1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-08-09 20:42:44 +03:00
Files
mvfst/quic/loss/test/QuicLossFunctionsTest.cpp
Yang Chi d7d19c74b5 Stop tracking pure ack packets in Quic
Summary:
Previously we track them since we thought we can get some additional
RTT samples. But these are bad RTT samples since peer can delays the acking of
pure acks. Now we no longer trust such RTT samples, there is no reason to keep
tracking pure ack packets.

Reviewed By: mjoras

Differential Revision: D18946081

fbshipit-source-id: 0a92d88e709edf8475d67791ba064c3e8b7f627a
2019-12-12 13:20:09 -08:00

1452 lines
53 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
*/
#include <folly/portability/GMock.h>
#include <folly/portability/GTest.h>
#include <folly/io/async/test/MockAsyncUDPSocket.h>
#include <folly/io/async/test/MockTimeoutManager.h>
#include <quic/api/QuicTransportFunctions.h>
#include <quic/api/test/MockQuicStats.h>
#include <quic/client/handshake/FizzClientQuicHandshakeContext.h>
#include <quic/client/state/ClientStateMachine.h>
#include <quic/codec/DefaultConnectionIdAlgo.h>
#include <quic/common/test/TestUtils.h>
#include <quic/loss/QuicLossFunctions.h>
#include <quic/server/state/ServerStateMachine.h>
#include <quic/state/stream/StreamSendHandlers.h>
#include <quic/state/test/Mocks.h>
using namespace folly::test;
using namespace testing;
using namespace folly;
namespace quic {
namespace test {
class MockLossTimeout {
public:
MOCK_METHOD0(cancelLossTimeout, void());
MOCK_METHOD1(scheduleLossTimeout, void(std::chrono::milliseconds));
MOCK_METHOD0(isLossTimeoutScheduled, bool());
};
enum class PacketType {
Handshake,
ZeroRtt,
OneRtt,
};
class QuicLossFunctionsTest : public TestWithParam<PacketNumberSpace> {
public:
void SetUp() override {
aead = createNoOpAead();
headerCipher = createNoOpHeaderCipher();
transportInfoCb_ = std::make_unique<MockQuicStats>();
connIdAlgo_ = std::make_unique<DefaultConnectionIdAlgo>();
}
PacketNum sendPacket(
QuicConnectionStateBase& conn,
TimePoint time,
folly::Optional<PacketEvent> associatedEvent,
PacketType packetType);
std::unique_ptr<QuicServerConnectionState> createConn() {
auto conn = std::make_unique<QuicServerConnectionState>();
conn->clientConnectionId = getTestConnectionId();
conn->version = QuicVersion::MVFST;
conn->ackStates.initialAckState.nextPacketNum = 1;
conn->ackStates.handshakeAckState.nextPacketNum = 1;
conn->ackStates.appDataAckState.nextPacketNum = 1;
conn->flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiLocal =
kDefaultStreamWindowSize;
conn->flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote =
kDefaultStreamWindowSize;
conn->flowControlState.peerAdvertisedInitialMaxStreamOffsetUni =
kDefaultStreamWindowSize;
conn->flowControlState.peerAdvertisedMaxOffset =
kDefaultConnectionWindowSize;
conn->streamManager->setMaxLocalBidirectionalStreams(
kDefaultMaxStreamsBidirectional);
conn->streamManager->setMaxLocalUnidirectionalStreams(
kDefaultMaxStreamsUnidirectional);
conn->infoCallback = transportInfoCb_.get();
// create a serverConnectionId that is different from the client connId
// with bits for processId and workerId set to 0
ServerConnectionIdParams params(0, 0, 0);
conn->connIdAlgo = connIdAlgo_.get();
conn->serverConnectionId = connIdAlgo_->encodeConnectionId(params);
return conn;
}
std::unique_ptr<QuicClientConnectionState> createClientConn() {
auto conn = std::make_unique<QuicClientConnectionState>(
FizzClientQuicHandshakeContext::Builder().build());
conn->clientConnectionId = getTestConnectionId();
conn->version = QuicVersion::MVFST;
conn->ackStates.initialAckState.nextPacketNum = 1;
conn->ackStates.handshakeAckState.nextPacketNum = 1;
conn->ackStates.appDataAckState.nextPacketNum = 1;
conn->flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiLocal =
kDefaultStreamWindowSize;
conn->flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote =
kDefaultStreamWindowSize;
conn->flowControlState.peerAdvertisedInitialMaxStreamOffsetUni =
kDefaultStreamWindowSize;
conn->flowControlState.peerAdvertisedMaxOffset =
kDefaultConnectionWindowSize;
conn->infoCallback = transportInfoCb_.get();
// create a serverConnectionId that is different from the client connId
// with bits for processId and workerId set to 0
ServerConnectionIdParams params(0, 0, 0);
conn->serverConnectionId = connIdAlgo_.get()->encodeConnectionId(params);
return conn;
}
EventBase evb;
std::unique_ptr<Aead> aead;
std::unique_ptr<PacketNumberCipher> headerCipher;
MockLossTimeout timeout;
std::unique_ptr<MockQuicStats> transportInfoCb_;
std::unique_ptr<ConnectionIdAlgo> connIdAlgo_;
};
auto testingLossMarkFunc(std::vector<PacketNum>& lostPackets) {
return [&lostPackets](
auto& /* conn */, auto& packet, bool processed, PacketNum) {
if (!processed) {
auto packetNum = packet.header.getPacketSequenceNum();
lostPackets.push_back(packetNum);
}
};
}
PacketNum QuicLossFunctionsTest::sendPacket(
QuicConnectionStateBase& conn,
TimePoint time,
folly::Optional<PacketEvent> associatedEvent,
PacketType packetType) {
folly::Optional<PacketHeader> header;
bool isHandshake = false;
switch (packetType) {
case PacketType::Handshake:
header = LongHeader(
LongHeader::Types::Handshake,
*conn.clientConnectionId,
*conn.serverConnectionId,
conn.ackStates.handshakeAckState.nextPacketNum,
*conn.version);
isHandshake = true;
break;
case PacketType::ZeroRtt:
header = LongHeader(
LongHeader::Types::ZeroRtt,
*conn.clientConnectionId,
*conn.serverConnectionId,
conn.ackStates.appDataAckState.nextPacketNum,
*conn.version);
break;
case PacketType::OneRtt:
header = ShortHeader(
ProtectionType::KeyPhaseZero,
*conn.serverConnectionId,
conn.ackStates.appDataAckState.nextPacketNum);
break;
}
PacketNumberSpace packetNumberSpace;
auto shortHeader = header->asShort();
if (shortHeader) {
packetNumberSpace = shortHeader->getPacketNumberSpace();
} else {
packetNumberSpace = header->asLong()->getPacketNumberSpace();
}
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(*header),
getAckState(conn, packetNumberSpace).largestAckedByPeer);
EXPECT_TRUE(builder.canBuildPacket());
auto packet = std::move(builder).buildPacket();
uint32_t encodedSize = 0;
if (packet.header) {
encodedSize += packet.header->computeChainDataLength();
}
if (packet.body) {
encodedSize += packet.body->computeChainDataLength();
}
auto outstandingPacket = OutstandingPacket(
packet.packet, time, encodedSize, isHandshake, encodedSize);
outstandingPacket.associatedEvent = associatedEvent;
if (isHandshake) {
conn.outstandingHandshakePacketsCount++;
conn.lossState.lastHandshakePacketSentTime = time;
}
conn.lossState.lastRetransmittablePacketSentTime = time;
if (conn.congestionController) {
conn.congestionController->onPacketSent(outstandingPacket);
}
if (associatedEvent) {
conn.outstandingClonedPacketsCount++;
// Simulates what the real writer does.
auto it = std::find_if(
conn.outstandingPackets.begin(),
conn.outstandingPackets.end(),
[&associatedEvent](const auto& packet) {
auto packetNum = packet.packet.header.getPacketSequenceNum();
return packetNum == *associatedEvent;
});
if (it != conn.outstandingPackets.end()) {
if (!it->associatedEvent) {
conn.outstandingPacketEvents.emplace(*associatedEvent);
conn.outstandingClonedPacketsCount++;
it->associatedEvent = *associatedEvent;
}
}
}
conn.outstandingPackets.emplace_back(std::move(outstandingPacket));
conn.lossState.largestSent = getNextPacketNum(conn, packetNumberSpace);
increaseNextPacketNum(conn, packetNumberSpace);
conn.pendingEvents.setLossDetectionAlarm = true;
return conn.lossState.largestSent;
}
TEST_F(QuicLossFunctionsTest, AllPacketsProcessed) {
auto conn = createConn();
EXPECT_CALL(*transportInfoCb_, onPTO()).Times(0);
auto pkt1 = conn->ackStates.appDataAckState.nextPacketNum;
sendPacket(*conn, Clock::now(), pkt1, PacketType::OneRtt);
auto pkt2 = conn->ackStates.appDataAckState.nextPacketNum;
sendPacket(*conn, Clock::now(), pkt2, PacketType::OneRtt);
auto pkt3 = conn->ackStates.appDataAckState.nextPacketNum;
sendPacket(*conn, Clock::now(), pkt3, PacketType::OneRtt);
EXPECT_CALL(timeout, cancelLossTimeout()).Times(1);
setLossDetectionAlarm(*conn, timeout);
EXPECT_FALSE(conn->pendingEvents.setLossDetectionAlarm);
}
TEST_F(QuicLossFunctionsTest, HasDataToWrite) {
auto conn = createConn();
// There needs to be at least one outstanding packet.
sendPacket(*conn, Clock::now(), folly::none, PacketType::OneRtt);
conn->streamManager->addLoss(1);
conn->pendingEvents.setLossDetectionAlarm = true;
EXPECT_CALL(timeout, cancelLossTimeout()).Times(1);
EXPECT_CALL(timeout, scheduleLossTimeout(_)).Times(1);
setLossDetectionAlarm(*conn, timeout);
EXPECT_FALSE(conn->pendingEvents.setLossDetectionAlarm);
}
TEST_F(QuicLossFunctionsTest, TestOnLossDetectionAlarm) {
auto conn = createConn();
auto mockCongestionController = std::make_unique<MockCongestionController>();
auto rawCongestionController = mockCongestionController.get();
conn->congestionController = std::move(mockCongestionController);
EXPECT_CALL(*rawCongestionController, onPacketSent(_))
.WillRepeatedly(Return());
sendPacket(*conn, Clock::now(), folly::none, PacketType::OneRtt);
MockClock::mockNow = []() { return TimePoint(123ms); };
std::vector<PacketNum> lostPacket;
MockClock::mockNow = []() { return TimePoint(23ms); };
EXPECT_CALL(*transportInfoCb_, onPTO());
setLossDetectionAlarm<decltype(timeout), MockClock>(*conn, timeout);
EXPECT_EQ(LossState::AlarmMethod::PTO, conn->lossState.currentAlarmMethod);
onLossDetectionAlarm<decltype(testingLossMarkFunc(lostPacket)), MockClock>(
*conn, testingLossMarkFunc(lostPacket));
EXPECT_EQ(conn->lossState.ptoCount, 1);
EXPECT_TRUE(conn->pendingEvents.setLossDetectionAlarm);
// PTO shouldn't mark loss
EXPECT_TRUE(lostPacket.empty());
MockClock::mockNow = []() { return TimePoint(3ms); };
EXPECT_CALL(*transportInfoCb_, onPTO());
sendPacket(*conn, TimePoint(), folly::none, PacketType::OneRtt);
setLossDetectionAlarm<decltype(timeout), MockClock>(*conn, timeout);
EXPECT_CALL(*rawCongestionController, onPacketAckOrLoss(_, _)).Times(0);
onLossDetectionAlarm<decltype(testingLossMarkFunc(lostPacket)), MockClock>(
*conn, testingLossMarkFunc(lostPacket));
EXPECT_EQ(conn->lossState.ptoCount, 2);
// PTO doesn't take anything out of outstandingPackets
EXPECT_FALSE(conn->outstandingPackets.empty());
EXPECT_TRUE(conn->pendingEvents.setLossDetectionAlarm);
// PTO shouldn't mark loss
EXPECT_TRUE(lostPacket.empty());
}
TEST_F(QuicLossFunctionsTest, TestOnPTOSkipProcessed) {
auto conn = createConn();
auto mockCongestionController = std::make_unique<MockCongestionController>();
auto rawCongestionController = mockCongestionController.get();
conn->congestionController = std::move(mockCongestionController);
EXPECT_CALL(*rawCongestionController, onPacketSent(_))
.WillRepeatedly(Return());
// By adding an associatedEvent that doesn't exist in the
// outstandingPacketEvents, they are all processed and will skip lossVisitor
for (auto i = 0; i < 10; i++) {
sendPacket(*conn, TimePoint(), i, PacketType::OneRtt);
}
EXPECT_EQ(10, conn->outstandingPackets.size());
std::vector<PacketNum> lostPackets;
EXPECT_CALL(*rawCongestionController, onRemoveBytesFromInflight(_)).Times(0);
EXPECT_CALL(*transportInfoCb_, onPTO());
onPTOAlarm(*conn);
EXPECT_EQ(10, conn->outstandingPackets.size());
EXPECT_TRUE(lostPackets.empty());
}
TEST_F(QuicLossFunctionsTest, TestMarkPacketLoss) {
folly::EventBase evb;
MockAsyncUDPSocket socket(&evb);
auto conn = createConn();
EXPECT_CALL(*transportInfoCb_, onNewQuicStream()).Times(2);
auto stream1Id =
conn->streamManager->createNextBidirectionalStream().value()->id;
auto stream2Id =
conn->streamManager->createNextBidirectionalStream().value()->id;
auto stream1 = conn->streamManager->findStream(stream1Id);
auto stream2 = conn->streamManager->findStream(stream2Id);
auto buf = buildRandomInputData(20);
writeDataToQuicStream(*stream1, buf->clone(), true);
writeDataToQuicStream(*stream2, buf->clone(), true);
auto packetSeqNum = conn->ackStates.handshakeAckState.nextPacketNum;
LongHeader header(
LongHeader::Types::Handshake,
*conn->clientConnectionId,
*conn->serverConnectionId,
packetSeqNum,
*conn->version);
writeQuicDataToSocket(
socket,
*conn,
*conn->clientConnectionId,
*conn->serverConnectionId,
*aead,
*headerCipher,
*conn->version,
conn->transportSettings.writeConnectionDataPacketsLimit);
EXPECT_EQ(1, conn->outstandingPackets.size());
auto& packet =
getFirstOutstandingPacket(*conn, PacketNumberSpace::AppData)->packet;
auto packetNum = packet.header.getPacketSequenceNum();
markPacketLoss(*conn, packet, false, packetNum);
EXPECT_EQ(stream1->retransmissionBuffer.size(), 0);
EXPECT_EQ(stream2->retransmissionBuffer.size(), 0);
EXPECT_EQ(stream1->lossBuffer.size(), 1);
EXPECT_EQ(stream2->lossBuffer.size(), 1);
auto& buffer = stream1->lossBuffer.front();
EXPECT_EQ(buffer.offset, 0);
IOBufEqualTo eq;
EXPECT_TRUE(eq(buf, buffer.data.move()));
}
TEST_F(QuicLossFunctionsTest, RetxBufferSortedAfterLoss) {
folly::EventBase evb;
MockAsyncUDPSocket socket(&evb);
auto conn = createConn();
auto stream = conn->streamManager->createNextBidirectionalStream().value();
auto buf1 = IOBuf::copyBuffer("Worse case scenario");
auto buf2 = IOBuf::copyBuffer("The hard problem");
auto buf3 = IOBuf::copyBuffer("And then we had a flash of insight...");
writeQuicPacket(
*conn,
*conn->clientConnectionId,
*conn->serverConnectionId,
socket,
*stream,
*buf1);
writeQuicPacket(
*conn,
*conn->clientConnectionId,
*conn->serverConnectionId,
socket,
*stream,
*buf2);
writeQuicPacket(
*conn,
*conn->clientConnectionId,
*conn->serverConnectionId,
socket,
*stream,
*buf3);
EXPECT_EQ(3, stream->retransmissionBuffer.size());
EXPECT_EQ(3, conn->outstandingPackets.size());
auto packet = conn->outstandingPackets[folly::Random::rand32() % 3];
markPacketLoss(
*conn, packet.packet, false, packet.packet.header.getPacketSequenceNum());
EXPECT_EQ(2, stream->retransmissionBuffer.size());
}
TEST_F(QuicLossFunctionsTest, TestMarkCryptoLostAfterCancelRetransmission) {
folly::EventBase evb;
MockAsyncUDPSocket socket(&evb);
auto conn = createConn();
auto packetSeqNum = conn->ackStates.handshakeAckState.nextPacketNum;
LongHeader header(
LongHeader::Types::Handshake,
*conn->clientConnectionId,
*conn->serverConnectionId,
packetSeqNum,
*conn->version);
writeDataToQuicStream(
conn->cryptoState->handshakeStream, folly::IOBuf::copyBuffer("CFIN"));
writeCryptoAndAckDataToSocket(
socket,
*conn,
*conn->clientConnectionId,
*conn->serverConnectionId,
LongHeader::Types::Handshake,
*aead,
*headerCipher,
*conn->version,
conn->transportSettings.writeConnectionDataPacketsLimit);
ASSERT_EQ(conn->outstandingPackets.size(), 1);
EXPECT_GT(conn->cryptoState->handshakeStream.retransmissionBuffer.size(), 0);
auto& packet = conn->outstandingPackets.front().packet;
auto packetNum = packet.header.getPacketSequenceNum();
cancelHandshakeCryptoStreamRetransmissions(*conn->cryptoState);
markPacketLoss(*conn, packet, false, packetNum);
EXPECT_EQ(conn->cryptoState->handshakeStream.retransmissionBuffer.size(), 0);
EXPECT_EQ(conn->cryptoState->handshakeStream.lossBuffer.size(), 0);
}
TEST_F(QuicLossFunctionsTest, TestMarkCryptoLostCancel) {
folly::EventBase evb;
MockAsyncUDPSocket socket(&evb);
auto conn = createConn();
auto packetSeqNum = conn->ackStates.handshakeAckState.nextPacketNum;
LongHeader header(
LongHeader::Types::Handshake,
*conn->clientConnectionId,
*conn->serverConnectionId,
packetSeqNum,
*conn->version);
writeDataToQuicStream(
conn->cryptoState->handshakeStream, folly::IOBuf::copyBuffer("CFIN"));
writeCryptoAndAckDataToSocket(
socket,
*conn,
*conn->clientConnectionId,
*conn->serverConnectionId,
LongHeader::Types::Handshake,
*aead,
*headerCipher,
*conn->version,
conn->transportSettings.writeConnectionDataPacketsLimit);
ASSERT_EQ(conn->outstandingPackets.size(), 1);
EXPECT_GT(conn->cryptoState->handshakeStream.retransmissionBuffer.size(), 0);
auto& packet = conn->outstandingPackets.front().packet;
auto packetNum = packet.header.getPacketSequenceNum();
markPacketLoss(*conn, packet, false, packetNum);
EXPECT_EQ(conn->cryptoState->handshakeStream.retransmissionBuffer.size(), 0);
EXPECT_EQ(conn->cryptoState->handshakeStream.lossBuffer.size(), 1);
cancelHandshakeCryptoStreamRetransmissions(*conn->cryptoState);
EXPECT_EQ(conn->cryptoState->handshakeStream.retransmissionBuffer.size(), 0);
EXPECT_EQ(conn->cryptoState->handshakeStream.lossBuffer.size(), 0);
}
TEST_F(QuicLossFunctionsTest, TestMarkPacketLossAfterStreamReset) {
folly::EventBase evb;
MockAsyncUDPSocket socket(&evb);
auto conn = createConn();
auto stream1 = conn->streamManager->createNextBidirectionalStream().value();
auto buf = buildRandomInputData(20);
auto packet = writeQuicPacket(
*conn,
*conn->clientConnectionId,
*conn->serverConnectionId,
socket,
*stream1,
*buf,
true);
sendRstSMHandler(*stream1, GenericApplicationErrorCode::UNKNOWN);
markPacketLoss(*conn, packet, false, packet.header.getPacketSequenceNum());
EXPECT_TRUE(stream1->lossBuffer.empty());
EXPECT_TRUE(stream1->retransmissionBuffer.empty());
EXPECT_TRUE(stream1->writeBuffer.empty());
}
TEST_F(QuicLossFunctionsTest, TestReorderingThreshold) {
std::vector<PacketNum> lostPacket;
auto conn = createConn();
auto mockCongestionController = std::make_unique<MockCongestionController>();
auto rawCongestionController = mockCongestionController.get();
conn->congestionController = std::move(mockCongestionController);
EXPECT_CALL(*rawCongestionController, onPacketSent(_))
.WillRepeatedly(Return());
auto testingLossMarkFunc =
[&lostPacket](auto& /*conn*/, auto& packet, bool, PacketNum) {
auto packetNum = packet.header.getPacketSequenceNum();
lostPacket.push_back(packetNum);
};
for (int i = 0; i < 6; ++i) {
sendPacket(*conn, Clock::now(), folly::none, PacketType::Handshake);
}
EXPECT_EQ(6, conn->outstandingHandshakePacketsCount);
// Assume some packets are already acked
for (auto iter =
getFirstOutstandingPacket(*conn, PacketNumberSpace::Handshake) + 2;
iter <
getFirstOutstandingPacket(*conn, PacketNumberSpace::Handshake) + 5;
iter++) {
if (iter->isHandshake) {
conn->outstandingHandshakePacketsCount--;
}
}
auto firstHandshakeOpIter =
getFirstOutstandingPacket(*conn, PacketNumberSpace::Handshake);
conn->outstandingPackets.erase(
firstHandshakeOpIter + 2, firstHandshakeOpIter + 5);
// Ack for packet 9 arrives
auto lossEvent = detectLossPackets<decltype(testingLossMarkFunc)>(
*conn,
9,
testingLossMarkFunc,
TimePoint(90ms),
PacketNumberSpace::Handshake);
EXPECT_EQ(2, lossEvent->largestLostPacketNum.value());
EXPECT_EQ(TimePoint(90ms), lossEvent->lossTime);
// Packet 1,2 should be marked as loss
EXPECT_EQ(lostPacket.size(), 2);
EXPECT_EQ(lostPacket.front(), 1);
EXPECT_EQ(lostPacket.back(), 2);
// Packet 6 is the only thing remaining inflight, it is a handshake pkt
EXPECT_EQ(1, conn->outstandingHandshakePacketsCount);
// Packet 6 should remain in packet as the delta is less than threshold
EXPECT_EQ(conn->outstandingPackets.size(), 1);
auto packetNum =
conn->outstandingPackets.front().packet.header.getPacketSequenceNum();
EXPECT_EQ(packetNum, 6);
}
TEST_F(QuicLossFunctionsTest, TestHandleAckForLoss) {
auto conn = createConn();
auto qLogger = std::make_shared<FileQLogger>(VantagePoint::SERVER);
conn->qLogger = qLogger;
conn->lossState.ptoCount = 100;
conn->lossState.reorderingThreshold = 10;
LongHeader longHeader(
LongHeader::Types::Handshake,
*conn->clientConnectionId,
*conn->serverConnectionId,
conn->ackStates.handshakeAckState.nextPacketNum++,
conn->version.value());
RegularQuicWritePacket outstandingRegularPacket(std::move(longHeader));
auto now = Clock::now();
conn->outstandingPackets.emplace_back(
OutstandingPacket(outstandingRegularPacket, now, 0, false, 0));
bool testLossMarkFuncCalled = false;
auto testLossMarkFunc = [&](auto& /* conn */, auto&, bool, PacketNum) {
testLossMarkFuncCalled = true;
};
CongestionController::AckEvent ackEvent;
ackEvent.ackTime = now;
ackEvent.largestAckedPacket = 1000;
handleAckForLoss(
*conn, testLossMarkFunc, ackEvent, PacketNumberSpace::Handshake);
EXPECT_EQ(0, conn->lossState.ptoCount);
EXPECT_TRUE(conn->outstandingPackets.empty());
EXPECT_FALSE(conn->pendingEvents.setLossDetectionAlarm);
EXPECT_TRUE(testLossMarkFuncCalled);
std::vector<int> indices =
getQLogEventIndices(QLogEventType::PacketsLost, qLogger);
EXPECT_EQ(indices.size(), 1);
auto tmp = std::move(qLogger->logs[indices[0]]);
auto event = dynamic_cast<QLogPacketsLostEvent*>(tmp.get());
EXPECT_EQ(event->largestLostPacketNum, 1);
EXPECT_EQ(event->lostBytes, 0);
EXPECT_EQ(event->lostPackets, 1);
}
TEST_F(QuicLossFunctionsTest, TestHandleAckedPacket) {
auto conn = createConn();
auto qLogger = std::make_shared<FileQLogger>(VantagePoint::SERVER);
conn->qLogger = qLogger;
conn->lossState.ptoCount = 10;
conn->lossState.handshakeAlarmCount = 5;
conn->lossState.reorderingThreshold = 10;
sendPacket(*conn, TimePoint(), folly::none, PacketType::OneRtt);
ReadAckFrame ackFrame;
ackFrame.largestAcked = conn->lossState.largestSent;
ackFrame.ackBlocks.emplace_back(
conn->lossState.largestSent, conn->lossState.largestSent);
bool testLossMarkFuncCalled = false;
auto testLossMarkFunc = [&](auto& /* conn */, auto&, bool, PacketNum) {
testLossMarkFuncCalled = true;
};
auto ackVisitor = [&](auto&, auto&, auto&) {};
// process and remove the acked packet.
processAckFrame(
*conn,
PacketNumberSpace::AppData,
ackFrame,
ackVisitor,
testLossMarkFunc,
Clock::now());
EXPECT_EQ(0, conn->lossState.ptoCount);
EXPECT_EQ(0, conn->lossState.handshakeAlarmCount);
EXPECT_TRUE(conn->outstandingPackets.empty());
EXPECT_FALSE(conn->pendingEvents.setLossDetectionAlarm);
EXPECT_FALSE(testLossMarkFuncCalled);
ASSERT_TRUE(conn->outstandingPackets.empty());
setLossDetectionAlarm<decltype(timeout), MockClock>(*conn, timeout);
EXPECT_FALSE(conn->pendingEvents.setLossDetectionAlarm);
std::vector<int> indices =
getQLogEventIndices(QLogEventType::PacketAck, qLogger);
EXPECT_EQ(indices.size(), 1);
auto tmp = std::move(qLogger->logs[indices[0]]);
auto event = dynamic_cast<QLogPacketAckEvent*>(tmp.get());
EXPECT_EQ(event->packetNumSpace, PacketNumberSpace::AppData);
EXPECT_EQ(event->packetNum, 1);
}
TEST_F(QuicLossFunctionsTest, TestMarkRstLoss) {
auto conn = createConn();
folly::EventBase evb;
MockAsyncUDPSocket socket(&evb);
auto stream = conn->streamManager->createNextBidirectionalStream().value();
auto currentOffset = stream->currentWriteOffset;
RstStreamFrame rstFrame(
stream->id, GenericApplicationErrorCode::UNKNOWN, currentOffset);
conn->pendingEvents.resets.insert({stream->id, rstFrame});
writeQuicDataToSocket(
socket,
*conn,
*conn->clientConnectionId,
*conn->serverConnectionId,
*aead,
*headerCipher,
*conn->version,
conn->transportSettings.writeConnectionDataPacketsLimit);
EXPECT_EQ(conn->outstandingPackets.size(), 1);
EXPECT_TRUE(conn->pendingEvents.resets.empty());
auto& packet =
getFirstOutstandingPacket(*conn, PacketNumberSpace::AppData)->packet;
markPacketLoss(*conn, packet, false, packet.header.getPacketSequenceNum());
EXPECT_EQ(1, conn->pendingEvents.resets.size());
EXPECT_EQ(1, conn->pendingEvents.resets.count(stream->id));
auto& retxRstFrame = conn->pendingEvents.resets.at(stream->id);
EXPECT_EQ(stream->id, retxRstFrame.streamId);
EXPECT_EQ(GenericApplicationErrorCode::UNKNOWN, retxRstFrame.errorCode);
EXPECT_EQ(currentOffset, retxRstFrame.offset);
// write again:
writeQuicDataToSocket(
socket,
*conn,
*conn->clientConnectionId,
*conn->serverConnectionId,
*aead,
*headerCipher,
*conn->version,
conn->transportSettings.writeConnectionDataPacketsLimit);
EXPECT_TRUE(conn->pendingEvents.resets.empty());
auto& packet2 =
getLastOutstandingPacket(*conn, PacketNumberSpace::AppData)->packet;
bool rstFound = false;
for (auto& frame : packet2.frames) {
auto resetFrame = frame.asRstStreamFrame();
if (!resetFrame) {
continue;
}
EXPECT_EQ(stream->id, resetFrame->streamId);
EXPECT_EQ(GenericApplicationErrorCode::UNKNOWN, resetFrame->errorCode);
EXPECT_EQ(currentOffset, resetFrame->offset);
rstFound = true;
}
EXPECT_TRUE(rstFound);
}
TEST_F(QuicLossFunctionsTest, ReorderingThresholdChecksSamePacketNumberSpace) {
auto conn = createConn();
uint16_t lossVisitorCount = 0;
auto countingLossVisitor = [&](auto& /* conn */,
auto& /* packet */,
bool processed,
PacketNum /* currentPacketNum */) {
if (!processed) {
lossVisitorCount++;
}
};
PacketNum latestSent = 0;
for (size_t i = 0; i < conn->lossState.reorderingThreshold + 1; i++) {
latestSent =
sendPacket(*conn, Clock::now(), folly::none, PacketType::Handshake);
}
detectLossPackets(
*conn,
latestSent + 1,
countingLossVisitor,
Clock::now(),
PacketNumberSpace::AppData);
EXPECT_EQ(0, lossVisitorCount);
detectLossPackets(
*conn,
latestSent + 1,
countingLossVisitor,
Clock::now(),
PacketNumberSpace::Handshake);
EXPECT_GT(lossVisitorCount, 0);
}
TEST_F(QuicLossFunctionsTest, TestMarkWindowUpdateLoss) {
auto conn = createConn();
folly::EventBase evb;
MockAsyncUDPSocket socket(&evb);
auto stream = conn->streamManager->createNextBidirectionalStream().value();
conn->streamManager->queueWindowUpdate(stream->id);
writeQuicDataToSocket(
socket,
*conn,
*conn->clientConnectionId,
*conn->serverConnectionId,
*aead,
*headerCipher,
*conn->version,
conn->transportSettings.writeConnectionDataPacketsLimit);
EXPECT_FALSE(conn->streamManager->hasWindowUpdates());
EXPECT_EQ(1, conn->outstandingPackets.size());
auto& packet =
getFirstOutstandingPacket(*conn, PacketNumberSpace::AppData)->packet;
auto packetNum = packet.header.getPacketSequenceNum();
markPacketLoss(*conn, packet, false, packetNum);
EXPECT_TRUE(conn->streamManager->pendingWindowUpdate(stream->id));
}
TEST_F(QuicLossFunctionsTest, TestTimeReordering) {
std::vector<PacketNum> lostPacket;
auto conn = createConn();
auto mockCongestionController = std::make_unique<MockCongestionController>();
auto rawCongestionController = mockCongestionController.get();
conn->congestionController = std::move(mockCongestionController);
EXPECT_CALL(*rawCongestionController, onPacketSent(_))
.WillRepeatedly(Return());
PacketNum largestSent = 0;
for (int i = 0; i < 7; ++i) {
largestSent = sendPacket(
*conn, TimePoint(i * 100ms), folly::none, PacketType::OneRtt);
}
// Some packets are already acked
conn->lossState.srtt = 400ms;
conn->lossState.lrtt = 350ms;
conn->outstandingPackets.erase(
getFirstOutstandingPacket(*conn, PacketNumberSpace::AppData) + 2,
getFirstOutstandingPacket(*conn, PacketNumberSpace::AppData) + 5);
auto lossEvent = detectLossPackets<decltype(testingLossMarkFunc(lostPacket))>(
*conn,
largestSent,
testingLossMarkFunc(lostPacket),
TimePoint(900ms),
PacketNumberSpace::AppData);
EXPECT_EQ(2, lossEvent->largestLostPacketNum.value());
EXPECT_EQ(TimePoint(900ms), lossEvent->lossTime);
// Packet 1,2 should be marked as loss
EXPECT_EQ(lostPacket.size(), 2);
EXPECT_EQ(lostPacket.front(), 1);
EXPECT_EQ(lostPacket.back(), 2);
// Packet 6, 7 should remain in outstanding packet list
EXPECT_EQ(2, conn->outstandingPackets.size());
auto packetNum = getFirstOutstandingPacket(*conn, PacketNumberSpace::AppData)
->packet.header.getPacketSequenceNum();
EXPECT_EQ(packetNum, 6);
EXPECT_TRUE(conn->lossState.appDataLossTime);
}
TEST_F(QuicLossFunctionsTest, LossTimePreemptsCryptoTimer) {
std::vector<PacketNum> lostPackets;
auto conn = createConn();
conn->lossState.srtt = 100ms;
conn->lossState.lrtt = 100ms;
auto expectedDelayUntilLost = 900000us / 8;
auto sendTime = Clock::now();
// Send two:
sendPacket(*conn, sendTime, folly::none, PacketType::Handshake);
PacketNum second =
sendPacket(*conn, sendTime + 1ms, folly::none, PacketType::Handshake);
auto lossTime = sendTime + 50ms;
detectLossPackets<decltype(testingLossMarkFunc(lostPackets))>(
*conn,
second,
testingLossMarkFunc(lostPackets),
lossTime,
PacketNumberSpace::Handshake);
EXPECT_TRUE(lostPackets.empty());
EXPECT_TRUE(conn->lossState.handshakeLossTime.hasValue());
EXPECT_EQ(
expectedDelayUntilLost + sendTime,
conn->lossState.handshakeLossTime.value());
MockClock::mockNow = [=]() { return sendTime; };
auto alarm = calculateAlarmDuration<MockClock>(*conn);
EXPECT_EQ(
std::chrono::duration_cast<std::chrono::milliseconds>(
expectedDelayUntilLost),
alarm.first);
EXPECT_EQ(LossState::AlarmMethod::EarlyRetransmitOrReordering, alarm.second);
// Manual set lossState. Calling setLossDetectionAlarm requries a Timeout
conn->lossState.currentAlarmMethod = alarm.second;
// Second packet gets acked:
getAckState(*conn, PacketNumberSpace::Handshake).largestAckedByPeer = second;
conn->outstandingPackets.pop_back();
MockClock::mockNow = [=]() { return sendTime + expectedDelayUntilLost + 5s; };
onLossDetectionAlarm<decltype(testingLossMarkFunc(lostPackets)), MockClock>(
*conn, testingLossMarkFunc(lostPackets));
EXPECT_EQ(1, lostPackets.size());
EXPECT_FALSE(conn->lossState.handshakeLossTime.hasValue());
EXPECT_TRUE(conn->outstandingPackets.empty());
}
TEST_F(QuicLossFunctionsTest, PTONoLongerMarksPacketsToBeRetransmitted) {
auto conn = createConn();
auto mockCongestionController = std::make_unique<MockCongestionController>();
auto rawCongestionController = mockCongestionController.get();
conn->congestionController = std::move(mockCongestionController);
EXPECT_CALL(*rawCongestionController, onPacketSent(_))
.WillRepeatedly(Return());
TimePoint startTime(123ms);
MockClock::mockNow = [&]() { return startTime; };
std::vector<PacketNum> lostPackets;
for (auto i = 0; i < kPacketToSendForPTO + 10; i++) {
sendPacket(*conn, startTime, folly::none, PacketType::OneRtt);
setLossDetectionAlarm<decltype(timeout), MockClock>(*conn, timeout);
startTime += 1ms;
}
EXPECT_CALL(*rawCongestionController, onPacketAckOrLoss(_, _)).Times(0);
EXPECT_CALL(*transportInfoCb_, onPTO());
onLossDetectionAlarm<decltype(testingLossMarkFunc(lostPackets)), MockClock>(
*conn, testingLossMarkFunc(lostPackets));
EXPECT_EQ(1, conn->lossState.ptoCount);
// Hey PTOs are not losses either from now on
EXPECT_TRUE(lostPackets.empty());
}
TEST_F(
QuicLossFunctionsTest,
WhenHandshakeOutstandingAlarmMarksAllHandshakeAsLoss) {
auto conn = createConn();
auto qLogger = std::make_shared<FileQLogger>(VantagePoint::SERVER);
conn->qLogger = qLogger;
auto mockCongestionController = std::make_unique<MockCongestionController>();
auto rawCongestionController = mockCongestionController.get();
conn->congestionController = std::move(mockCongestionController);
EXPECT_CALL(*rawCongestionController, onPacketSent(_))
.WillRepeatedly(Return());
std::vector<PacketNum> lostPackets;
PacketNum expectedLargestLostNum = 0;
conn->lossState.currentAlarmMethod = LossState::AlarmMethod::Handshake;
for (auto i = 0; i < 10; i++) {
// Half are handshakes
auto sentPacketNum = sendPacket(
*conn,
TimePoint(100ms),
folly::none,
(i % 2 ? PacketType::OneRtt : PacketType::Handshake));
expectedLargestLostNum = std::max(
expectedLargestLostNum, i % 2 ? sentPacketNum : expectedLargestLostNum);
}
uint64_t expectedLostBytes = std::accumulate(
conn->outstandingPackets.begin(),
conn->outstandingPackets.end(),
0,
[](uint64_t num, const OutstandingPacket& packet) {
return packet.isHandshake ? num + packet.encodedSize : num;
});
EXPECT_CALL(
*rawCongestionController, onRemoveBytesFromInflight(expectedLostBytes))
.Times(1);
onLossDetectionAlarm<decltype(testingLossMarkFunc(lostPackets)), Clock>(
*conn, testingLossMarkFunc(lostPackets));
// Half are lost
EXPECT_EQ(5, lostPackets.size());
EXPECT_EQ(1, conn->lossState.handshakeAlarmCount);
EXPECT_EQ(5, conn->lossState.timeoutBasedRtxCount);
EXPECT_EQ(conn->pendingEvents.numProbePackets, 0);
EXPECT_EQ(5, conn->lossState.rtxCount);
std::vector<int> indices =
getQLogEventIndices(QLogEventType::LossAlarm, qLogger);
EXPECT_EQ(indices.size(), 1);
auto tmp = std::move(qLogger->logs[indices[0]]);
auto event = dynamic_cast<QLogLossAlarmEvent*>(tmp.get());
EXPECT_EQ(event->largestSent, 5);
EXPECT_EQ(event->alarmCount, 0);
EXPECT_EQ(event->outstandingPackets, 10);
EXPECT_EQ(event->type, kHandshakeAlarm);
}
TEST_F(QuicLossFunctionsTest, HandshakeAlarmWithOneRttCipher) {
auto conn = createClientConn();
auto qLogger = std::make_shared<FileQLogger>(VantagePoint::CLIENT);
conn->qLogger = qLogger;
conn->oneRttWriteCipher = createNoOpAead();
conn->lossState.currentAlarmMethod = LossState::AlarmMethod::Handshake;
std::vector<PacketNum> lostPackets;
sendPacket(*conn, TimePoint(100ms), folly::none, PacketType::Handshake);
onLossDetectionAlarm<decltype(testingLossMarkFunc(lostPackets)), Clock>(
*conn, testingLossMarkFunc(lostPackets));
// Half should be marked as loss
EXPECT_EQ(lostPackets.size(), 1);
EXPECT_EQ(conn->lossState.handshakeAlarmCount, 1);
EXPECT_EQ(conn->pendingEvents.numProbePackets, kPacketToSendForPTO);
std::vector<int> indices =
getQLogEventIndices(QLogEventType::LossAlarm, qLogger);
EXPECT_EQ(indices.size(), 1);
auto tmp = std::move(qLogger->logs[indices[0]]);
auto event = dynamic_cast<QLogLossAlarmEvent*>(tmp.get());
EXPECT_EQ(event->largestSent, 1);
EXPECT_EQ(event->alarmCount, 0);
EXPECT_EQ(event->outstandingPackets, 1);
EXPECT_EQ(event->type, kHandshakeAlarm);
}
TEST_F(QuicLossFunctionsTest, EmptyOutstandingNoTimeout) {
auto conn = createConn();
EXPECT_CALL(timeout, cancelLossTimeout()).Times(1);
setLossDetectionAlarm(*conn, timeout);
}
TEST_F(QuicLossFunctionsTest, AlarmDurationHandshakeOutstanding) {
auto conn = createConn();
conn->lossState.maxAckDelay = 25ms;
TimePoint lastPacketSentTime = Clock::now();
std::chrono::milliseconds packetSentDelay = 10ms;
auto thisMoment = lastPacketSentTime + packetSentDelay;
MockClock::mockNow = [=]() { return thisMoment; };
sendPacket(*conn, lastPacketSentTime, folly::none, PacketType::Handshake);
MockClock::mockNow = [=]() { return thisMoment; };
auto duration = calculateAlarmDuration<MockClock>(*conn);
EXPECT_EQ(
conn->transportSettings.initialRtt * 2 - packetSentDelay + 25ms,
duration.first);
EXPECT_EQ(duration.second, LossState::AlarmMethod::Handshake);
conn->lossState.srtt = 100ms;
duration = calculateAlarmDuration<MockClock>(*conn);
EXPECT_EQ(
std::chrono::duration_cast<std::chrono::milliseconds>(225ms) -
packetSentDelay,
duration.first);
conn->lossState.maxAckDelay = 45ms;
conn->lossState.handshakeAlarmCount = 2;
duration = calculateAlarmDuration<MockClock>(*conn);
EXPECT_EQ(
std::chrono::duration_cast<std::chrono::milliseconds>(980ms) -
packetSentDelay,
duration.first);
}
TEST_F(QuicLossFunctionsTest, AlarmDurationHasLossTime) {
auto conn = createConn();
TimePoint lastPacketSentTime = Clock::now();
auto thisMoment = lastPacketSentTime;
MockClock::mockNow = [=]() { return thisMoment; };
conn->lossState.appDataLossTime = thisMoment + 100ms;
conn->lossState.srtt = 200ms;
conn->lossState.lrtt = 150ms;
sendPacket(*conn, lastPacketSentTime, folly::none, PacketType::OneRtt);
auto duration = calculateAlarmDuration<MockClock>(*conn);
EXPECT_EQ(100ms, duration.first);
EXPECT_EQ(
duration.second, LossState::AlarmMethod::EarlyRetransmitOrReordering);
}
TEST_F(QuicLossFunctionsTest, AlarmDurationLossTimeIsZero) {
// The timer could be delayed a bit, so this tests that the alarm will return
// a timer of 0 if we are in the loss time case.
auto conn = createConn();
TimePoint lastPacketSentTime = Clock::now();
auto thisMoment = lastPacketSentTime + 200ms;
MockClock::mockNow = [=]() { return thisMoment; };
conn->lossState.appDataLossTime = lastPacketSentTime + 100ms;
conn->lossState.srtt = 200ms;
conn->lossState.lrtt = 150ms;
sendPacket(*conn, lastPacketSentTime, folly::none, PacketType::OneRtt);
auto duration = calculateAlarmDuration<MockClock>(*conn);
EXPECT_EQ(0ms, duration.first);
EXPECT_EQ(
duration.second, LossState::AlarmMethod::EarlyRetransmitOrReordering);
}
TEST_F(QuicLossFunctionsTest, AlarmDurationNonHandshakeOutstanding) {
auto conn = createConn();
conn->lossState.srtt = 4ms;
conn->lossState.rttvar = 10ms;
conn->lossState.maxAckDelay = 25ms;
TimePoint lastPacketSentTime = Clock::now();
MockClock::mockNow = [=]() { return lastPacketSentTime; };
sendPacket(*conn, lastPacketSentTime, folly::none, PacketType::OneRtt);
auto duration = calculateAlarmDuration<MockClock>(*conn);
EXPECT_EQ(duration.second, LossState::AlarmMethod::PTO);
setLossDetectionAlarm<decltype(timeout), MockClock>(*conn, timeout);
EXPECT_EQ(conn->lossState.currentAlarmMethod, LossState::AlarmMethod::PTO);
conn->lossState.ptoCount = 2;
auto newDuration = calculateAlarmDuration<MockClock>(*conn);
EXPECT_EQ(duration.second, LossState::AlarmMethod::PTO);
EXPECT_LT(duration.first, newDuration.first);
}
TEST_F(QuicLossFunctionsTest, NoSkipLossVisitor) {
auto conn = createConn();
conn->congestionController.reset();
// make srtt large so delayUntilLost won't kick in
conn->lossState.srtt = 1000000000us;
uint16_t lossVisitorCount = 0;
auto countingLossVisitor = [&](auto& /* conn */,
auto& /* packet */,
bool processed,
PacketNum /* currentPacketNum */) {
if (!processed) {
lossVisitorCount++;
}
};
// Send 5 packets, so when we ack the last one, we mark the first one loss
PacketNum lastSent;
for (size_t i = 0; i < 5; i++) {
lastSent = sendPacket(*conn, Clock::now(), folly::none, PacketType::OneRtt);
}
detectLossPackets(
*conn,
lastSent,
countingLossVisitor,
TimePoint(100ms),
PacketNumberSpace::AppData);
EXPECT_EQ(1, lossVisitorCount);
}
TEST_F(QuicLossFunctionsTest, SkipLossVisitor) {
auto conn = createConn();
conn->congestionController.reset();
// make srtt large so delayUntilLost won't kick in
conn->lossState.srtt = 1000000000us;
uint16_t lossVisitorCount = 0;
auto countingLossVisitor = [&](auto& /* conn */,
auto& /* packet */,
bool processed,
PacketNum /* currentPacketNum */) {
if (!processed) {
lossVisitorCount++;
}
};
// Send 5 packets, so when we ack the last one, we mark the first one loss
PacketNum lastSent;
for (size_t i = 0; i < 5; i++) {
lastSent = conn->ackStates.appDataAckState.nextPacketNum;
sendPacket(*conn, Clock::now(), lastSent, PacketType::OneRtt);
}
detectLossPackets(
*conn,
lastSent,
countingLossVisitor,
TimePoint(100ms),
PacketNumberSpace::AppData);
EXPECT_EQ(0, lossVisitorCount);
}
TEST_F(QuicLossFunctionsTest, NoDoubleProcess) {
auto conn = createConn();
conn->congestionController.reset();
// make srtt large so delayUntilLost won't kick in
conn->lossState.srtt = 1000000000us;
uint16_t lossVisitorCount = 0;
auto countingLossVisitor = [&](auto& /* conn */,
auto& /* packet */,
bool processed,
PacketNum /* currentPacketNum */) {
if (!processed) {
lossVisitorCount++;
}
};
// Send 6 packets, so when we ack the last one, we mark the first two loss
PacketNum lastSent;
PacketEvent event = 0;
for (size_t i = 0; i < 6; i++) {
lastSent = sendPacket(*conn, Clock::now(), event, PacketType::OneRtt);
}
EXPECT_EQ(6, conn->outstandingPackets.size());
// Add the PacketEvent to the outstandingPacketEvents set
conn->outstandingPacketEvents.insert(event);
// Ack the last sent packet. Despite two losses, lossVisitor only visit one
// packet
detectLossPackets(
*conn,
lastSent,
countingLossVisitor,
TimePoint(100ms),
PacketNumberSpace::AppData);
EXPECT_EQ(1, lossVisitorCount);
EXPECT_EQ(4, conn->outstandingPackets.size());
}
TEST_F(QuicLossFunctionsTest, DetectPacketLossClonedPacketsCounter) {
auto conn = createConn();
auto packet1 = conn->ackStates.appDataAckState.nextPacketNum;
sendPacket(*conn, Clock::now(), packet1, PacketType::OneRtt);
sendPacket(*conn, Clock::now(), folly::none, PacketType::OneRtt);
sendPacket(*conn, Clock::now(), folly::none, PacketType::OneRtt);
sendPacket(*conn, Clock::now(), folly::none, PacketType::OneRtt);
auto ackedPacket =
sendPacket(*conn, Clock::now(), folly::none, PacketType::OneRtt);
auto noopLossMarker = [](auto&, auto&, bool, PacketNum) {};
detectLossPackets<decltype(noopLossMarker)>(
*conn,
ackedPacket,
noopLossMarker,
Clock::now(),
PacketNumberSpace::AppData);
EXPECT_EQ(0, conn->outstandingClonedPacketsCount);
}
TEST_F(QuicLossFunctionsTest, TestMarkPacketLossProcessedPacket) {
MockAsyncUDPSocket socket(&evb);
auto conn = createConn();
ASSERT_TRUE(conn->outstandingPackets.empty());
ASSERT_TRUE(conn->outstandingPacketEvents.empty());
auto stream1Id =
conn->streamManager->createNextBidirectionalStream().value()->id;
auto buf = folly::IOBuf::copyBuffer("I wrestled by the sea.");
auto stream2Id =
conn->streamManager->createNextBidirectionalStream().value()->id;
conn->streamManager->queueWindowUpdate(stream2Id);
conn->pendingEvents.connWindowUpdate = true;
auto nextPacketNum = conn->ackStates.appDataAckState.nextPacketNum;
// writeQuicPacket will call writeQuicDataToSocket which will also take care
// of sending the MaxStreamDataFrame for stream2
auto stream1 = conn->streamManager->findStream(stream1Id);
auto stream2 = conn->streamManager->findStream(stream2Id);
auto packet = writeQuicPacket(
*conn,
*conn->clientConnectionId,
*conn->serverConnectionId,
socket,
*stream1,
*buf,
true);
EXPECT_FALSE(conn->streamManager->pendingWindowUpdate(stream2->id));
EXPECT_FALSE(conn->pendingEvents.connWindowUpdate);
ASSERT_EQ(1, conn->outstandingPackets.size());
ASSERT_TRUE(conn->outstandingPacketEvents.empty());
uint32_t streamDataCounter = 0, streamWindowUpdateCounter = 0,
connWindowUpdateCounter = 0;
for (const auto& frame :
getLastOutstandingPacket(*conn, PacketNumberSpace::AppData)
->packet.frames) {
switch (frame.type()) {
case QuicWriteFrame::Type::WriteStreamFrame_E:
streamDataCounter++;
break;
case QuicWriteFrame::Type::MaxStreamDataFrame_E:
streamWindowUpdateCounter++;
break;
case QuicWriteFrame::Type::MaxDataFrame_E:
connWindowUpdateCounter++;
break;
default:
CHECK(false) << "unexpected frame=" << (int)frame.type();
}
}
EXPECT_EQ(1, streamDataCounter);
EXPECT_EQ(1, streamWindowUpdateCounter);
EXPECT_EQ(1, connWindowUpdateCounter);
// Force this packet to be a processed clone
markPacketLoss(*conn, packet, true, nextPacketNum);
EXPECT_EQ(1, stream1->retransmissionBuffer.size());
EXPECT_TRUE(stream1->lossBuffer.empty());
// Window update though, will still be marked loss
EXPECT_TRUE(conn->streamManager->pendingWindowUpdate(stream2->id));
EXPECT_TRUE(conn->pendingEvents.connWindowUpdate);
}
TEST_F(QuicLossFunctionsTest, TestTotalPTOCount) {
auto conn = createConn();
auto qLogger = std::make_shared<FileQLogger>(VantagePoint::SERVER);
conn->qLogger = qLogger;
conn->lossState.totalPTOCount = 100;
EXPECT_CALL(*transportInfoCb_, onPTO());
onPTOAlarm(*conn);
EXPECT_EQ(101, conn->lossState.totalPTOCount);
std::vector<int> indices =
getQLogEventIndices(QLogEventType::LossAlarm, qLogger);
EXPECT_EQ(indices.size(), 1);
auto tmp = std::move(qLogger->logs[indices[0]]);
auto event = dynamic_cast<QLogLossAlarmEvent*>(tmp.get());
EXPECT_EQ(event->largestSent, 0);
EXPECT_EQ(event->alarmCount, 1);
EXPECT_EQ(event->outstandingPackets, 0);
EXPECT_EQ(event->type, kPtoAlarm);
}
TEST_F(QuicLossFunctionsTest, TestExceedsMaxPTOThrows) {
auto conn = createConn();
auto qLogger = std::make_shared<FileQLogger>(VantagePoint::SERVER);
conn->qLogger = qLogger;
conn->transportSettings.maxNumPTOs = 3;
EXPECT_CALL(*transportInfoCb_, onPTO()).Times(3);
onPTOAlarm(*conn);
onPTOAlarm(*conn);
EXPECT_THROW(onPTOAlarm(*conn), QuicInternalException);
std::vector<int> indices =
getQLogEventIndices(QLogEventType::LossAlarm, qLogger);
EXPECT_EQ(indices.size(), 3);
for (int i = 0; i < 3; ++i) {
auto tmp = std::move(qLogger->logs[indices[i]]);
auto event = dynamic_cast<QLogLossAlarmEvent*>(tmp.get());
EXPECT_EQ(event->largestSent, 0);
EXPECT_EQ(event->alarmCount, i + 1);
EXPECT_EQ(event->outstandingPackets, 0);
EXPECT_EQ(event->type, kPtoAlarm);
}
}
TEST_F(QuicLossFunctionsTest, TotalLossCount) {
auto conn = createConn();
conn->congestionController = nullptr;
PacketNum largestSent = 0;
for (int i = 0; i < 10; i++) {
largestSent =
sendPacket(*conn, Clock::now(), folly::none, PacketType::OneRtt);
}
EXPECT_EQ(10, conn->outstandingPackets.size());
uint32_t lostPackets = 0;
auto countingLossVisitor = [&](auto& /* conn */,
auto& /* packet */,
bool processed,
PacketNum /* currentPacketNum */) {
if (!processed) {
lostPackets++;
}
};
conn->lossState.rtxCount = 135;
detectLossPackets(
*conn,
largestSent,
countingLossVisitor,
TimePoint(100ms),
PacketNumberSpace::AppData);
EXPECT_EQ(135 + lostPackets, conn->lossState.rtxCount);
}
TEST_F(QuicLossFunctionsTest, TestZeroRttRejected) {
auto conn = createConn();
auto mockCongestionController = std::make_unique<MockCongestionController>();
auto rawCongestionController = mockCongestionController.get();
conn->congestionController = std::move(mockCongestionController);
EXPECT_CALL(*rawCongestionController, onPacketSent(_))
.WillRepeatedly(Return());
// By adding an associatedEvent that doesn't exist in the
// outstandingPacketEvents, they are all processed and will skip lossVisitor
for (auto i = 0; i < 2; i++) {
sendPacket(*conn, TimePoint(), folly::none, PacketType::OneRtt);
sendPacket(*conn, TimePoint(), folly::none, PacketType::ZeroRtt);
}
EXPECT_FALSE(conn->outstandingPackets.empty());
EXPECT_EQ(4, conn->outstandingPackets.size());
std::vector<std::pair<PacketNum, bool>> lostPackets;
// onRemoveBytesFromInflight should still happen
EXPECT_CALL(*rawCongestionController, onRemoveBytesFromInflight(_)).Times(1);
markZeroRttPacketsLost(
*conn, [&lostPackets](auto&, auto&, bool processed, PacketNum packetNum) {
lostPackets.emplace_back(packetNum, processed);
});
EXPECT_EQ(2, conn->outstandingPackets.size());
EXPECT_EQ(lostPackets.size(), 2);
for (auto lostPacket : lostPackets) {
EXPECT_FALSE(lostPacket.second);
}
for (size_t i = 0; i < conn->outstandingPackets.size(); ++i) {
auto longHeader = conn->outstandingPackets[i].packet.header.asLong();
EXPECT_FALSE(
longHeader &&
longHeader->getProtectionType() == ProtectionType::ZeroRtt);
}
EXPECT_EQ(2, conn->lossState.rtxCount);
}
TEST_F(QuicLossFunctionsTest, TestZeroRttRejectedWithClones) {
auto conn = createConn();
auto mockCongestionController = std::make_unique<MockCongestionController>();
auto rawCongestionController = mockCongestionController.get();
conn->congestionController = std::move(mockCongestionController);
EXPECT_CALL(*rawCongestionController, onPacketSent(_))
.WillRepeatedly(Return());
// By adding an associatedEvent that doesn't exist in the
// outstandingPacketEvents, they are all processed and will skip lossVisitor
std::set<PacketNum> zeroRttPackets;
folly::Optional<PacketNum> lastPacket;
for (auto i = 0; i < 2; i++) {
lastPacket =
sendPacket(*conn, TimePoint(), lastPacket, PacketType::ZeroRtt);
zeroRttPackets.emplace(*lastPacket);
}
zeroRttPackets.emplace(
sendPacket(*conn, TimePoint(), folly::none, PacketType::ZeroRtt));
for (auto zeroRttPacketNum : zeroRttPackets) {
lastPacket =
sendPacket(*conn, TimePoint(), zeroRttPacketNum, PacketType::OneRtt);
}
EXPECT_EQ(6, conn->outstandingPackets.size());
ASSERT_EQ(conn->outstandingClonedPacketsCount, 6);
ASSERT_EQ(conn->outstandingPacketEvents.size(), 2);
std::vector<std::pair<PacketNum, bool>> lostPackets;
// onRemoveBytesFromInflight should still happen
EXPECT_CALL(*rawCongestionController, onRemoveBytesFromInflight(_)).Times(1);
markZeroRttPacketsLost(
*conn, [&lostPackets](auto&, auto&, bool processed, PacketNum packetNum) {
lostPackets.emplace_back(packetNum, processed);
});
ASSERT_EQ(conn->outstandingPacketEvents.size(), 0);
EXPECT_EQ(3, conn->outstandingPackets.size());
EXPECT_EQ(lostPackets.size(), 3);
ASSERT_EQ(conn->outstandingClonedPacketsCount, 3);
size_t numProcessed = 0;
for (auto lostPacket : lostPackets) {
numProcessed += lostPacket.second;
}
EXPECT_EQ(numProcessed, 1);
for (size_t i = 0; i < conn->outstandingPackets.size(); ++i) {
auto longHeader = conn->outstandingPackets[i].packet.header.asLong();
EXPECT_FALSE(
longHeader &&
longHeader->getProtectionType() == ProtectionType::ZeroRtt);
}
}
TEST_F(QuicLossFunctionsTest, PTOLargerThanMaxDelay) {
QuicConnectionStateBase conn(QuicNodeType::Client);
conn.lossState.maxAckDelay = 20s;
EXPECT_GE(calculatePTO(conn), 20s);
}
TEST_F(QuicLossFunctionsTest, TimeThreshold) {
auto conn = createConn();
conn->lossState.srtt = 10ms;
auto referenceTime = Clock::now();
auto packet1 =
sendPacket(*conn, referenceTime - 10ms, folly::none, PacketType::OneRtt);
auto packet2 = sendPacket(
*conn,
referenceTime + conn->lossState.srtt / 2,
folly::none,
PacketType::OneRtt);
auto lossVisitor = [&](const auto& /*conn*/,
const auto& /*packet*/,
bool,
PacketNum packetNum) {
EXPECT_EQ(packet1, packetNum);
};
detectLossPackets<decltype(lossVisitor)>(
*conn,
packet2,
lossVisitor,
referenceTime + conn->lossState.srtt * 9 / 8 + 5ms,
PacketNumberSpace::AppData);
}
TEST_P(QuicLossFunctionsTest, CappedShiftNoCrash) {
auto conn = createConn();
conn->lossState.handshakeAlarmCount =
std::numeric_limits<decltype(conn->lossState.handshakeAlarmCount)>::max();
sendPacket(*conn, Clock::now(), folly::none, PacketType::Handshake);
ASSERT_GT(conn->outstandingHandshakePacketsCount, 0);
calculateAlarmDuration(*conn);
conn->lossState.handshakeAlarmCount = 0;
conn->outstandingHandshakePacketsCount = 0;
conn->outstandingPackets.clear();
conn->lossState.ptoCount =
std::numeric_limits<decltype(conn->lossState.ptoCount)>::max();
sendPacket(*conn, Clock::now(), folly::none, PacketType::OneRtt);
calculateAlarmDuration(*conn);
}
TEST_F(QuicLossFunctionsTest, PersistentCongestion) {
auto conn = createConn();
auto currentTime = Clock::now();
conn->lossState.srtt = 1s;
EXPECT_TRUE(isPersistentCongestion(*conn, currentTime - 10s, currentTime));
EXPECT_TRUE(isPersistentCongestion(*conn, currentTime - 3s, currentTime));
EXPECT_TRUE(isPersistentCongestion(
*conn, currentTime - (1s * kPersistentCongestionThreshold), currentTime));
EXPECT_FALSE(isPersistentCongestion(
*conn,
currentTime - (1s * kPersistentCongestionThreshold) + 1us,
currentTime));
EXPECT_FALSE(isPersistentCongestion(*conn, currentTime - 2s, currentTime));
EXPECT_FALSE(isPersistentCongestion(*conn, currentTime - 100ms, currentTime));
conn->lossState.rttvar = 2s;
conn->lossState.maxAckDelay = 5s;
EXPECT_TRUE(isPersistentCongestion(*conn, currentTime - 42s, currentTime));
EXPECT_TRUE(isPersistentCongestion(*conn, currentTime - 43s, currentTime));
EXPECT_FALSE(
isPersistentCongestion(*conn, currentTime - 42s + 1ms, currentTime));
EXPECT_FALSE(isPersistentCongestion(*conn, currentTime - 100us, currentTime));
}
INSTANTIATE_TEST_CASE_P(
QuicLossFunctionsTests,
QuicLossFunctionsTest,
Values(
PacketNumberSpace::Initial,
PacketNumberSpace::Handshake,
PacketNumberSpace::AppData));
} // namespace test
} // namespace quic