mirror of
https://github.com/facebookincubator/mvfst.git
synced 2025-11-09 10:00:57 +03:00
Summary: Add datagramReceived event for qlog. Reviewed By: sharma95 Differential Revision: D16271876 fbshipit-source-id: fa38bc0c54f402be45dfc0ff8e85c54268118ea1
1193 lines
46 KiB
C++
1193 lines
46 KiB
C++
/*
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
*
|
|
* This source code is licensed under the MIT license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*
|
|
*/
|
|
|
|
#include <quic/client/QuicClientTransport.h>
|
|
|
|
#include <folly/portability/Sockets.h>
|
|
|
|
#include <quic/api/QuicTransportFunctions.h>
|
|
#include <quic/client/handshake/ClientTransportParametersExtension.h>
|
|
#include <quic/client/state/ClientStateMachine.h>
|
|
#include <quic/flowcontrol/QuicFlowController.h>
|
|
#include <quic/happyeyeballs/QuicHappyEyeballsFunctions.h>
|
|
#include <quic/logging/QLoggerConstants.h>
|
|
#include <quic/loss/QuicLossFunctions.h>
|
|
#include <quic/state/AckHandlers.h>
|
|
#include <quic/state/QuicPacingFunctions.h>
|
|
|
|
namespace fsp = folly::portability::sockets;
|
|
|
|
namespace quic {
|
|
|
|
QuicClientTransport::QuicClientTransport(
|
|
folly::EventBase* evb,
|
|
std::unique_ptr<folly::AsyncUDPSocket> socket)
|
|
: QuicTransportBase(evb, std::move(socket)),
|
|
happyEyeballsConnAttemptDelayTimeout_(this) {
|
|
auto tempConn = std::make_unique<QuicClientConnectionState>();
|
|
clientConn_ = tempConn.get();
|
|
conn_ = std::move(tempConn);
|
|
std::vector<uint8_t> connIdData(kDefaultConnectionIdSize);
|
|
folly::Random::secureRandom(connIdData.data(), connIdData.size());
|
|
// Set them to be the same, this shouldn't really matter.
|
|
conn_->clientConnectionId = ConnectionId(connIdData);
|
|
// Change destination connection to not be same as src connid to suss
|
|
// out bugs.
|
|
connIdData[0] ^= 0x1;
|
|
clientConn_->initialDestinationConnectionId = ConnectionId(connIdData);
|
|
conn_->readCodec = std::make_unique<QuicReadCodec>(QuicNodeType::Client);
|
|
conn_->readCodec->setClientConnectionId(*conn_->clientConnectionId);
|
|
conn_->readCodec->setCodecParameters(
|
|
CodecParameters(conn_->peerAckDelayExponent));
|
|
// TODO: generate this once we can generate the packet sequence number
|
|
// correctly.
|
|
// conn_->nextSequenceNum = folly::Random::secureRandom<PacketNum>();
|
|
|
|
VLOG(10) << "client created " << *conn_;
|
|
}
|
|
|
|
QuicClientTransport::~QuicClientTransport() {
|
|
VLOG(10) << "Destroyed connection to server=" << conn_->peerAddress;
|
|
// The caller probably doesn't need the conn callback after destroying the
|
|
// transport.
|
|
connCallback_ = nullptr;
|
|
// Close without draining.
|
|
closeImpl(
|
|
std::make_pair(
|
|
QuicErrorCode(LocalErrorCode::SHUTTING_DOWN),
|
|
std::string("Closing from client destructor")),
|
|
false);
|
|
|
|
if (conn_->happyEyeballsState.secondSocket) {
|
|
auto sock = std::move(conn_->happyEyeballsState.secondSocket);
|
|
sock->pauseRead();
|
|
sock->close();
|
|
}
|
|
}
|
|
|
|
void QuicClientTransport::processUDPData(
|
|
const folly::SocketAddress& peer,
|
|
NetworkData&& networkData) {
|
|
folly::IOBufQueue udpData{folly::IOBufQueue::cacheChainLength()};
|
|
udpData.append(std::move(networkData.data));
|
|
for (uint16_t processedPackets = 0;
|
|
!udpData.empty() && processedPackets < kMaxNumCoalescedPackets;
|
|
processedPackets++) {
|
|
processPacketData(peer, networkData.receiveTimePoint, udpData);
|
|
}
|
|
VLOG_IF(4, !udpData.empty())
|
|
<< "Leaving " << udpData.chainLength()
|
|
<< " bytes unprocessed after attempting to process "
|
|
<< kMaxNumCoalescedPackets << " packets.";
|
|
}
|
|
|
|
void QuicClientTransport::processPacketData(
|
|
const folly::SocketAddress& peer,
|
|
TimePoint receiveTimePoint,
|
|
folly::IOBufQueue& packetQueue) {
|
|
auto packetSize = packetQueue.chainLength();
|
|
if (packetSize == 0) {
|
|
return;
|
|
}
|
|
auto parsedPacket =
|
|
conn_->readCodec->parsePacket(packetQueue, conn_->ackStates);
|
|
bool parseSuccess = folly::variant_match(
|
|
parsedPacket,
|
|
[&](QuicPacket&) { return true; },
|
|
[&](StatelessReset& reset) {
|
|
auto& token = clientConn_->statelessResetToken;
|
|
if (reset.token != token) {
|
|
VLOG(4) << "Drop StatelessReset for bad connId or token " << *this;
|
|
return false;
|
|
}
|
|
VLOG(4) << "Received Stateless Reset " << *this;
|
|
conn_->peerConnectionError = std::make_pair(
|
|
QuicErrorCode(LocalErrorCode::CONNECTION_RESET),
|
|
toString(LocalErrorCode::CONNECTION_RESET));
|
|
throw QuicInternalException("Peer reset", LocalErrorCode::NO_ERROR);
|
|
folly::assume_unreachable();
|
|
},
|
|
[&](auto&) { return false; });
|
|
if (!parseSuccess) {
|
|
if (conn_->qLogger) {
|
|
conn_->qLogger->addPacketDrop(packetSize, kParse.str());
|
|
}
|
|
QUIC_TRACE(packet_drop, *conn_, "parse");
|
|
return;
|
|
}
|
|
|
|
if (happyEyeballsEnabled_) {
|
|
happyEyeballsOnDataReceived(
|
|
*conn_, happyEyeballsConnAttemptDelayTimeout_, socket_, peer);
|
|
}
|
|
|
|
auto& packet = boost::get<QuicPacket>(parsedPacket);
|
|
auto versionNegotiation = boost::get<VersionNegotiationPacket>(&packet);
|
|
if (versionNegotiation) {
|
|
VLOG(4) << "Got version negotiation packet from peer=" << peer
|
|
<< " versions=" << std::hex << versionNegotiation->versions << " "
|
|
<< *this;
|
|
|
|
throw QuicInternalException(
|
|
"Received version negotiation packet",
|
|
LocalErrorCode::CONNECTION_ABANDONED);
|
|
}
|
|
|
|
// TODO: handle other packet types.
|
|
// Before we know what the protection level of the packet is, we should
|
|
// not throw an error.
|
|
auto regularOptional = boost::get<RegularQuicPacket>(&packet);
|
|
if (!regularOptional) {
|
|
VLOG(4) << "Dropping non-regular packet " << *conn_;
|
|
if (conn_->qLogger) {
|
|
conn_->qLogger->addPacketDrop(packetSize, kNonRegular.str());
|
|
}
|
|
QUIC_TRACE(packet_drop, *conn_, "non_regular");
|
|
return;
|
|
}
|
|
|
|
bool longHeader = folly::variant_match(
|
|
regularOptional->header,
|
|
[](const LongHeader&) { return true; },
|
|
[](const ShortHeader&) { return false; });
|
|
|
|
if (longHeader &&
|
|
boost::get<LongHeader>(regularOptional->header).getHeaderType() ==
|
|
LongHeader::Types::Retry) {
|
|
if (clientConn_->retryToken_) {
|
|
VLOG(4) << "Server sent more than one retry packet";
|
|
return;
|
|
}
|
|
|
|
// TODO (amsharma): Check if we have already received an initial packet
|
|
// from the server. If so, discard it. Here are some ways in which I
|
|
// could do this:
|
|
// 1. Have a boolean flag initialPacketReceived_ that we set to true when
|
|
// we get an initial packet from the server. This seems a bit messy.
|
|
// 2. Check for the presence of the oneRttWriteCipher and/or the
|
|
// oneRttReadCipher in the handshake layer. I think this might be a
|
|
// better approach, but I don't know if it is a good indicator that we've
|
|
// received an initial packet from the server.
|
|
|
|
auto header = boost::get<LongHeader>(regularOptional->header);
|
|
|
|
const ConnectionId* dstConnId =
|
|
&(*clientConn_->initialDestinationConnectionId);
|
|
if (conn_->serverConnectionId) {
|
|
dstConnId = &(*conn_->serverConnectionId);
|
|
}
|
|
if (*header.getOriginalDstConnId() != *dstConnId) {
|
|
VLOG(4) << "Original destination connection id field in the retry "
|
|
<< "packet doesn't match the destination connection id from the "
|
|
<< "client's initial packet";
|
|
return;
|
|
}
|
|
|
|
// Set the destination connection ID to be the value from the source
|
|
// connection id of the retry packet
|
|
clientConn_->initialDestinationConnectionId = header.getSourceConnId();
|
|
|
|
auto released = static_cast<QuicClientConnectionState*>(conn_.release());
|
|
std::unique_ptr<QuicClientConnectionState> uniqueClient(released);
|
|
auto tempConn = undoAllClientStateForRetry(std::move(uniqueClient));
|
|
|
|
clientConn_ = tempConn.get();
|
|
conn_ = std::move(tempConn);
|
|
|
|
clientConn_->retryToken_ = header.getToken()->clone();
|
|
startCryptoHandshake();
|
|
return;
|
|
}
|
|
|
|
auto protectionLevel = folly::variant_match(
|
|
regularOptional->header,
|
|
[](auto& header) { return header.getProtectionType(); });
|
|
|
|
auto encryptionLevel = protectionTypeToEncryptionLevel(protectionLevel);
|
|
|
|
auto packetNum = folly::variant_match(
|
|
regularOptional->header,
|
|
[](const auto& h) { return h.getPacketSequenceNum(); });
|
|
auto pnSpace = folly::variant_match(
|
|
regularOptional->header,
|
|
[](auto& header) { return header.getPacketNumberSpace(); });
|
|
|
|
bool isProtectedPacket = protectionLevel == ProtectionType::KeyPhaseZero ||
|
|
protectionLevel == ProtectionType::KeyPhaseOne;
|
|
|
|
auto& regularPacket = *regularOptional;
|
|
if (conn_->qLogger) {
|
|
conn_->qLogger->addPacket(regularPacket, packetSize);
|
|
}
|
|
if (!isProtectedPacket) {
|
|
for (auto& quicFrame : regularPacket.frames) {
|
|
auto isPadding = boost::get<PaddingFrame>(&quicFrame);
|
|
auto isAck = boost::get<ReadAckFrame>(&quicFrame);
|
|
auto isClose = boost::get<ConnectionCloseFrame>(&quicFrame);
|
|
auto isCrypto = boost::get<ReadCryptoFrame>(&quicFrame);
|
|
// TODO: add path challenge and response
|
|
if (!isPadding && !isAck && !isClose && !isCrypto) {
|
|
throw QuicTransportException(
|
|
"Invalid frame", TransportErrorCode::PROTOCOL_VIOLATION);
|
|
}
|
|
}
|
|
}
|
|
QUIC_TRACE(packet_recvd, *conn_, toString(pnSpace), packetNum, packetSize);
|
|
|
|
// We got a packet that was not the version negotiation packet, that means
|
|
// that the version is now bound to the new packet.
|
|
// TODO: move this into the state machine.
|
|
// TODO: get this from the crypto layer instead. This would be a security vuln
|
|
// if we don't.
|
|
if (!conn_->version) {
|
|
conn_->version = conn_->originalVersion;
|
|
}
|
|
|
|
if (!conn_->serverConnectionId && longHeader) {
|
|
folly::Optional<ConnectionId> receivedSrcConnId(folly::variant_match(
|
|
regularOptional->header,
|
|
[&](const LongHeader& h) -> folly::Optional<ConnectionId> {
|
|
return h.getSourceConnId();
|
|
},
|
|
[](const ShortHeader&) -> folly::Optional<ConnectionId> {
|
|
return folly::none;
|
|
}));
|
|
// Assign the conn id to the server chosen connid.
|
|
if (!receivedSrcConnId) {
|
|
throw QuicTransportException(
|
|
"Expected long header with connection-id",
|
|
TransportErrorCode::PROTOCOL_VIOLATION);
|
|
}
|
|
conn_->serverConnectionId = std::move(receivedSrcConnId);
|
|
conn_->readCodec->setServerConnectionId(*conn_->serverConnectionId);
|
|
}
|
|
|
|
// Error out if the connection id on the packet is not the one that is
|
|
// expected.
|
|
if (folly::variant_match(
|
|
regularOptional->header,
|
|
[](const LongHeader& h) { return h.getDestinationConnId(); },
|
|
[](const ShortHeader& h) { return h.getConnectionId(); }) !=
|
|
*conn_->clientConnectionId) {
|
|
throw QuicTransportException(
|
|
"Invalid connection id", TransportErrorCode::PROTOCOL_VIOLATION);
|
|
}
|
|
auto& ackState = getAckState(*conn_, pnSpace);
|
|
auto outOfOrder =
|
|
updateLargestReceivedPacketNum(ackState, packetNum, receiveTimePoint);
|
|
|
|
bool pktHasRetransmittableData = false;
|
|
bool pktHasCryptoData = false;
|
|
|
|
for (auto& quicFrame : regularPacket.frames) {
|
|
folly::variant_match(
|
|
quicFrame,
|
|
[&](ReadAckFrame& ackFrame) {
|
|
VLOG(10) << "Client received ack frame in packet=" << packetNum << " "
|
|
<< *this;
|
|
processAckFrame(
|
|
*conn_,
|
|
pnSpace,
|
|
ackFrame,
|
|
[&](const OutstandingPacket& outstandingPacket,
|
|
const QuicWriteFrame& packetFrame,
|
|
const ReadAckFrame&) {
|
|
auto outstandingProtectionType = folly::variant_match(
|
|
outstandingPacket.packet.header,
|
|
[](const auto& h) { return h.getProtectionType(); });
|
|
if (outstandingProtectionType == ProtectionType::KeyPhaseZero) {
|
|
// If we received an ack for data that we sent in 1-rtt from
|
|
// the server, we can assume that the server had successfully
|
|
// derived the 1-rtt keys and hence received the client
|
|
// finished message. Thus we don't need to retransmit any of
|
|
// the crypto data any longer.
|
|
//
|
|
// This will not cancel oneRttStream.
|
|
//
|
|
// TODO: replace this with a better solution later.
|
|
cancelHandshakeCryptoStreamRetransmissions(
|
|
*conn_->cryptoState);
|
|
}
|
|
folly::variant_match(
|
|
packetFrame,
|
|
[&](const WriteAckFrame& frame) {
|
|
DCHECK(!frame.ackBlocks.empty());
|
|
VLOG(4) << "Client received ack for largestAcked="
|
|
<< frame.ackBlocks.back().end << " " << *this;
|
|
commonAckVisitorForAckFrame(ackState, frame);
|
|
},
|
|
[&](const RstStreamFrame& frame) {
|
|
VLOG(4) << "Client received ack for reset frame stream="
|
|
<< frame.streamId << " " << *this;
|
|
|
|
auto stream =
|
|
conn_->streamManager->getStream(frame.streamId);
|
|
if (stream) {
|
|
invokeStreamSendStateMachine(
|
|
*conn_, *stream, StreamEvents::RstAck(frame));
|
|
}
|
|
},
|
|
[&](const WriteStreamFrame& frame) {
|
|
auto ackedStream =
|
|
conn_->streamManager->getStream(frame.streamId);
|
|
VLOG(4) << "Client got ack for stream=" << frame.streamId
|
|
<< " offset=" << frame.offset
|
|
<< " fin=" << frame.fin << " data=" << frame.len
|
|
<< " closed=" << (ackedStream == nullptr) << " "
|
|
<< *this;
|
|
if (ackedStream) {
|
|
invokeStreamSendStateMachine(
|
|
*conn_,
|
|
*ackedStream,
|
|
StreamEvents::AckStreamFrame(frame));
|
|
}
|
|
},
|
|
[&](const WriteCryptoFrame& frame) {
|
|
auto cryptoStream = getCryptoStream(
|
|
*conn_->cryptoState,
|
|
protectionTypeToEncryptionLevel(
|
|
outstandingProtectionType));
|
|
processCryptoStreamAck(
|
|
*cryptoStream, frame.offset, frame.len);
|
|
},
|
|
[&](const auto& /* frame */) {
|
|
// Ignore other frames.
|
|
});
|
|
},
|
|
markPacketLoss,
|
|
receiveTimePoint);
|
|
},
|
|
[&](RstStreamFrame& frame) {
|
|
VLOG(10) << "Client received reset stream=" << frame.streamId << " "
|
|
<< *this;
|
|
pktHasRetransmittableData = true;
|
|
auto streamId = frame.streamId;
|
|
auto stream = conn_->streamManager->getStream(streamId);
|
|
if (!stream) {
|
|
return;
|
|
}
|
|
invokeStreamReceiveStateMachine(*conn_, *stream, std::move(frame));
|
|
},
|
|
[&](ReadCryptoFrame& cryptoFrame) {
|
|
pktHasRetransmittableData = true;
|
|
pktHasCryptoData = true;
|
|
VLOG(10) << "Client received crypto data offset="
|
|
<< cryptoFrame.offset
|
|
<< " len=" << cryptoFrame.data->computeChainDataLength()
|
|
<< " packetNum=" << packetNum << " " << *this;
|
|
appendDataToReadBuffer(
|
|
*getCryptoStream(*conn_->cryptoState, encryptionLevel),
|
|
StreamBuffer(
|
|
std::move(cryptoFrame.data), cryptoFrame.offset, false));
|
|
},
|
|
[&](ReadStreamFrame& frame) {
|
|
VLOG(10) << "Client received stream data for stream="
|
|
<< frame.streamId << " offset=" << frame.offset
|
|
<< " len=" << frame.data->computeChainDataLength()
|
|
<< " fin=" << frame.fin << " packetNum=" << packetNum << " "
|
|
<< *this;
|
|
auto stream = conn_->streamManager->getStream(frame.streamId);
|
|
pktHasRetransmittableData = true;
|
|
if (!stream) {
|
|
VLOG(10) << "Could not find stream=" << frame.streamId << " "
|
|
<< *conn_;
|
|
return;
|
|
}
|
|
invokeStreamReceiveStateMachine(*conn_, *stream, std::move(frame));
|
|
},
|
|
[&](MaxDataFrame& connWindowUpdate) {
|
|
VLOG(10) << "Client received max data offset="
|
|
<< connWindowUpdate.maximumData << " " << *this;
|
|
pktHasRetransmittableData = true;
|
|
handleConnWindowUpdate(*conn_, connWindowUpdate, packetNum);
|
|
},
|
|
[&](MaxStreamDataFrame& streamWindowUpdate) {
|
|
VLOG(10) << "Client received max stream data stream="
|
|
<< streamWindowUpdate.streamId
|
|
<< " offset=" << streamWindowUpdate.maximumData << " "
|
|
<< *this;
|
|
if (isReceivingStream(conn_->nodeType, streamWindowUpdate.streamId)) {
|
|
throw QuicTransportException(
|
|
"Received MaxStreamDataFrame for receiving stream.",
|
|
TransportErrorCode::STREAM_STATE_ERROR);
|
|
}
|
|
pktHasRetransmittableData = true;
|
|
auto stream =
|
|
conn_->streamManager->getStream(streamWindowUpdate.streamId);
|
|
if (stream) {
|
|
handleStreamWindowUpdate(
|
|
*stream, streamWindowUpdate.maximumData, packetNum);
|
|
}
|
|
},
|
|
[&](MaxStreamsFrame& maxStreamsFrame) {
|
|
VLOG(10) << "Client received max streams frame stream="
|
|
<< maxStreamsFrame.maxStreams << *this;
|
|
if (maxStreamsFrame.isForBidirectionalStream()) {
|
|
conn_->streamManager->setMaxLocalBidirectionalStreams(
|
|
maxStreamsFrame.maxStreams);
|
|
} else {
|
|
conn_->streamManager->setMaxLocalUnidirectionalStreams(
|
|
maxStreamsFrame.maxStreams);
|
|
}
|
|
},
|
|
[&](DataBlockedFrame&) {
|
|
VLOG(10) << "Client received blocked " << *this;
|
|
pktHasRetransmittableData = true;
|
|
handleConnBlocked(*conn_);
|
|
},
|
|
[&](StreamDataBlockedFrame& blocked) {
|
|
// peer wishes to send data, but is unable to due to stream-level flow
|
|
// control
|
|
VLOG(10) << "Client received blocked stream=" << blocked.streamId
|
|
<< " " << *this;
|
|
pktHasRetransmittableData = true;
|
|
auto stream = conn_->streamManager->getStream(blocked.streamId);
|
|
if (stream) {
|
|
handleStreamBlocked(*stream);
|
|
}
|
|
},
|
|
[&](StreamsBlockedFrame& blocked) {
|
|
// peer wishes to open a stream, but is unable to due to the maximum
|
|
// stream limit set by us
|
|
VLOG(10) << "Client received stream blocked limit="
|
|
<< blocked.streamLimit << " " << *this;
|
|
// TODO implement handler for it
|
|
},
|
|
[&](ConnectionCloseFrame& connFrame) {
|
|
auto errMsg = folly::to<std::string>(
|
|
"Client closed by peer reason=", connFrame.reasonPhrase);
|
|
VLOG(4) << errMsg << " " << *this;
|
|
// we want to deliver app callbacks with the peer supplied error,
|
|
// but send a NO_ERROR to the peer.
|
|
QUIC_TRACE(recvd_close, *conn_, errMsg.c_str());
|
|
conn_->peerConnectionError = std::make_pair(
|
|
QuicErrorCode(connFrame.errorCode), std::move(errMsg));
|
|
throw QuicTransportException(
|
|
"Peer closed", TransportErrorCode::NO_ERROR);
|
|
},
|
|
[&](ApplicationCloseFrame& appClose) {
|
|
auto errMsg = folly::to<std::string>(
|
|
"Client closed by peer reason=", appClose.reasonPhrase);
|
|
VLOG(4) << errMsg << " " << *this;
|
|
QUIC_TRACE(recvd_close, *conn_, errMsg.c_str());
|
|
conn_->peerConnectionError = std::make_pair(
|
|
QuicErrorCode(appClose.errorCode), std::move(errMsg));
|
|
throw QuicTransportException(
|
|
"Peer closed", TransportErrorCode::NO_ERROR);
|
|
},
|
|
[&](PaddingFrame&) {},
|
|
[&](QuicSimpleFrame& simpleFrame) {
|
|
pktHasRetransmittableData = true;
|
|
updateSimpleFrameOnPacketReceived(
|
|
*conn_, simpleFrame, packetNum, false);
|
|
},
|
|
[&](auto&) {});
|
|
}
|
|
|
|
// Try reading bytes off of crypto, and performing a handshake.
|
|
auto cryptoData = readDataFromCryptoStream(
|
|
*getCryptoStream(*conn_->cryptoState, encryptionLevel));
|
|
auto handshakeLayer = clientConn_->clientHandshakeLayer;
|
|
if (cryptoData) {
|
|
handshakeLayer->doHandshake(std::move(cryptoData), encryptionLevel);
|
|
auto handshakeWriteCipher = handshakeLayer->getHandshakeWriteCipher();
|
|
auto handshakeReadCipher = handshakeLayer->getHandshakeReadCipher();
|
|
auto handshakeReadHeaderCipher =
|
|
handshakeLayer->getHandshakeReadHeaderCipher();
|
|
auto handshakeWriteHeaderCipher =
|
|
handshakeLayer->getHandshakeWriteHeaderCipher();
|
|
if (handshakeWriteCipher) {
|
|
conn_->handshakeWriteCipher = std::move(handshakeWriteCipher);
|
|
}
|
|
if (handshakeWriteHeaderCipher) {
|
|
conn_->handshakeWriteHeaderCipher = std::move(handshakeWriteHeaderCipher);
|
|
}
|
|
if (handshakeReadCipher) {
|
|
conn_->readCodec->setHandshakeReadCipher(std::move(handshakeReadCipher));
|
|
}
|
|
if (handshakeReadHeaderCipher) {
|
|
conn_->readCodec->setHandshakeHeaderCipher(
|
|
std::move(handshakeReadHeaderCipher));
|
|
}
|
|
auto oneRttWriteCipher = handshakeLayer->getOneRttWriteCipher();
|
|
auto oneRttReadCipher = handshakeLayer->getOneRttReadCipher();
|
|
auto oneRttReadHeaderCipher = handshakeLayer->getOneRttReadHeaderCipher();
|
|
auto oneRttWriteHeaderCipher = handshakeLayer->getOneRttWriteHeaderCipher();
|
|
bool oneRttKeyDerivationTriggered = false;
|
|
if (oneRttWriteCipher) {
|
|
conn_->oneRttWriteCipher = std::move(oneRttWriteCipher);
|
|
oneRttKeyDerivationTriggered = true;
|
|
updatePacingOnKeyEstablished(*conn_);
|
|
}
|
|
if (oneRttWriteHeaderCipher) {
|
|
conn_->oneRttWriteHeaderCipher = std::move(oneRttWriteHeaderCipher);
|
|
}
|
|
if (oneRttReadCipher) {
|
|
conn_->readCodec->setOneRttReadCipher(std::move(oneRttReadCipher));
|
|
}
|
|
if (oneRttReadHeaderCipher) {
|
|
conn_->readCodec->setOneRttHeaderCipher(
|
|
std::move(oneRttReadHeaderCipher));
|
|
}
|
|
bool zeroRttRejected = handshakeLayer->getZeroRttRejected().value_or(false);
|
|
if (zeroRttRejected) {
|
|
QUIC_TRACE(zero_rtt, *conn_, "rejected");
|
|
removePsk();
|
|
} else if (conn_->zeroRttWriteCipher) {
|
|
QUIC_TRACE(zero_rtt, *conn_, "accepted");
|
|
}
|
|
bool shouldNegotiateParameters = false;
|
|
if (clientConn_->zeroRttWriteCipher) {
|
|
shouldNegotiateParameters =
|
|
zeroRttRejected && (conn_->oneRttWriteCipher != nullptr);
|
|
} else {
|
|
shouldNegotiateParameters = oneRttKeyDerivationTriggered;
|
|
}
|
|
if (shouldNegotiateParameters) {
|
|
auto originalPeerMaxOffset =
|
|
conn_->flowControlState.peerAdvertisedMaxOffset;
|
|
auto originalPeerInitialStreamOffsetBidiLocal =
|
|
conn_->flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiLocal;
|
|
auto originalPeerInitialStreamOffsetBidiRemote =
|
|
conn_->flowControlState
|
|
.peerAdvertisedInitialMaxStreamOffsetBidiRemote;
|
|
auto originalPeerInitialStreamOffsetUni =
|
|
conn_->flowControlState.peerAdvertisedInitialMaxStreamOffsetUni;
|
|
VLOG(10) << "Client negotiated transport params " << *this;
|
|
auto serverParams = handshakeLayer->getServerTransportParams();
|
|
if (!serverParams) {
|
|
throw QuicTransportException(
|
|
"No server transport params",
|
|
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
|
|
}
|
|
auto maxStreamsBidi = getIntegerParameter(
|
|
TransportParameterId::initial_max_streams_bidi,
|
|
serverParams->parameters);
|
|
auto maxStreamsUni = getIntegerParameter(
|
|
TransportParameterId::initial_max_streams_uni,
|
|
serverParams->parameters);
|
|
processServerInitialParams(
|
|
*clientConn_, std::move(*serverParams), packetNum);
|
|
|
|
cacheServerInitialParams(
|
|
conn_->flowControlState.peerAdvertisedMaxOffset,
|
|
conn_->flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiLocal,
|
|
conn_->flowControlState
|
|
.peerAdvertisedInitialMaxStreamOffsetBidiRemote,
|
|
conn_->flowControlState.peerAdvertisedInitialMaxStreamOffsetUni,
|
|
maxStreamsBidi.value_or(0),
|
|
maxStreamsUni.value_or(0));
|
|
|
|
auto& statelessResetToken = clientConn_->statelessResetToken;
|
|
if (statelessResetToken) {
|
|
conn_->readCodec->setStatelessResetToken(*statelessResetToken);
|
|
}
|
|
if (zeroRttRejected) {
|
|
// verify that the new flow control parameters are >= the original
|
|
// transport parameters that were use. This is the easy case. If the
|
|
// flow control decreases then we are just screwed and we need to have
|
|
// the app retry the connection. The other parameters can be updated.
|
|
// TODO: implement undo transport state on retry.
|
|
if (originalPeerMaxOffset >
|
|
conn_->flowControlState.peerAdvertisedMaxOffset ||
|
|
originalPeerInitialStreamOffsetBidiLocal >
|
|
conn_->flowControlState
|
|
.peerAdvertisedInitialMaxStreamOffsetBidiLocal ||
|
|
originalPeerInitialStreamOffsetBidiRemote >
|
|
conn_->flowControlState
|
|
.peerAdvertisedInitialMaxStreamOffsetBidiRemote ||
|
|
|
|
originalPeerInitialStreamOffsetUni >
|
|
conn_->flowControlState
|
|
.peerAdvertisedInitialMaxStreamOffsetUni) {
|
|
throw QuicTransportException(
|
|
"Rejection of zero rtt parameters unsupported",
|
|
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
|
|
}
|
|
}
|
|
}
|
|
if (zeroRttRejected) {
|
|
// TODO: Make sure the alpn is the same, if not then do a full undo of the
|
|
// state.
|
|
clientConn_->zeroRttWriteCipher = nullptr;
|
|
markZeroRttPacketsLost(*conn_, markPacketLoss);
|
|
}
|
|
}
|
|
if (protectionLevel == ProtectionType::KeyPhaseZero ||
|
|
protectionLevel == ProtectionType::KeyPhaseOne) {
|
|
DCHECK(conn_->oneRttWriteCipher);
|
|
clientConn_->clientHandshakeLayer->onRecvOneRttProtectedData();
|
|
conn_->readCodec->onHandshakeDone(receiveTimePoint);
|
|
}
|
|
updateAckSendStateOnRecvPacket(
|
|
*conn_,
|
|
ackState,
|
|
outOfOrder,
|
|
pktHasRetransmittableData,
|
|
pktHasCryptoData);
|
|
}
|
|
|
|
void QuicClientTransport::onReadData(
|
|
const folly::SocketAddress& peer,
|
|
NetworkData&& networkData) {
|
|
if (closeState_ == CloseState::CLOSED) {
|
|
// If we are closed, then we shoudn't process new network data.
|
|
// TODO: we might want to process network data if we decide that we should
|
|
// exit draining state early
|
|
if (conn_->qLogger) {
|
|
conn_->qLogger->addPacketDrop(0, kAlreadyClosed.str());
|
|
}
|
|
QUIC_TRACE(packet_drop, *conn_, "already_closed");
|
|
return;
|
|
}
|
|
processUDPData(peer, std::move(networkData));
|
|
if (!transportReadyNotified_ && hasWriteCipher()) {
|
|
transportReadyNotified_ = true;
|
|
CHECK_NOTNULL(connCallback_)->onTransportReady();
|
|
}
|
|
|
|
// Checking connCallback_ because application will start to write data
|
|
// in onTransportReady, if the write fails, QuicSocket can be closed
|
|
// and connCallback_ is set nullptr.
|
|
if (connCallback_ && !replaySafeNotified_ && conn_->oneRttWriteCipher) {
|
|
replaySafeNotified_ = true;
|
|
// We don't need this any more. Also unset it so that we don't allow random
|
|
// middleboxes to shutdown our connection once we have crypto keys.
|
|
socket_->setErrMessageCallback(nullptr);
|
|
connCallback_->onReplaySafe();
|
|
}
|
|
}
|
|
|
|
void QuicClientTransport::writeData() {
|
|
// TODO: replace with write in state machine.
|
|
// TODO: change to draining when we move the client to have a draining state
|
|
// as well.
|
|
auto phase = clientConn_->clientHandshakeLayer->getPhase();
|
|
QuicVersion version = conn_->version.value_or(*conn_->originalVersion);
|
|
const ConnectionId& srcConnId = *conn_->clientConnectionId;
|
|
const ConnectionId* destConnId =
|
|
&(*clientConn_->initialDestinationConnectionId);
|
|
if (conn_->serverConnectionId) {
|
|
destConnId = &(*conn_->serverConnectionId);
|
|
}
|
|
if (closeState_ == CloseState::CLOSED) {
|
|
// TODO: get rid of phase
|
|
if (phase == ClientHandshake::Phase::Established &&
|
|
conn_->oneRttWriteCipher) {
|
|
CHECK(conn_->oneRttWriteHeaderCipher);
|
|
writeShortClose(
|
|
*socket_,
|
|
*conn_,
|
|
*destConnId /* dst */,
|
|
conn_->localConnectionError,
|
|
*conn_->oneRttWriteCipher,
|
|
*conn_->oneRttWriteHeaderCipher);
|
|
} else if (conn_->initialWriteCipher) {
|
|
CHECK(conn_->initialHeaderCipher);
|
|
writeLongClose(
|
|
*socket_,
|
|
*conn_,
|
|
srcConnId /* src */,
|
|
*destConnId /* dst */,
|
|
LongHeader::Types::Initial,
|
|
conn_->localConnectionError,
|
|
*conn_->initialWriteCipher,
|
|
*conn_->initialHeaderCipher,
|
|
version);
|
|
}
|
|
return;
|
|
}
|
|
|
|
uint64_t packetLimit =
|
|
(isConnectionPaced(*conn_)
|
|
? conn_->congestionController->getPacingRate(Clock::now())
|
|
: conn_->transportSettings.writeConnectionDataPacketsLimit);
|
|
CryptoStreamScheduler initialScheduler(
|
|
*conn_, *getCryptoStream(*conn_->cryptoState, EncryptionLevel::Initial));
|
|
CryptoStreamScheduler handshakeScheduler(
|
|
*conn_,
|
|
*getCryptoStream(*conn_->cryptoState, EncryptionLevel::Handshake));
|
|
if (initialScheduler.hasData() ||
|
|
(conn_->ackStates.initialAckState.needsToSendAckImmediately &&
|
|
hasAcksToSchedule(conn_->ackStates.initialAckState))) {
|
|
CHECK(conn_->initialWriteCipher);
|
|
CHECK(conn_->initialHeaderCipher);
|
|
packetLimit -= writeCryptoAndAckDataToSocket(
|
|
*socket_,
|
|
*conn_,
|
|
srcConnId /* src */,
|
|
*destConnId /* dst */,
|
|
LongHeader::Types::Initial,
|
|
*conn_->initialWriteCipher,
|
|
*conn_->initialHeaderCipher,
|
|
version,
|
|
packetLimit,
|
|
clientConn_->retryToken_ ? clientConn_->retryToken_->clone() : nullptr);
|
|
}
|
|
if (!packetLimit) {
|
|
return;
|
|
}
|
|
if (handshakeScheduler.hasData() ||
|
|
(conn_->ackStates.handshakeAckState.needsToSendAckImmediately &&
|
|
hasAcksToSchedule(conn_->ackStates.handshakeAckState))) {
|
|
CHECK(conn_->handshakeWriteCipher);
|
|
CHECK(conn_->handshakeWriteHeaderCipher);
|
|
packetLimit -= writeCryptoAndAckDataToSocket(
|
|
*socket_,
|
|
*conn_,
|
|
srcConnId /* src */,
|
|
*destConnId /* dst */,
|
|
LongHeader::Types::Handshake,
|
|
*conn_->handshakeWriteCipher,
|
|
*conn_->handshakeWriteHeaderCipher,
|
|
version,
|
|
packetLimit);
|
|
}
|
|
if (!packetLimit) {
|
|
return;
|
|
}
|
|
if (clientConn_->zeroRttWriteCipher && !conn_->oneRttWriteCipher) {
|
|
CHECK(clientConn_->zeroRttWriteHeaderCipher);
|
|
packetLimit -= writeZeroRttDataToSocket(
|
|
*socket_,
|
|
*conn_,
|
|
srcConnId /* src */,
|
|
*destConnId /* dst */,
|
|
*clientConn_->zeroRttWriteCipher,
|
|
*clientConn_->zeroRttWriteHeaderCipher,
|
|
version,
|
|
packetLimit);
|
|
}
|
|
if (!packetLimit) {
|
|
return;
|
|
}
|
|
if (conn_->oneRttWriteCipher) {
|
|
CHECK(clientConn_->oneRttWriteHeaderCipher);
|
|
writeQuicDataExceptCryptoStreamToSocket(
|
|
*socket_,
|
|
*conn_,
|
|
srcConnId,
|
|
*destConnId,
|
|
*conn_->oneRttWriteCipher,
|
|
*conn_->oneRttWriteHeaderCipher,
|
|
version,
|
|
packetLimit);
|
|
}
|
|
}
|
|
|
|
folly::Optional<QuicCachedPsk> QuicClientTransport::getPsk() {
|
|
if (!hostname_ || !pskCache_) {
|
|
return folly::none;
|
|
}
|
|
|
|
auto quicCachedPsk = pskCache_->getPsk(*hostname_);
|
|
if (!quicCachedPsk) {
|
|
return folly::none;
|
|
}
|
|
|
|
// TODO T32658838 better API to disable early data for current connection
|
|
if (!conn_->transportSettings.attemptEarlyData) {
|
|
quicCachedPsk->cachedPsk.maxEarlyDataSize = 0;
|
|
} else if (
|
|
quicCachedPsk->transportParams.negotiatedVersion !=
|
|
conn_->originalVersion) {
|
|
quicCachedPsk->cachedPsk.maxEarlyDataSize = 0;
|
|
removePsk();
|
|
} else if (!CHECK_NOTNULL(connCallback_)
|
|
->validateEarlyDataAppParams(
|
|
quicCachedPsk->cachedPsk.alpn,
|
|
folly::IOBuf::copyBuffer(quicCachedPsk->appParams))) {
|
|
quicCachedPsk->cachedPsk.maxEarlyDataSize = 0;
|
|
// Do not remove psk here, will let application decide
|
|
}
|
|
|
|
return quicCachedPsk;
|
|
}
|
|
|
|
void QuicClientTransport::startCryptoHandshake() {
|
|
auto self = this->shared_from_this();
|
|
// Set idle timer whenever crypto starts so that we can restart the idle timer
|
|
// after a version negotiation as well.
|
|
setIdleTimer();
|
|
// TODO: no need to close the transport if there is an error in the
|
|
// handshake.
|
|
// We need to update the flow control settings every time we start a crypto
|
|
// handshake. This is so that we can reset the flow control settings when
|
|
// we go through version negotiation as well.
|
|
updateFlowControlStateWithSettings(
|
|
conn_->flowControlState, conn_->transportSettings);
|
|
|
|
// Look up psk and supply to handshake layer
|
|
folly::Optional<QuicCachedPsk> quicCachedPsk = getPsk();
|
|
folly::Optional<fizz::client::CachedPsk> cachedPsk;
|
|
if (quicCachedPsk) {
|
|
cachedPsk = std::move(quicCachedPsk->cachedPsk);
|
|
}
|
|
|
|
QuicFizzFactory fizzFactory;
|
|
auto version = conn_->originalVersion.value();
|
|
conn_->initialWriteCipher = getClientInitialCipher(
|
|
&fizzFactory, *clientConn_->initialDestinationConnectionId, version);
|
|
conn_->readCodec->setInitialReadCipher(getServerInitialCipher(
|
|
&fizzFactory, *clientConn_->initialDestinationConnectionId, version));
|
|
conn_->readCodec->setInitialHeaderCipher(makeServerInitialHeaderCipher(
|
|
&fizzFactory, *clientConn_->initialDestinationConnectionId, version));
|
|
conn_->initialHeaderCipher = makeClientInitialHeaderCipher(
|
|
&fizzFactory, *clientConn_->initialDestinationConnectionId, version);
|
|
|
|
// Add partial reliability parameter to customTransportParameters_.
|
|
setPartialReliabilityTransportParameter();
|
|
|
|
auto paramsExtension = std::make_shared<ClientTransportParametersExtension>(
|
|
folly::none,
|
|
conn_->transportSettings.advertisedInitialConnectionWindowSize,
|
|
conn_->transportSettings.advertisedInitialBidiLocalStreamWindowSize,
|
|
conn_->transportSettings.advertisedInitialBidiRemoteStreamWindowSize,
|
|
conn_->transportSettings.advertisedInitialUniStreamWindowSize,
|
|
conn_->transportSettings.idleTimeout,
|
|
conn_->transportSettings.ackDelayExponent,
|
|
conn_->transportSettings.maxRecvPacketSize,
|
|
customTransportParameters_);
|
|
auto handshakeLayer = clientConn_->clientHandshakeLayer;
|
|
handshakeLayer->connect(
|
|
ctx_,
|
|
verifier_,
|
|
hostname_,
|
|
std::move(cachedPsk),
|
|
std::move(paramsExtension),
|
|
this);
|
|
|
|
auto zeroRttWriteCipher = handshakeLayer->getZeroRttWriteCipher();
|
|
auto zeroRttWriteHeaderCipher = handshakeLayer->getZeroRttWriteHeaderCipher();
|
|
if (zeroRttWriteCipher) {
|
|
QUIC_TRACE(zero_rtt, *conn_, "attempted");
|
|
clientConn_->zeroRttWriteCipher = std::move(zeroRttWriteCipher);
|
|
clientConn_->zeroRttWriteHeaderCipher = std::move(zeroRttWriteHeaderCipher);
|
|
|
|
// If zero rtt write cipher is derived, it means the cached psk was valid
|
|
DCHECK(quicCachedPsk);
|
|
|
|
auto& transportParams = quicCachedPsk->transportParams;
|
|
cacheServerInitialParams(
|
|
transportParams.initialMaxData,
|
|
transportParams.initialMaxStreamDataBidiLocal,
|
|
transportParams.initialMaxStreamDataBidiRemote,
|
|
transportParams.initialMaxStreamDataUni,
|
|
transportParams.initialMaxStreamsBidi,
|
|
transportParams.initialMaxStreamsUni);
|
|
updateTransportParamsFromCachedEarlyParams(*clientConn_, transportParams);
|
|
}
|
|
writeSocketData();
|
|
if (!transportReadyNotified_ && clientConn_->zeroRttWriteCipher) {
|
|
transportReadyNotified_ = true;
|
|
runOnEvbAsync([](auto self) {
|
|
auto clientPtr = static_cast<QuicClientTransport*>(self.get());
|
|
if (clientPtr->connCallback_) {
|
|
clientPtr->connCallback_->onTransportReady();
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
void QuicClientTransport::cacheServerInitialParams(
|
|
uint64_t peerAdvertisedInitialMaxData,
|
|
uint64_t peerAdvertisedInitialMaxStreamDataBidiLocal,
|
|
uint64_t peerAdvertisedInitialMaxStreamDataBidiRemote,
|
|
uint64_t peerAdvertisedInitialMaxStreamDataUni,
|
|
uint64_t peerAdvertisedInitialMaxStreamsBidi,
|
|
uint64_t peerAdvertisedInitialMaxStreamUni) {
|
|
serverInitialParamsSet_ = true;
|
|
peerAdvertisedInitialMaxData_ = peerAdvertisedInitialMaxData;
|
|
peerAdvertisedInitialMaxStreamDataBidiLocal_ =
|
|
peerAdvertisedInitialMaxStreamDataBidiLocal;
|
|
peerAdvertisedInitialMaxStreamDataBidiRemote_ =
|
|
peerAdvertisedInitialMaxStreamDataBidiRemote;
|
|
peerAdvertisedInitialMaxStreamDataUni_ =
|
|
peerAdvertisedInitialMaxStreamDataUni;
|
|
clientConn_->peerAdvertisedInitialMaxStreamsBidi =
|
|
peerAdvertisedInitialMaxStreamsBidi;
|
|
clientConn_->peerAdvertisedInitialMaxStreamsUni =
|
|
peerAdvertisedInitialMaxStreamUni;
|
|
}
|
|
|
|
void QuicClientTransport::removePsk() {
|
|
if (pskCache_ && hostname_) {
|
|
pskCache_->removePsk(*hostname_);
|
|
}
|
|
}
|
|
|
|
void QuicClientTransport::onNewCachedPsk(
|
|
fizz::client::NewCachedPsk& newCachedPsk) noexcept {
|
|
DCHECK(conn_->version.hasValue());
|
|
DCHECK(serverInitialParamsSet_);
|
|
|
|
if (!pskCache_ || !hostname_) {
|
|
return;
|
|
}
|
|
|
|
QuicCachedPsk quicCachedPsk;
|
|
quicCachedPsk.cachedPsk = std::move(newCachedPsk.psk);
|
|
|
|
quicCachedPsk.transportParams.negotiatedVersion = *conn_->version;
|
|
quicCachedPsk.transportParams.idleTimeout = conn_->peerIdleTimeout.count();
|
|
quicCachedPsk.transportParams.maxRecvPacketSize = conn_->udpSendPacketLen;
|
|
quicCachedPsk.transportParams.initialMaxData = peerAdvertisedInitialMaxData_;
|
|
quicCachedPsk.transportParams.initialMaxStreamDataBidiLocal =
|
|
peerAdvertisedInitialMaxStreamDataBidiLocal_;
|
|
quicCachedPsk.transportParams.initialMaxStreamDataBidiRemote =
|
|
peerAdvertisedInitialMaxStreamDataBidiRemote_;
|
|
quicCachedPsk.transportParams.initialMaxStreamDataUni =
|
|
peerAdvertisedInitialMaxStreamDataUni_;
|
|
quicCachedPsk.transportParams.initialMaxStreamsBidi =
|
|
clientConn_->peerAdvertisedInitialMaxStreamsBidi;
|
|
quicCachedPsk.transportParams.initialMaxStreamsUni =
|
|
clientConn_->peerAdvertisedInitialMaxStreamsUni;
|
|
|
|
auto appParams = CHECK_NOTNULL(connCallback_)->serializeEarlyDataAppParams();
|
|
if (appParams) {
|
|
quicCachedPsk.appParams = appParams->moveToFbString().toStdString();
|
|
}
|
|
|
|
pskCache_->putPsk(*hostname_, std::move(quicCachedPsk));
|
|
}
|
|
|
|
bool QuicClientTransport::hasWriteCipher() const {
|
|
return clientConn_->oneRttWriteCipher || clientConn_->zeroRttWriteCipher;
|
|
}
|
|
|
|
std::shared_ptr<QuicTransportBase> QuicClientTransport::sharedGuard() {
|
|
return shared_from_this();
|
|
}
|
|
|
|
bool QuicClientTransport::isTLSResumed() const {
|
|
return clientConn_->clientHandshakeLayer->isTLSResumed();
|
|
}
|
|
|
|
void QuicClientTransport::errMessage(
|
|
FOLLY_MAYBE_UNUSED const cmsghdr& cmsg) noexcept {
|
|
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
|
|
if ((cmsg.cmsg_level == SOL_IP && cmsg.cmsg_type == IP_RECVERR) ||
|
|
(cmsg.cmsg_level == SOL_IPV6 && cmsg.cmsg_type == IPV6_RECVERR)) {
|
|
const struct sock_extended_err* serr =
|
|
reinterpret_cast<const struct sock_extended_err*>(CMSG_DATA(&cmsg));
|
|
auto connectionError = (serr->ee_errno == ECONNREFUSED) ||
|
|
(serr->ee_errno == ENETUNREACH) || (serr->ee_errno == ENETDOWN);
|
|
if (!connectionError) {
|
|
return;
|
|
}
|
|
auto errStr = folly::errnoStr(serr->ee_errno);
|
|
runOnEvbAsync([errString = std::move(errStr)](auto self) {
|
|
auto quicError = std::make_pair(
|
|
QuicErrorCode(LocalErrorCode::CONNECT_FAILED),
|
|
errString.toStdString());
|
|
auto clientPtr = static_cast<QuicClientTransport*>(self.get());
|
|
clientPtr->closeImpl(std::move(quicError), false, false);
|
|
});
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void QuicClientTransport::getReadBuffer(void** buf, size_t* len) noexcept {
|
|
DCHECK(conn_) << "trying to receive packets without a connection";
|
|
auto readBufferSize = conn_->transportSettings.maxRecvPacketSize;
|
|
readBuffer_ = folly::IOBuf::create(readBufferSize);
|
|
*buf = readBuffer_->writableData();
|
|
*len = readBufferSize;
|
|
}
|
|
|
|
void QuicClientTransport::onDataAvailable(
|
|
const folly::SocketAddress& server,
|
|
size_t len,
|
|
bool truncated) noexcept {
|
|
VLOG(10) << "Got data from socket peer=" << server << " len=" << len;
|
|
// TODO: we can get better receive time accuracy than this, with
|
|
// SO_TIMESTAMP or SIOCGSTAMP.
|
|
auto packetReceiveTime = Clock::now();
|
|
Buf data = std::move(readBuffer_);
|
|
if (truncated) {
|
|
// This is an error, drop the packet.
|
|
if (conn_->qLogger) {
|
|
conn_->qLogger->addPacketDrop(len, kUdpTruncated.str());
|
|
}
|
|
QUIC_TRACE(packet_drop, *conn_, "udp_truncated");
|
|
return;
|
|
}
|
|
data->append(len);
|
|
QUIC_TRACE(udp_recvd, *conn_, (uint64_t)len);
|
|
if (conn_->qLogger) {
|
|
conn_->qLogger->addDatagramReceived(len);
|
|
}
|
|
NetworkData networkData(std::move(data), packetReceiveTime);
|
|
onNetworkData(server, std::move(networkData));
|
|
}
|
|
|
|
void QuicClientTransport::
|
|
happyEyeballsConnAttemptDelayTimeoutExpired() noexcept {
|
|
QUIC_TRACE(happy_eyeballs, *conn_, "delay timer expired");
|
|
happyEyeballsStartSecondSocket(conn_->happyEyeballsState);
|
|
}
|
|
|
|
void QuicClientTransport::start(ConnectionCallback* cb) {
|
|
if (happyEyeballsEnabled_) {
|
|
// TODO Supply v4 delay amount from somewhere when we want to tune this
|
|
startHappyEyeballs(
|
|
*conn_,
|
|
evb_,
|
|
happyEyeballsCachedFamily_,
|
|
happyEyeballsConnAttemptDelayTimeout_,
|
|
happyEyeballsCachedFamily_ == AF_UNSPEC
|
|
? kHappyEyeballsV4Delay
|
|
: kHappyEyeballsConnAttemptDelayWithCache,
|
|
this,
|
|
this);
|
|
}
|
|
|
|
CHECK(conn_->peerAddress.isInitialized());
|
|
|
|
if (!ctx_) {
|
|
ctx_ = std::make_shared<const fizz::client::FizzClientContext>();
|
|
}
|
|
if (!verifier_) {
|
|
verifier_ = std::make_shared<const fizz::DefaultCertificateVerifier>(
|
|
fizz::VerificationContext::Client);
|
|
}
|
|
|
|
QUIC_TRACE(fst_trace, *conn_, "start");
|
|
setConnectionCallback(cb);
|
|
try {
|
|
happyEyeballsSetUpSocket(
|
|
*socket_, conn_->peerAddress, conn_->transportSettings, this, this);
|
|
startCryptoHandshake();
|
|
} catch (const QuicTransportException& ex) {
|
|
runOnEvbAsync([ex](auto self) {
|
|
auto clientPtr = static_cast<QuicClientTransport*>(self.get());
|
|
clientPtr->closeImpl(std::make_pair(
|
|
QuicErrorCode(ex.errorCode()), std::string(ex.what())));
|
|
});
|
|
} catch (const QuicInternalException& ex) {
|
|
runOnEvbAsync([ex](auto self) {
|
|
auto clientPtr = static_cast<QuicClientTransport*>(self.get());
|
|
clientPtr->closeImpl(std::make_pair(
|
|
QuicErrorCode(ex.errorCode()), std::string(ex.what())));
|
|
});
|
|
} catch (const std::exception& ex) {
|
|
LOG(ERROR) << "Connect failed " << ex.what();
|
|
runOnEvbAsync([ex](auto self) {
|
|
auto clientPtr = static_cast<QuicClientTransport*>(self.get());
|
|
clientPtr->closeImpl(std::make_pair(
|
|
QuicErrorCode(TransportErrorCode::INTERNAL_ERROR),
|
|
std::string(ex.what())));
|
|
});
|
|
}
|
|
}
|
|
|
|
void QuicClientTransport::addNewPeerAddress(folly::SocketAddress peerAddress) {
|
|
CHECK(peerAddress.isInitialized());
|
|
|
|
if (happyEyeballsEnabled_) {
|
|
conn_->udpSendPacketLen = std::min(
|
|
conn_->udpSendPacketLen,
|
|
(peerAddress.getFamily() == AF_INET6 ? kDefaultV6UDPSendPacketLen
|
|
: kDefaultV4UDPSendPacketLen));
|
|
happyEyeballsAddPeerAddress(*conn_, peerAddress);
|
|
return;
|
|
}
|
|
|
|
conn_->udpSendPacketLen = peerAddress.getFamily() == AF_INET6
|
|
? kDefaultV6UDPSendPacketLen
|
|
: kDefaultV4UDPSendPacketLen;
|
|
conn_->originalPeerAddress = peerAddress;
|
|
conn_->peerAddress = std::move(peerAddress);
|
|
}
|
|
|
|
void QuicClientTransport::setHappyEyeballsEnabled(bool happyEyeballsEnabled) {
|
|
happyEyeballsEnabled_ = happyEyeballsEnabled;
|
|
}
|
|
|
|
void QuicClientTransport::setHappyEyeballsCachedFamily(
|
|
sa_family_t cachedFamily) {
|
|
happyEyeballsCachedFamily_ = cachedFamily;
|
|
}
|
|
|
|
void QuicClientTransport::addNewSocket(
|
|
std::unique_ptr<folly::AsyncUDPSocket> socket) {
|
|
happyEyeballsAddSocket(*conn_, std::move(socket));
|
|
}
|
|
|
|
void QuicClientTransport::setHostname(const std::string& hostname) {
|
|
hostname_ = hostname;
|
|
}
|
|
|
|
void QuicClientTransport::setFizzClientContext(
|
|
std::shared_ptr<const fizz::client::FizzClientContext> ctx) {
|
|
ctx_ = std::move(ctx);
|
|
}
|
|
|
|
void QuicClientTransport::setCertificateVerifier(
|
|
std::shared_ptr<const fizz::CertificateVerifier> verifier) {
|
|
verifier_ = std::move(verifier);
|
|
}
|
|
|
|
void QuicClientTransport::setPskCache(std::shared_ptr<QuicPskCache> pskCache) {
|
|
pskCache_ = std::move(pskCache);
|
|
}
|
|
|
|
void QuicClientTransport::setSelfOwning() {
|
|
selfOwning_ = shared_from_this();
|
|
}
|
|
|
|
bool QuicClientTransport::setCustomTransportParameter(
|
|
std::unique_ptr<CustomTransportParameter> customParam) {
|
|
// check that the parameter id is in the "private parameter" range, as
|
|
// described by the spec.
|
|
if (static_cast<uint16_t>(customParam->getParameterId()) <
|
|
kCustomTransportParameterThreshold) {
|
|
return false;
|
|
}
|
|
|
|
// check to see that we haven't already added in a parameter with the
|
|
// specified parameter id
|
|
auto it = std::find_if(
|
|
customTransportParameters_.begin(),
|
|
customTransportParameters_.end(),
|
|
[&customParam](const TransportParameter& param) {
|
|
return param.parameter == customParam->getParameterId();
|
|
});
|
|
|
|
// if a match has been found, we return failure
|
|
if (it != customTransportParameters_.end()) {
|
|
return false;
|
|
}
|
|
|
|
customTransportParameters_.push_back(customParam->encode());
|
|
return true;
|
|
}
|
|
|
|
void QuicClientTransport::setPartialReliabilityTransportParameter() {
|
|
uint64_t partialReliabilitySetting = 0;
|
|
if (conn_->transportSettings.partialReliabilityEnabled) {
|
|
partialReliabilitySetting = 1;
|
|
}
|
|
auto partialReliabilityCustomParam =
|
|
std::make_unique<CustomIntegralTransportParameter>(
|
|
kPartialReliabilityParameterId, partialReliabilitySetting);
|
|
|
|
if (!setCustomTransportParameter(std::move(partialReliabilityCustomParam))) {
|
|
LOG(ERROR) << "failed to set partial reliability transport setting";
|
|
}
|
|
}
|
|
|
|
void QuicClientTransport::closeTransport() {
|
|
happyEyeballsConnAttemptDelayTimeout_.cancelTimeout();
|
|
}
|
|
|
|
void QuicClientTransport::unbindConnection() {
|
|
selfOwning_ = nullptr;
|
|
}
|
|
} // namespace quic
|