mirror of
https://github.com/facebookincubator/mvfst.git
synced 2025-08-09 20:42:44 +03:00
Summary: (1) The first change is the pacing rate calculation is simplified. It removes the interval calculation and just uses the timer tick as the interval. Then it calculates the burst size from there. For most cases these two calculation should land at the same result, except when the `cwnd < minBurstSize * tick / RTT`. In that case, the current calculation would spread writes evenly across one RTT, assuming no new Ack arrives during the RTT; while the new calculation uses the first a few ticks to finish the cwnd amount of data. (2) Then this diff changes how we compensate late timer. Now the pacer will maintain a nextWriteTime_ and lastWriteTime_, which makes it easier to calculate time elapsed since last write. Then each time writer tries to write, it will be allowed to write timeElapsed * pacingRate. This is much more intuitive than the current logic. (3) The diff also adds pacing limited tracking into the pacer. An expected pacing rate is cached when pacing rate is refreshed by congestion controller. Then with packets sent out, Pacer keeps calculating the current send rate. When the send rate is lower, Pacer sets pacingLimited_ to true. Otherwise false. Only when the connection is not pacing limited, the lastWriteTime_ will be packet sent time, otherwise it will be set to the last nextWriteTime_. In other words: if the send rate is lower than expected, we use the expected send time instead of real send time to calculate time elapsed, to allow higher late timer compenstation, to give pacer a chance to catch up. (4) Finally this diff removes the token collecting behavior in the pacer. I think having tokens increaed, instead of reset, when an ack refreshes the pacing rate or when we compensate late time, is quite confusing to some people. After all the above changes, I found tperf can still sustain good throughput without always increase tokens, and rally actualy gives even better results. So i think we can remove this part of the pacer that's potentially very confusing to people who don't know how we got there. Reviewed By: mjoras Differential Revision: D19252744 fbshipit-source-id: b83e4a01fc812fc52117f3ec0f5c3be1badf211f
1144 lines
41 KiB
C++
1144 lines
41 KiB
C++
/*
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
*
|
|
* This source code is licensed under the MIT license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*
|
|
*/
|
|
|
|
#include <quic/api/QuicTransportFunctions.h>
|
|
|
|
#include <folly/Overload.h>
|
|
#include <quic/QuicConstants.h>
|
|
#include <quic/QuicException.h>
|
|
#include <quic/api/IoBufQuicBatch.h>
|
|
#include <quic/api/QuicTransportFunctions.h>
|
|
#include <quic/codec/QuicPacketBuilder.h>
|
|
#include <quic/codec/QuicWriteCodec.h>
|
|
#include <quic/codec/Types.h>
|
|
#include <quic/flowcontrol/QuicFlowController.h>
|
|
#include <quic/happyeyeballs/QuicHappyEyeballsFunctions.h>
|
|
#include <quic/logging/QuicLogger.h>
|
|
#include <quic/state/QuicStateFunctions.h>
|
|
#include <quic/state/QuicStreamFunctions.h>
|
|
#include <quic/state/SimpleFrameFunctions.h>
|
|
|
|
namespace {
|
|
|
|
std::string optionalToString(
|
|
const folly::Optional<quic::PacketNum>& packetNum) {
|
|
if (!packetNum) {
|
|
return "-";
|
|
}
|
|
return folly::to<std::string>(*packetNum);
|
|
}
|
|
|
|
std::string largestAckScheduledToString(
|
|
const quic::QuicConnectionStateBase& conn) noexcept {
|
|
return folly::to<std::string>(
|
|
"[",
|
|
optionalToString(conn.ackStates.initialAckState.largestAckScheduled),
|
|
",",
|
|
optionalToString(conn.ackStates.handshakeAckState.largestAckScheduled),
|
|
",",
|
|
optionalToString(conn.ackStates.appDataAckState.largestAckScheduled),
|
|
"]");
|
|
}
|
|
|
|
std::string largestAckToSendToString(
|
|
const quic::QuicConnectionStateBase& conn) noexcept {
|
|
return folly::to<std::string>(
|
|
"[",
|
|
optionalToString(largestAckToSend(conn.ackStates.initialAckState)),
|
|
",",
|
|
optionalToString(largestAckToSend(conn.ackStates.handshakeAckState)),
|
|
",",
|
|
optionalToString(largestAckToSend(conn.ackStates.appDataAckState)),
|
|
"]");
|
|
}
|
|
|
|
bool toWriteInitialAcks(const quic::QuicConnectionStateBase& conn) {
|
|
return (
|
|
conn.initialWriteCipher &&
|
|
hasAcksToSchedule(conn.ackStates.initialAckState) &&
|
|
conn.ackStates.initialAckState.needsToSendAckImmediately);
|
|
}
|
|
|
|
bool toWriteHandshakeAcks(const quic::QuicConnectionStateBase& conn) {
|
|
return (
|
|
conn.handshakeWriteCipher &&
|
|
hasAcksToSchedule(conn.ackStates.handshakeAckState) &&
|
|
conn.ackStates.handshakeAckState.needsToSendAckImmediately);
|
|
}
|
|
|
|
bool toWriteAppDataAcks(const quic::QuicConnectionStateBase& conn) {
|
|
return (
|
|
conn.oneRttWriteCipher &&
|
|
hasAcksToSchedule(conn.ackStates.appDataAckState) &&
|
|
conn.ackStates.appDataAckState.needsToSendAckImmediately);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace quic {
|
|
|
|
void handleNewStreamDataWritten(
|
|
QuicConnectionStateBase& conn,
|
|
QuicStreamLike& stream,
|
|
uint64_t frameLen,
|
|
bool frameFin,
|
|
PacketNum packetNum,
|
|
PacketNumberSpace packetNumberSpace) {
|
|
auto originalOffset = stream.currentWriteOffset;
|
|
VLOG(10) << nodeToString(conn.nodeType) << " sent"
|
|
<< " packetNum=" << packetNum << " space=" << packetNumberSpace
|
|
<< " " << conn;
|
|
// Idealy we should also check this data doesn't exist in either retx buffer
|
|
// or loss buffer, but that's an expensive search.
|
|
stream.currentWriteOffset += frameLen;
|
|
auto bufWritten = stream.writeBuffer.splitAtMost(folly::to<size_t>(frameLen));
|
|
DCHECK_EQ(bufWritten->computeChainDataLength(), frameLen);
|
|
stream.currentWriteOffset += frameFin ? 1 : 0;
|
|
CHECK(stream.retransmissionBuffer
|
|
.emplace(
|
|
std::piecewise_construct,
|
|
std::forward_as_tuple(originalOffset),
|
|
std::forward_as_tuple(
|
|
std::move(bufWritten), originalOffset, frameFin))
|
|
.second);
|
|
}
|
|
|
|
void handleRetransmissionWritten(
|
|
QuicConnectionStateBase& conn,
|
|
QuicStreamLike& stream,
|
|
uint64_t frameOffset,
|
|
uint64_t frameLen,
|
|
bool frameFin,
|
|
PacketNum packetNum,
|
|
std::deque<StreamBuffer>::iterator lossBufferIter) {
|
|
conn.lossState.totalBytesRetransmitted += frameLen;
|
|
VLOG(10) << nodeToString(conn.nodeType) << " sent retransmission"
|
|
<< " packetNum=" << packetNum << " " << conn;
|
|
auto bufferLen = lossBufferIter->data.chainLength();
|
|
Buf bufWritten;
|
|
if (frameLen == bufferLen && frameFin == lossBufferIter->eof) {
|
|
// The buffer is entirely retransmitted
|
|
bufWritten = lossBufferIter->data.move();
|
|
stream.lossBuffer.erase(lossBufferIter);
|
|
} else {
|
|
lossBufferIter->offset += frameLen;
|
|
bufWritten = lossBufferIter->data.splitAtMost(frameLen);
|
|
}
|
|
CHECK(stream.retransmissionBuffer
|
|
.emplace(
|
|
std::piecewise_construct,
|
|
std::forward_as_tuple(frameOffset),
|
|
std::forward_as_tuple(
|
|
std::move(bufWritten), frameOffset, frameFin))
|
|
.second);
|
|
}
|
|
|
|
/**
|
|
* Update the connection and stream state after stream data is written and deal
|
|
* with new data, as well as retranmissions. Returns true if the data sent is
|
|
* new data.
|
|
*/
|
|
bool handleStreamWritten(
|
|
QuicConnectionStateBase& conn,
|
|
QuicStreamLike& stream,
|
|
uint64_t frameOffset,
|
|
uint64_t frameLen,
|
|
bool frameFin,
|
|
PacketNum packetNum,
|
|
PacketNumberSpace packetNumberSpace) {
|
|
// Handle new data first
|
|
if (frameOffset == stream.currentWriteOffset) {
|
|
handleNewStreamDataWritten(
|
|
conn, stream, frameLen, frameFin, packetNum, packetNumberSpace);
|
|
return true;
|
|
}
|
|
|
|
// If the data is in the loss buffer, it is a retransmission.
|
|
auto lossBufferIter = std::lower_bound(
|
|
stream.lossBuffer.begin(),
|
|
stream.lossBuffer.end(),
|
|
frameOffset,
|
|
[](const auto& buf, auto off) { return buf.offset < off; });
|
|
if (lossBufferIter != stream.lossBuffer.end() &&
|
|
lossBufferIter->offset == frameOffset) {
|
|
handleRetransmissionWritten(
|
|
conn,
|
|
stream,
|
|
frameOffset,
|
|
frameLen,
|
|
frameFin,
|
|
packetNum,
|
|
lossBufferIter);
|
|
QUIC_STATS(conn.infoCallback, onPacketRetransmission);
|
|
return false;
|
|
}
|
|
|
|
// Otherwise it must be a clone write.
|
|
conn.lossState.totalStreamBytesCloned += frameLen;
|
|
return false;
|
|
}
|
|
|
|
void updateConnection(
|
|
QuicConnectionStateBase& conn,
|
|
folly::Optional<PacketEvent> packetEvent,
|
|
RegularQuicWritePacket packet,
|
|
TimePoint sentTime,
|
|
uint32_t encodedSize) {
|
|
auto packetNum = packet.header.getPacketSequenceNum();
|
|
bool retransmittable = false; // AckFrame and PaddingFrame are not retx-able.
|
|
bool isHandshake = false;
|
|
uint32_t connWindowUpdateSent = 0;
|
|
uint32_t ackFrameCounter = 0;
|
|
auto packetNumberSpace = packet.header.getPacketNumberSpace();
|
|
VLOG(10) << nodeToString(conn.nodeType) << " sent packetNum=" << packetNum
|
|
<< " in space=" << packetNumberSpace << " size=" << encodedSize
|
|
<< " " << conn;
|
|
if (conn.qLogger) {
|
|
conn.qLogger->addPacket(packet, encodedSize);
|
|
}
|
|
for (const auto& frame : packet.frames) {
|
|
switch (frame.type()) {
|
|
case QuicWriteFrame::Type::WriteStreamFrame_E: {
|
|
const WriteStreamFrame& writeStreamFrame = *frame.asWriteStreamFrame();
|
|
retransmittable = true;
|
|
auto stream = CHECK_NOTNULL(
|
|
conn.streamManager->getStream(writeStreamFrame.streamId));
|
|
auto newStreamDataWritten = handleStreamWritten(
|
|
conn,
|
|
*stream,
|
|
writeStreamFrame.offset,
|
|
writeStreamFrame.len,
|
|
writeStreamFrame.fin,
|
|
packetNum,
|
|
packetNumberSpace);
|
|
if (newStreamDataWritten) {
|
|
updateFlowControlOnWriteToSocket(*stream, writeStreamFrame.len);
|
|
maybeWriteBlockAfterSocketWrite(*stream);
|
|
conn.streamManager->updateWritableStreams(*stream);
|
|
}
|
|
conn.streamManager->updateLossStreams(*stream);
|
|
break;
|
|
}
|
|
case QuicWriteFrame::Type::WriteCryptoFrame_E: {
|
|
const WriteCryptoFrame& writeCryptoFrame = *frame.asWriteCryptoFrame();
|
|
retransmittable = true;
|
|
auto protectionType = packet.header.getProtectionType();
|
|
// NewSessionTicket is sent in crypto frame encrypted with 1-rtt key,
|
|
// however, it is not part of handshake
|
|
isHandshake =
|
|
(protectionType == ProtectionType::Initial ||
|
|
protectionType == ProtectionType::Handshake);
|
|
auto encryptionLevel = protectionTypeToEncryptionLevel(protectionType);
|
|
handleStreamWritten(
|
|
conn,
|
|
*getCryptoStream(*conn.cryptoState, encryptionLevel),
|
|
writeCryptoFrame.offset,
|
|
writeCryptoFrame.len,
|
|
false,
|
|
packetNum,
|
|
packetNumberSpace);
|
|
break;
|
|
}
|
|
case QuicWriteFrame::Type::WriteAckFrame_E: {
|
|
const WriteAckFrame& writeAckFrame = *frame.asWriteAckFrame();
|
|
DCHECK(!ackFrameCounter++)
|
|
<< "Send more than one WriteAckFrame " << conn;
|
|
auto largestAckedPacketWritten = writeAckFrame.ackBlocks.front().end;
|
|
VLOG(10) << nodeToString(conn.nodeType)
|
|
<< " sent packet with largestAcked="
|
|
<< largestAckedPacketWritten << " packetNum=" << packetNum
|
|
<< " " << conn;
|
|
updateAckSendStateOnSentPacketWithAcks(
|
|
conn,
|
|
getAckState(conn, packetNumberSpace),
|
|
largestAckedPacketWritten);
|
|
break;
|
|
}
|
|
case QuicWriteFrame::Type::RstStreamFrame_E: {
|
|
const RstStreamFrame& rstStreamFrame = *frame.asRstStreamFrame();
|
|
retransmittable = true;
|
|
VLOG(10) << nodeToString(conn.nodeType)
|
|
<< " sent reset streams in packetNum=" << packetNum << " "
|
|
<< conn;
|
|
auto resetIter =
|
|
conn.pendingEvents.resets.find(rstStreamFrame.streamId);
|
|
// TODO: this can happen because we clone RST_STREAM frames. Should we
|
|
// start to treat RST_STREAM in the same way we treat window update?
|
|
if (resetIter != conn.pendingEvents.resets.end()) {
|
|
conn.pendingEvents.resets.erase(resetIter);
|
|
} else {
|
|
DCHECK(packetEvent.hasValue())
|
|
<< " reset missing from pendingEvents for non-clone packet";
|
|
}
|
|
break;
|
|
}
|
|
case QuicWriteFrame::Type::MaxDataFrame_E: {
|
|
const MaxDataFrame& maxDataFrame = *frame.asMaxDataFrame();
|
|
CHECK(!connWindowUpdateSent++)
|
|
<< "Send more than one connection window update " << conn;
|
|
VLOG(10) << nodeToString(conn.nodeType)
|
|
<< " sent conn window update packetNum=" << packetNum << " "
|
|
<< conn;
|
|
retransmittable = true;
|
|
VLOG(10) << nodeToString(conn.nodeType)
|
|
<< " sent conn window update in packetNum=" << packetNum << " "
|
|
<< conn;
|
|
onConnWindowUpdateSent(
|
|
conn, packetNum, maxDataFrame.maximumData, sentTime);
|
|
break;
|
|
}
|
|
case QuicWriteFrame::Type::MaxStreamDataFrame_E: {
|
|
const MaxStreamDataFrame& maxStreamDataFrame =
|
|
*frame.asMaxStreamDataFrame();
|
|
auto stream = CHECK_NOTNULL(
|
|
conn.streamManager->getStream(maxStreamDataFrame.streamId));
|
|
retransmittable = true;
|
|
VLOG(10) << nodeToString(conn.nodeType)
|
|
<< " sent packet with window update packetNum=" << packetNum
|
|
<< " stream=" << maxStreamDataFrame.streamId << " " << conn;
|
|
onStreamWindowUpdateSent(
|
|
*stream, packetNum, maxStreamDataFrame.maximumData, sentTime);
|
|
break;
|
|
}
|
|
case QuicWriteFrame::Type::StreamDataBlockedFrame_E: {
|
|
const StreamDataBlockedFrame& streamBlockedFrame =
|
|
*frame.asStreamDataBlockedFrame();
|
|
VLOG(10) << nodeToString(conn.nodeType)
|
|
<< " sent blocked stream frame packetNum=" << packetNum << " "
|
|
<< conn;
|
|
retransmittable = true;
|
|
conn.streamManager->removeBlocked(streamBlockedFrame.streamId);
|
|
break;
|
|
}
|
|
case QuicWriteFrame::Type::QuicSimpleFrame_E: {
|
|
const QuicSimpleFrame& simpleFrame = *frame.asQuicSimpleFrame();
|
|
retransmittable = true;
|
|
// We don't want this triggered for cloned frames.
|
|
if (!packetEvent.hasValue()) {
|
|
updateSimpleFrameOnPacketSent(conn, simpleFrame);
|
|
}
|
|
break;
|
|
}
|
|
case QuicWriteFrame::Type::PaddingFrame_E: {
|
|
// do not mark padding as retransmittable. There are several reasons
|
|
// for this:
|
|
// 1. We might need to pad ACK packets to make it so that we can
|
|
// sample them correctly for header encryption. ACK packets may not
|
|
// count towards congestion window, so the padding frames in those
|
|
// ack packets should not count towards the window either
|
|
// 2. Of course we do not want to retransmit the ACK frames.
|
|
break;
|
|
}
|
|
default:
|
|
retransmittable = true;
|
|
}
|
|
}
|
|
|
|
increaseNextPacketNum(conn, packetNumberSpace);
|
|
conn.lossState.largestSent = std::max(conn.lossState.largestSent, packetNum);
|
|
// updateConnection may be called multiple times during write. If before or
|
|
// during any updateConnection, setLossDetectionAlarm is already set, we
|
|
// shouldn't clear it:
|
|
if (!conn.pendingEvents.setLossDetectionAlarm) {
|
|
conn.pendingEvents.setLossDetectionAlarm = retransmittable;
|
|
}
|
|
conn.lossState.totalBytesSent += encodedSize;
|
|
|
|
if (!retransmittable) {
|
|
DCHECK(!packetEvent);
|
|
return;
|
|
}
|
|
auto packetIt =
|
|
std::find_if(
|
|
conn.outstandingPackets.rbegin(),
|
|
conn.outstandingPackets.rend(),
|
|
[packetNum](const auto& packetWithTime) {
|
|
return packetWithTime.packet.header.getPacketSequenceNum() <
|
|
packetNum;
|
|
})
|
|
.base();
|
|
auto& pkt = *conn.outstandingPackets.emplace(
|
|
packetIt,
|
|
std::move(packet),
|
|
std::move(sentTime),
|
|
encodedSize,
|
|
isHandshake,
|
|
conn.lossState.totalBytesSent);
|
|
pkt.isAppLimited = conn.congestionController
|
|
? conn.congestionController->isAppLimited()
|
|
: false;
|
|
if (conn.lossState.lastAckedTime.hasValue() &&
|
|
conn.lossState.lastAckedPacketSentTime.hasValue()) {
|
|
pkt.lastAckedPacketInfo.emplace(
|
|
*conn.lossState.lastAckedPacketSentTime,
|
|
*conn.lossState.lastAckedTime,
|
|
conn.lossState.totalBytesSentAtLastAck,
|
|
conn.lossState.totalBytesAckedAtLastAck);
|
|
}
|
|
if (packetEvent) {
|
|
DCHECK(conn.outstandingPacketEvents.count(*packetEvent));
|
|
DCHECK(!isHandshake);
|
|
pkt.associatedEvent = std::move(packetEvent);
|
|
conn.lossState.totalBytesCloned += encodedSize;
|
|
}
|
|
|
|
if (conn.congestionController) {
|
|
conn.congestionController->onPacketSent(pkt);
|
|
// An approximation of the app being blocked. The app
|
|
// technically might not have bytes to write.
|
|
auto writableBytes = conn.congestionController->getWritableBytes();
|
|
bool cwndBlocked = writableBytes < kBlockedSizeBytes;
|
|
if (cwndBlocked) {
|
|
QUIC_TRACE(
|
|
cwnd_may_block,
|
|
conn,
|
|
writableBytes,
|
|
conn.congestionController->getCongestionWindow());
|
|
}
|
|
}
|
|
if (conn.pacer) {
|
|
conn.pacer->onPacketSent(pkt.encodedSize);
|
|
}
|
|
if (conn.pathValidationLimiter &&
|
|
(conn.pendingEvents.pathChallenge || conn.outstandingPathValidation)) {
|
|
conn.pathValidationLimiter->onPacketSent(pkt.encodedSize);
|
|
}
|
|
if (pkt.isHandshake) {
|
|
++conn.outstandingHandshakePacketsCount;
|
|
conn.lossState.lastHandshakePacketSentTime = pkt.time;
|
|
}
|
|
conn.lossState.lastRetransmittablePacketSentTime = pkt.time;
|
|
if (pkt.associatedEvent) {
|
|
CHECK_EQ(packetNumberSpace, PacketNumberSpace::AppData);
|
|
++conn.outstandingClonedPacketsCount;
|
|
++conn.lossState.timeoutBasedRtxCount;
|
|
}
|
|
|
|
auto opCount = conn.outstandingPackets.size();
|
|
DCHECK_GE(opCount, conn.outstandingHandshakePacketsCount);
|
|
DCHECK_GE(opCount, conn.outstandingClonedPacketsCount);
|
|
}
|
|
|
|
uint64_t congestionControlWritableBytes(const QuicConnectionStateBase& conn) {
|
|
uint64_t writableBytes = std::numeric_limits<uint64_t>::max();
|
|
|
|
if (conn.pendingEvents.pathChallenge || conn.outstandingPathValidation) {
|
|
CHECK(conn.pathValidationLimiter);
|
|
// 0-RTT and path validation rate limiting should be mutually exclusive.
|
|
CHECK(!conn.writableBytesLimit);
|
|
|
|
// Use the default RTT measurement when starting a new path challenge (CC is
|
|
// reset). This shouldn't be an RTT sample, so we do not update the CC with
|
|
// this value.
|
|
writableBytes = conn.pathValidationLimiter->currentCredit(
|
|
std::chrono::steady_clock::now(),
|
|
conn.lossState.srtt == 0us ? kDefaultInitialRtt : conn.lossState.srtt);
|
|
} else if (conn.writableBytesLimit) {
|
|
if (*conn.writableBytesLimit <= conn.lossState.totalBytesSent) {
|
|
return 0;
|
|
}
|
|
writableBytes = *conn.writableBytesLimit - conn.lossState.totalBytesSent;
|
|
}
|
|
|
|
if (conn.congestionController) {
|
|
writableBytes = std::min<uint64_t>(
|
|
writableBytes, conn.congestionController->getWritableBytes());
|
|
}
|
|
|
|
return writableBytes;
|
|
}
|
|
|
|
uint64_t unlimitedWritableBytes(const QuicConnectionStateBase&) {
|
|
return std::numeric_limits<uint64_t>::max();
|
|
}
|
|
|
|
HeaderBuilder LongHeaderBuilder(LongHeader::Types packetType) {
|
|
return [packetType](
|
|
const ConnectionId& srcConnId,
|
|
const ConnectionId& dstConnId,
|
|
PacketNum packetNum,
|
|
QuicVersion version,
|
|
const std::string& token) {
|
|
return LongHeader(
|
|
packetType, srcConnId, dstConnId, packetNum, version, token);
|
|
};
|
|
}
|
|
|
|
HeaderBuilder ShortHeaderBuilder() {
|
|
return [](const ConnectionId& /* srcConnId */,
|
|
const ConnectionId& dstConnId,
|
|
PacketNum packetNum,
|
|
QuicVersion,
|
|
const std::string&) {
|
|
return ShortHeader(ProtectionType::KeyPhaseZero, dstConnId, packetNum);
|
|
};
|
|
}
|
|
|
|
uint64_t writeQuicDataToSocket(
|
|
folly::AsyncUDPSocket& sock,
|
|
QuicConnectionStateBase& connection,
|
|
const ConnectionId& srcConnId,
|
|
const ConnectionId& dstConnId,
|
|
const Aead& aead,
|
|
const PacketNumberCipher& headerCipher,
|
|
QuicVersion version,
|
|
uint64_t packetLimit) {
|
|
auto builder = ShortHeaderBuilder();
|
|
// TODO: In FrameScheduler, Retx is prioritized over new data. We should
|
|
// add a flag to the Scheduler to control the priority between them and see
|
|
// which way is better.
|
|
uint64_t written = 0;
|
|
if (connection.pendingEvents.numProbePackets) {
|
|
auto probeScheduler = std::move(FrameScheduler::Builder(
|
|
connection,
|
|
EncryptionLevel::AppData,
|
|
PacketNumberSpace::AppData,
|
|
"ProbeScheduler")
|
|
.streamFrames()
|
|
.streamRetransmissions()
|
|
.cryptoFrames())
|
|
.build();
|
|
written = writeProbingDataToSocket(
|
|
sock,
|
|
connection,
|
|
srcConnId,
|
|
dstConnId,
|
|
builder,
|
|
PacketNumberSpace::AppData,
|
|
probeScheduler,
|
|
std::min<uint64_t>(
|
|
packetLimit, connection.pendingEvents.numProbePackets),
|
|
aead,
|
|
headerCipher,
|
|
version);
|
|
connection.pendingEvents.numProbePackets = 0;
|
|
}
|
|
FrameScheduler scheduler = std::move(FrameScheduler::Builder(
|
|
connection,
|
|
EncryptionLevel::AppData,
|
|
PacketNumberSpace::AppData,
|
|
"FrameScheduler")
|
|
.streamFrames()
|
|
.ackFrames()
|
|
.streamRetransmissions()
|
|
.resetFrames()
|
|
.windowUpdateFrames()
|
|
.blockedFrames()
|
|
.cryptoFrames()
|
|
.simpleFrames())
|
|
.build();
|
|
written += writeConnectionDataToSocket(
|
|
sock,
|
|
connection,
|
|
srcConnId,
|
|
dstConnId,
|
|
std::move(builder),
|
|
PacketNumberSpace::AppData,
|
|
scheduler,
|
|
congestionControlWritableBytes,
|
|
packetLimit - written,
|
|
aead,
|
|
headerCipher,
|
|
version);
|
|
VLOG_IF(10, written > 0) << nodeToString(connection.nodeType)
|
|
<< " written data to socket packets=" << written
|
|
<< " " << connection;
|
|
DCHECK_GE(packetLimit, written);
|
|
return written;
|
|
}
|
|
|
|
uint64_t writeCryptoAndAckDataToSocket(
|
|
folly::AsyncUDPSocket& sock,
|
|
QuicConnectionStateBase& connection,
|
|
const ConnectionId& srcConnId,
|
|
const ConnectionId& dstConnId,
|
|
LongHeader::Types packetType,
|
|
Aead& cleartextCipher,
|
|
const PacketNumberCipher& headerCipher,
|
|
QuicVersion version,
|
|
uint64_t packetLimit,
|
|
const std::string& token) {
|
|
auto encryptionLevel = protectionTypeToEncryptionLevel(
|
|
longHeaderTypeToProtectionType(packetType));
|
|
FrameScheduler scheduler =
|
|
std::move(FrameScheduler::Builder(
|
|
connection,
|
|
encryptionLevel,
|
|
LongHeader::typeToPacketNumberSpace(packetType),
|
|
"CryptoAndAcksScheduler")
|
|
.ackFrames()
|
|
.cryptoFrames())
|
|
.build();
|
|
auto builder = LongHeaderBuilder(packetType);
|
|
// Crypto data is written without aead protection.
|
|
auto written = writeConnectionDataToSocket(
|
|
sock,
|
|
connection,
|
|
srcConnId,
|
|
dstConnId,
|
|
std::move(builder),
|
|
LongHeader::typeToPacketNumberSpace(packetType),
|
|
scheduler,
|
|
congestionControlWritableBytes,
|
|
packetLimit,
|
|
cleartextCipher,
|
|
headerCipher,
|
|
version,
|
|
token);
|
|
VLOG_IF(10, written > 0) << nodeToString(connection.nodeType)
|
|
<< " written crypto and acks data type="
|
|
<< packetType << " packets=" << written << " "
|
|
<< connection;
|
|
DCHECK_GE(packetLimit, written);
|
|
return written;
|
|
}
|
|
|
|
uint64_t writeQuicDataExceptCryptoStreamToSocket(
|
|
folly::AsyncUDPSocket& socket,
|
|
QuicConnectionStateBase& connection,
|
|
const ConnectionId& srcConnId,
|
|
const ConnectionId& dstConnId,
|
|
const Aead& aead,
|
|
const PacketNumberCipher& headerCipher,
|
|
QuicVersion version,
|
|
uint64_t packetLimit) {
|
|
auto builder = ShortHeaderBuilder();
|
|
uint64_t written = 0;
|
|
if (connection.pendingEvents.numProbePackets) {
|
|
auto probeScheduler = std::move(FrameScheduler::Builder(
|
|
connection,
|
|
EncryptionLevel::AppData,
|
|
PacketNumberSpace::AppData,
|
|
"ProbeWithoutCrypto")
|
|
.streamFrames()
|
|
.streamRetransmissions())
|
|
.build();
|
|
written = writeProbingDataToSocket(
|
|
socket,
|
|
connection,
|
|
srcConnId,
|
|
dstConnId,
|
|
builder,
|
|
PacketNumberSpace::AppData,
|
|
probeScheduler,
|
|
std::min<uint64_t>(
|
|
packetLimit, connection.pendingEvents.numProbePackets),
|
|
aead,
|
|
headerCipher,
|
|
version);
|
|
connection.pendingEvents.numProbePackets = 0;
|
|
}
|
|
FrameScheduler scheduler = std::move(FrameScheduler::Builder(
|
|
connection,
|
|
EncryptionLevel::AppData,
|
|
PacketNumberSpace::AppData,
|
|
"FrameSchedulerWithoutCrypto")
|
|
.streamFrames()
|
|
.ackFrames()
|
|
.streamRetransmissions()
|
|
.resetFrames()
|
|
.windowUpdateFrames()
|
|
.blockedFrames()
|
|
.simpleFrames())
|
|
.build();
|
|
written += writeConnectionDataToSocket(
|
|
socket,
|
|
connection,
|
|
srcConnId,
|
|
dstConnId,
|
|
std::move(builder),
|
|
PacketNumberSpace::AppData,
|
|
scheduler,
|
|
congestionControlWritableBytes,
|
|
packetLimit - written,
|
|
aead,
|
|
headerCipher,
|
|
version);
|
|
VLOG_IF(10, written > 0) << nodeToString(connection.nodeType)
|
|
<< " written data except crypto data, packets="
|
|
<< written << " " << connection;
|
|
DCHECK_GE(packetLimit, written);
|
|
return written;
|
|
}
|
|
|
|
uint64_t writeZeroRttDataToSocket(
|
|
folly::AsyncUDPSocket& socket,
|
|
QuicConnectionStateBase& connection,
|
|
const ConnectionId& srcConnId,
|
|
const ConnectionId& dstConnId,
|
|
const Aead& aead,
|
|
const PacketNumberCipher& headerCipher,
|
|
QuicVersion version,
|
|
uint64_t packetLimit) {
|
|
auto type = LongHeader::Types::ZeroRtt;
|
|
auto encryptionLevel =
|
|
protectionTypeToEncryptionLevel(longHeaderTypeToProtectionType(type));
|
|
auto builder = LongHeaderBuilder(type);
|
|
// Probe is not useful for zero rtt because we will always have handshake
|
|
// packets outstanding when sending zero rtt data.
|
|
FrameScheduler scheduler =
|
|
std::move(FrameScheduler::Builder(
|
|
connection,
|
|
encryptionLevel,
|
|
LongHeader::typeToPacketNumberSpace(type),
|
|
"ZeroRttScheduler")
|
|
.streamFrames()
|
|
.streamRetransmissions()
|
|
.resetFrames()
|
|
.windowUpdateFrames()
|
|
.blockedFrames()
|
|
.simpleFrames())
|
|
.build();
|
|
auto written = writeConnectionDataToSocket(
|
|
socket,
|
|
connection,
|
|
srcConnId,
|
|
dstConnId,
|
|
std::move(builder),
|
|
LongHeader::typeToPacketNumberSpace(type),
|
|
scheduler,
|
|
congestionControlWritableBytes,
|
|
packetLimit,
|
|
aead,
|
|
headerCipher,
|
|
version);
|
|
VLOG_IF(10, written > 0) << nodeToString(connection.nodeType)
|
|
<< " written zero rtt data, packets=" << written
|
|
<< " " << connection;
|
|
DCHECK_GE(packetLimit, written);
|
|
return written;
|
|
}
|
|
|
|
void writeCloseCommon(
|
|
folly::AsyncUDPSocket& sock,
|
|
QuicConnectionStateBase& connection,
|
|
PacketHeader&& header,
|
|
folly::Optional<std::pair<QuicErrorCode, std::string>> closeDetails,
|
|
const Aead& aead,
|
|
const PacketNumberCipher& headerCipher) {
|
|
// close is special, we're going to bypass all the packet sent logic for all
|
|
// packets we send with a connection close frame.
|
|
PacketNumberSpace pnSpace = header.getPacketNumberSpace();
|
|
HeaderForm headerForm = header.getHeaderForm();
|
|
PacketNum packetNum = header.getPacketSequenceNum();
|
|
RegularQuicPacketBuilder packetBuilder(
|
|
connection.udpSendPacketLen,
|
|
std::move(header),
|
|
getAckState(connection, pnSpace).largestAckedByPeer,
|
|
connection.version.value_or(*connection.originalVersion));
|
|
packetBuilder.setCipherOverhead(aead.getCipherOverhead());
|
|
size_t written = 0;
|
|
if (!closeDetails) {
|
|
written = writeFrame(
|
|
ConnectionCloseFrame(
|
|
QuicErrorCode(TransportErrorCode::NO_ERROR),
|
|
std::string("No error")),
|
|
packetBuilder);
|
|
} else {
|
|
switch (closeDetails->first.type()) {
|
|
case QuicErrorCode::Type::ApplicationErrorCode_E:
|
|
written = writeFrame(
|
|
ConnectionCloseFrame(
|
|
QuicErrorCode(*closeDetails->first.asApplicationErrorCode()),
|
|
closeDetails->second,
|
|
quic::FrameType::CONNECTION_CLOSE_APP_ERR),
|
|
packetBuilder);
|
|
break;
|
|
case QuicErrorCode::Type::TransportErrorCode_E:
|
|
written = writeFrame(
|
|
ConnectionCloseFrame(
|
|
QuicErrorCode(*closeDetails->first.asTransportErrorCode()),
|
|
closeDetails->second,
|
|
quic::FrameType::CONNECTION_CLOSE),
|
|
packetBuilder);
|
|
break;
|
|
case QuicErrorCode::Type::LocalErrorCode_E:
|
|
written = writeFrame(
|
|
ConnectionCloseFrame(
|
|
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
|
|
std::string("Internal error"),
|
|
quic::FrameType::CONNECTION_CLOSE),
|
|
packetBuilder);
|
|
break;
|
|
}
|
|
}
|
|
if (written == 0) {
|
|
LOG(ERROR) << "Close frame too large " << connection;
|
|
return;
|
|
}
|
|
auto packet = std::move(packetBuilder).buildPacket();
|
|
auto body =
|
|
aead.encrypt(std::move(packet.body), packet.header.get(), packetNum);
|
|
encryptPacketHeader(headerForm, *packet.header, *body, headerCipher);
|
|
auto packetBuf = std::move(packet.header);
|
|
packetBuf->prependChain(std::move(body));
|
|
auto packetSize = packetBuf->computeChainDataLength();
|
|
if (connection.qLogger) {
|
|
connection.qLogger->addPacket(packet.packet, packetSize);
|
|
}
|
|
QUIC_TRACE(
|
|
packet_sent,
|
|
connection,
|
|
toString(pnSpace),
|
|
packetNum,
|
|
(uint64_t)packetSize,
|
|
(int)false,
|
|
(int)false);
|
|
VLOG(10) << nodeToString(connection.nodeType)
|
|
<< " sent close packetNum=" << packetNum << " in space=" << pnSpace
|
|
<< " " << connection;
|
|
// Increment the sequence number.
|
|
// TODO: Do not increase pn if write fails
|
|
increaseNextPacketNum(connection, pnSpace);
|
|
// best effort writing to the socket, ignore any errors.
|
|
auto ret = sock.write(connection.peerAddress, packetBuf);
|
|
connection.lossState.totalBytesSent += packetSize;
|
|
if (ret < 0) {
|
|
VLOG(4) << "Error writing connection close " << folly::errnoStr(errno)
|
|
<< " " << connection;
|
|
} else {
|
|
QUIC_STATS(connection.infoCallback, onWrite, ret);
|
|
}
|
|
}
|
|
|
|
void writeLongClose(
|
|
folly::AsyncUDPSocket& sock,
|
|
QuicConnectionStateBase& connection,
|
|
const ConnectionId& srcConnId,
|
|
const ConnectionId& dstConnId,
|
|
LongHeader::Types headerType,
|
|
folly::Optional<std::pair<QuicErrorCode, std::string>> closeDetails,
|
|
const Aead& aead,
|
|
const PacketNumberCipher& headerCipher,
|
|
QuicVersion version) {
|
|
if (!connection.serverConnectionId) {
|
|
// It's possible that servers encountered an error before binding to a
|
|
// connection id.
|
|
return;
|
|
}
|
|
LongHeader header(
|
|
headerType,
|
|
srcConnId,
|
|
dstConnId,
|
|
getNextPacketNum(
|
|
connection, LongHeader::typeToPacketNumberSpace(headerType)),
|
|
version);
|
|
writeCloseCommon(
|
|
sock,
|
|
connection,
|
|
std::move(header),
|
|
std::move(closeDetails),
|
|
aead,
|
|
headerCipher);
|
|
}
|
|
|
|
void writeShortClose(
|
|
folly::AsyncUDPSocket& sock,
|
|
QuicConnectionStateBase& connection,
|
|
const ConnectionId& connId,
|
|
folly::Optional<std::pair<QuicErrorCode, std::string>> closeDetails,
|
|
const Aead& aead,
|
|
const PacketNumberCipher& headerCipher) {
|
|
auto header = ShortHeader(
|
|
ProtectionType::KeyPhaseZero,
|
|
connId,
|
|
getNextPacketNum(connection, PacketNumberSpace::AppData));
|
|
writeCloseCommon(
|
|
sock,
|
|
connection,
|
|
std::move(header),
|
|
std::move(closeDetails),
|
|
aead,
|
|
headerCipher);
|
|
}
|
|
|
|
void encryptPacketHeader(
|
|
HeaderForm headerForm,
|
|
folly::IOBuf& header,
|
|
folly::IOBuf& encryptedBody,
|
|
const PacketNumberCipher& headerCipher) {
|
|
// Header encryption.
|
|
auto packetNumberLength = parsePacketNumberLength(header.data()[0]);
|
|
Sample sample;
|
|
size_t sampleBytesToUse = kMaxPacketNumEncodingSize - packetNumberLength;
|
|
folly::io::Cursor sampleCursor(&encryptedBody);
|
|
// If there were less than 4 bytes in the packet number, some of the payload
|
|
// bytes will also be skipped during sampling.
|
|
sampleCursor.skip(sampleBytesToUse);
|
|
CHECK(sampleCursor.canAdvance(sample.size())) << "Not enough sample bytes";
|
|
sampleCursor.pull(sample.data(), sample.size());
|
|
|
|
// This should already be a single buffer.
|
|
header.coalesce();
|
|
folly::MutableByteRange initialByteRange(header.writableData(), 1);
|
|
folly::MutableByteRange packetNumByteRange(
|
|
header.writableData() + header.length() - packetNumberLength,
|
|
packetNumberLength);
|
|
if (headerForm == HeaderForm::Short) {
|
|
headerCipher.encryptShortHeader(
|
|
sample, initialByteRange, packetNumByteRange);
|
|
} else {
|
|
headerCipher.encryptLongHeader(
|
|
sample, initialByteRange, packetNumByteRange);
|
|
}
|
|
}
|
|
|
|
uint64_t writeConnectionDataToSocket(
|
|
folly::AsyncUDPSocket& sock,
|
|
QuicConnectionStateBase& connection,
|
|
const ConnectionId& srcConnId,
|
|
const ConnectionId& dstConnId,
|
|
HeaderBuilder builder,
|
|
PacketNumberSpace pnSpace,
|
|
QuicPacketScheduler& scheduler,
|
|
const WritableBytesFunc& writableBytesFunc,
|
|
uint64_t packetLimit,
|
|
const Aead& aead,
|
|
const PacketNumberCipher& headerCipher,
|
|
QuicVersion version,
|
|
const std::string& token) {
|
|
VLOG(10) << nodeToString(connection.nodeType)
|
|
<< " writing data using scheduler=" << scheduler.name() << " "
|
|
<< connection;
|
|
|
|
auto batchWriter = BatchWriterFactory::makeBatchWriter(
|
|
sock,
|
|
connection.transportSettings.batchingMode,
|
|
connection.transportSettings.maxBatchSize);
|
|
|
|
IOBufQuicBatch ioBufBatch(
|
|
std::move(batchWriter),
|
|
sock,
|
|
connection.peerAddress,
|
|
connection,
|
|
connection.happyEyeballsState);
|
|
ioBufBatch.setContinueOnNetworkUnreachable(
|
|
connection.transportSettings.continueOnNetworkUnreachable);
|
|
|
|
if (connection.loopDetectorCallback) {
|
|
connection.debugState.schedulerName = scheduler.name();
|
|
connection.debugState.noWriteReason = NoWriteReason::WRITE_OK;
|
|
if (!scheduler.hasData()) {
|
|
connection.debugState.noWriteReason = NoWriteReason::EMPTY_SCHEDULER;
|
|
}
|
|
}
|
|
auto writeLoopBeginTime = Clock::now();
|
|
// helper functor to check if we have been write in a loop for longer than the
|
|
// RTT fraction that we are allowed to write. Only kicks in if we have write
|
|
// one batch in batching write mode.
|
|
auto timeLimitHelper = [&]() -> bool {
|
|
auto batchSize = connection.transportSettings.batchingMode ==
|
|
quic::QuicBatchingMode::BATCHING_MODE_NONE
|
|
? connection.transportSettings.writeConnectionDataPacketsLimit
|
|
: connection.transportSettings.maxBatchSize;
|
|
return ioBufBatch.getPktSent() < batchSize ||
|
|
connection.lossState.srtt == 0us ||
|
|
Clock::now() - writeLoopBeginTime < connection.lossState.srtt /
|
|
connection.transportSettings.writeLimitRttFraction;
|
|
};
|
|
while (scheduler.hasData() && ioBufBatch.getPktSent() < packetLimit &&
|
|
timeLimitHelper()) {
|
|
auto packetNum = getNextPacketNum(connection, pnSpace);
|
|
auto header = builder(srcConnId, dstConnId, packetNum, version, token);
|
|
uint32_t writableBytes = folly::to<uint32_t>(std::min<uint64_t>(
|
|
connection.udpSendPacketLen, writableBytesFunc(connection)));
|
|
uint64_t cipherOverhead = aead.getCipherOverhead();
|
|
if (writableBytes < cipherOverhead) {
|
|
writableBytes = 0;
|
|
} else {
|
|
writableBytes -= cipherOverhead;
|
|
}
|
|
RegularQuicPacketBuilder pktBuilder(
|
|
connection.udpSendPacketLen,
|
|
std::move(header),
|
|
getAckState(connection, pnSpace).largestAckedByPeer,
|
|
connection.version.value_or(*connection.originalVersion));
|
|
pktBuilder.setCipherOverhead(cipherOverhead);
|
|
auto result =
|
|
scheduler.scheduleFramesForPacket(std::move(pktBuilder), writableBytes);
|
|
auto& packet = result.second;
|
|
if (!packet || packet->packet.frames.empty()) {
|
|
ioBufBatch.flush();
|
|
if (connection.loopDetectorCallback) {
|
|
connection.debugState.noWriteReason = NoWriteReason::NO_FRAME;
|
|
}
|
|
return ioBufBatch.getPktSent();
|
|
}
|
|
if (!packet->body) {
|
|
// No more space remaining.
|
|
ioBufBatch.flush();
|
|
if (connection.loopDetectorCallback) {
|
|
connection.debugState.noWriteReason = NoWriteReason::NO_BODY;
|
|
}
|
|
return ioBufBatch.getPktSent();
|
|
}
|
|
auto body =
|
|
aead.encrypt(std::move(packet->body), packet->header.get(), packetNum);
|
|
|
|
HeaderForm headerForm = packet->packet.header.getHeaderForm();
|
|
encryptPacketHeader(headerForm, *packet->header, *body, headerCipher);
|
|
|
|
auto packetBuf = std::move(packet->header);
|
|
packetBuf->prependChain(std::move(body));
|
|
auto encodedSize = packetBuf->computeChainDataLength();
|
|
|
|
bool ret = ioBufBatch.write(std::move(packetBuf), encodedSize);
|
|
|
|
if (ret) {
|
|
// update stats and connection
|
|
QUIC_STATS(connection.infoCallback, onWrite, encodedSize);
|
|
QUIC_STATS(connection.infoCallback, onPacketSent);
|
|
}
|
|
|
|
updateConnection(
|
|
connection,
|
|
std::move(result.first),
|
|
std::move(result.second->packet),
|
|
Clock::now(),
|
|
folly::to<uint32_t>(encodedSize));
|
|
|
|
// if ioBufBatch.write returns false
|
|
// it is because a flush() call failed
|
|
if (!ret) {
|
|
if (connection.loopDetectorCallback) {
|
|
connection.debugState.noWriteReason = NoWriteReason::SOCKET_FAILURE;
|
|
}
|
|
return ioBufBatch.getPktSent();
|
|
}
|
|
}
|
|
|
|
ioBufBatch.flush();
|
|
return ioBufBatch.getPktSent();
|
|
}
|
|
|
|
uint64_t writeProbingDataToSocket(
|
|
folly::AsyncUDPSocket& sock,
|
|
QuicConnectionStateBase& connection,
|
|
const ConnectionId& srcConnId,
|
|
const ConnectionId& dstConnId,
|
|
const HeaderBuilder& builder,
|
|
PacketNumberSpace pnSpace,
|
|
FrameScheduler scheduler,
|
|
uint8_t probesToSend,
|
|
const Aead& aead,
|
|
const PacketNumberCipher& headerCipher,
|
|
QuicVersion version) {
|
|
CloningScheduler cloningScheduler(
|
|
scheduler, connection, "CloningScheduler", aead.getCipherOverhead());
|
|
auto written = writeConnectionDataToSocket(
|
|
sock,
|
|
connection,
|
|
srcConnId,
|
|
dstConnId,
|
|
builder,
|
|
pnSpace,
|
|
cloningScheduler,
|
|
unlimitedWritableBytes,
|
|
probesToSend,
|
|
aead,
|
|
headerCipher,
|
|
version);
|
|
VLOG_IF(10, written > 0)
|
|
<< nodeToString(connection.nodeType)
|
|
<< " writing probes using scheduler=CloningScheduler " << connection;
|
|
return written;
|
|
}
|
|
|
|
WriteDataReason shouldWriteData(const QuicConnectionStateBase& conn) {
|
|
if (conn.pendingEvents.numProbePackets) {
|
|
VLOG(10) << nodeToString(conn.nodeType) << " needs write because of PTO"
|
|
<< conn;
|
|
return WriteDataReason::PROBES;
|
|
}
|
|
if (hasAckDataToWrite(conn)) {
|
|
VLOG(10) << nodeToString(conn.nodeType) << " needs write because of ACKs "
|
|
<< conn;
|
|
return WriteDataReason::ACK;
|
|
}
|
|
const size_t minimumDataSize = std::max(
|
|
kLongHeaderHeaderSize + kCipherOverheadHeuristic, sizeof(Sample));
|
|
|
|
uint64_t availableWriteWindow = congestionControlWritableBytes(conn);
|
|
if (availableWriteWindow <= minimumDataSize) {
|
|
QUIC_STATS(conn.infoCallback, onCwndBlocked);
|
|
return WriteDataReason::NO_WRITE;
|
|
}
|
|
return hasNonAckDataToWrite(conn);
|
|
}
|
|
|
|
bool hasAckDataToWrite(const QuicConnectionStateBase& conn) {
|
|
// hasAcksToSchedule tells us whether we have acks.
|
|
// needsToSendAckImmediately tells us when to schedule the acks. If we don't
|
|
// have an immediate need to schedule the acks then we need to wait till we
|
|
// satisfy a condition where there is immediate need, so we shouldn't
|
|
// consider the acks to be writable.
|
|
bool writeAcks =
|
|
(toWriteInitialAcks(conn) || toWriteHandshakeAcks(conn) ||
|
|
toWriteAppDataAcks(conn));
|
|
VLOG_IF(10, writeAcks) << nodeToString(conn.nodeType)
|
|
<< " needs write because of acks largestAck="
|
|
<< largestAckToSendToString(conn) << " largestSentAck="
|
|
<< largestAckScheduledToString(conn)
|
|
<< " ackTimeoutSet="
|
|
<< conn.pendingEvents.scheduleAckTimeout << " "
|
|
<< conn;
|
|
return writeAcks;
|
|
}
|
|
|
|
WriteDataReason hasNonAckDataToWrite(const QuicConnectionStateBase& conn) {
|
|
if (cryptoHasWritableData(conn)) {
|
|
VLOG(10) << nodeToString(conn.nodeType)
|
|
<< " needs write because of crypto stream"
|
|
<< " " << conn;
|
|
return WriteDataReason::CRYPTO_STREAM;
|
|
}
|
|
if (!conn.oneRttWriteCipher && !conn.zeroRttWriteCipher) {
|
|
// All the rest of the types of data need either a 1-rtt or 0-rtt cipher to
|
|
// be written.
|
|
return WriteDataReason::NO_WRITE;
|
|
}
|
|
if (!conn.pendingEvents.resets.empty()) {
|
|
return WriteDataReason::RESET;
|
|
}
|
|
if (conn.streamManager->hasWindowUpdates()) {
|
|
return WriteDataReason::STREAM_WINDOW_UPDATE;
|
|
}
|
|
if (conn.pendingEvents.connWindowUpdate) {
|
|
return WriteDataReason::CONN_WINDOW_UPDATE;
|
|
}
|
|
if (conn.streamManager->hasBlocked()) {
|
|
return WriteDataReason::BLOCKED;
|
|
}
|
|
if (conn.streamManager->hasLoss()) {
|
|
return WriteDataReason::LOSS;
|
|
}
|
|
if (getSendConnFlowControlBytesWire(conn) != 0 &&
|
|
conn.streamManager->hasWritable()) {
|
|
return WriteDataReason::STREAM;
|
|
}
|
|
if (!conn.pendingEvents.frames.empty()) {
|
|
return WriteDataReason::SIMPLE;
|
|
}
|
|
if ((conn.pendingEvents.pathChallenge != folly::none)) {
|
|
return WriteDataReason::PATHCHALLENGE;
|
|
}
|
|
return WriteDataReason::NO_WRITE;
|
|
}
|
|
|
|
void maybeSendStreamLimitUpdates(QuicConnectionStateBase& conn) {
|
|
auto update = conn.streamManager->remoteBidirectionalStreamLimitUpdate();
|
|
if (update) {
|
|
sendSimpleFrame(conn, (MaxStreamsFrame(*update, true)));
|
|
}
|
|
update = conn.streamManager->remoteUnidirectionalStreamLimitUpdate();
|
|
if (update) {
|
|
sendSimpleFrame(conn, (MaxStreamsFrame(*update, false)));
|
|
}
|
|
}
|
|
} // namespace quic
|