rollback_event_queue_,
// checking for equal consecutive views is no longer needed.
// However, we must keep it here for the time being, for backwards
// compatibility.
const bool equal_consecutive_views =
current_view_.equal_membership(previous_primary_view_);
if (current_view_.own_index() == -1 || equal_consecutive_views)
{
streaming_clients_map::iterator i;
transaction_state_cmp prepared_state_cmp(wsrep::transaction::s_prepared);
while ((i = std::find_if_not(streaming_clients_.begin(),
streaming_clients_.end(),
prepared_state_cmp))
!= streaming_clients_.end())
{
wsrep::client_id client_id(i->first);
wsrep::transaction_id transaction_id(i->second->transaction().id());
auto& client_state = *i->second;
// It is safe to unlock the server state temporarily here.
// The processing happens inside view handler which is
// protected by the provider commit ordering critical
// section. The lock must be unlocked temporarily to
// allow converting the current client to streaming
// applier in transaction::streaming_rollback().
// The iterator i may be invalidated when the server state
// remains unlocked, so it should not be accessed after
// the bf abort call.
lock.unlock();
client_state.total_order_bf_abort(current_view_.view_seqno());
lock.lock();
streaming_clients_map::const_iterator found_i;
while ((found_i = streaming_clients_.find(client_id)) !=
streaming_clients_.end() &&
found_i->second->transaction().id() == transaction_id)
{
cond_.wait(lock);
}
}
}
streaming_appliers_map::iterator i(streaming_appliers_.begin());
while (i != streaming_appliers_.end())
{
wsrep::high_priority_service* streaming_applier(i->second);
// Rollback SR on equal consecutive primary views or if its
// originator is not in the current view.
// Transactions in prepared state must be committed or
// rolled back explicitly, those are never rolled back here.
if ((streaming_applier->transaction().state() !=
wsrep::transaction::s_prepared) &&
(equal_consecutive_views ||
not current_view_.is_member(
streaming_applier->transaction().server_id())))
{
WSREP_LOG_DEBUG(wsrep::log::debug_log_level(),
wsrep::log::debug_level_server_state,
"Removing SR fragments for "
<< i->first.first
<< ", " << i->first.second);
wsrep::id server_id(i->first.first);
wsrep::transaction_id transaction_id(i->first.second);
int adopt_error;
if ((adopt_error = high_priority_service.adopt_transaction(
streaming_applier->transaction())))
{
log_adopt_error(streaming_applier->transaction());
}
// Even if the transaction adopt above fails, we roll back
// the transaction. Adopt error will leave stale entries
// in the streaming log which can be removed manually.
{
wsrep::high_priority_switch sw(high_priority_service,
*streaming_applier);
streaming_applier->rollback(
wsrep::ws_handle(), wsrep::ws_meta());
streaming_applier->after_apply();
}
streaming_appliers_.erase(i++);
server_service_.release_high_priority_service(streaming_applier);
high_priority_service.store_globals();
wsrep::ws_meta ws_meta(
wsrep::gtid(),
wsrep::stid(server_id, transaction_id, wsrep::client_id()),
wsrep::seqno::undefined(), 0);
lock.unlock();
if (adopt_error == 0)
{
high_priority_service.remove_fragments(ws_meta);
high_priority_service.commit(wsrep::ws_handle(transaction_id, 0),
ws_meta);
}
high_priority_service.after_apply();
lock.lock();
}
else
{
++i;
}
}
}
void wsrep::server_state::close_transactions_at_disconnect(
wsrep::high_priority_service& high_priority_service)
{
// Close streaming applier without removing fragments
// from fragment storage. When the server is started again,
// it must be able to recover ongoing streaming transactions.
streaming_appliers_map::iterator i(streaming_appliers_.begin());
while (i != streaming_appliers_.end())
{
wsrep::high_priority_service* streaming_applier(i->second);
{
wsrep::high_priority_switch sw(high_priority_service,
*streaming_applier);
streaming_applier->rollback(
wsrep::ws_handle(), wsrep::ws_meta());
streaming_applier->after_apply();
}
streaming_appliers_.erase(i++);
server_service_.release_high_priority_service(streaming_applier);
high_priority_service.store_globals();
}
streaming_appliers_recovered_ = false;
}
//
// Rollback event queue
//
void wsrep::server_state::queue_rollback_event(
const wsrep::transaction_id& id)
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
#ifndef NDEBUG
// Make sure we don't have duplicate
// transaction ids in rollback event queue.
// There is no need to do this in release
// build given that caller (streaming_rollback())
// should avoid duplicates.
for (auto i : rollback_event_queue_)
{
assert(id != i);
}
#endif
rollback_event_queue_.push_back(id);
}
enum wsrep::provider::status
wsrep::server_state::send_pending_rollback_events(
wsrep::unique_lock<wsrep::mutex>& lock WSREP_UNUSED)
{
assert(lock.owns_lock());
while (not rollback_event_queue_.empty())
{
const wsrep::transaction_id& id(rollback_event_queue_.front());
const enum wsrep::provider::status status(provider().rollback(id));
if (status)
{
return status;
}
rollback_event_queue_.pop_front();
}
return wsrep::provider::success;
}
enum wsrep::provider::status
wsrep::server_state::send_pending_rollback_events()
{
wsrep::unique_lock<wsrep::mutex> lock(mutex_);
return send_pending_rollback_events(lock);
}
void wsrep::server_state::return_from_donor_state(
wsrep::unique_lock<wsrep::mutex>& lock)
{
assert(lock.owns_lock());
// v26 API does not have JOINED event, so in anticipation of SYNCED
// we must do it here. Do not modify the state if donor lost the
// donor state e.g. due to cluster partitioning.
if (state(lock) == s_donor)
{
state(lock, s_joined);
}
}