1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-08-09 20:42:44 +03:00
Files
mvfst/quic/server/state/ServerStateMachine.cpp
Sharad Jaiswal (Eng) 96abc8160d Codec changes to support ACK_RECEIVE_TIMESTAMPS
Summary: Create a new ACK_RECEIVE_TIMESTAMPS frame, as outlined in https://www.ietf.org/archive/id/draft-smith-quic-receive-ts-00.html#name-ack_receive_timestamps-fram

Reviewed By: mjoras

Differential Revision: D37799050

fbshipit-source-id: 0157c7fa7c4e489bb310f7c9cd6c0c1877e4967f
2022-11-16 13:02:27 -08:00

1665 lines
64 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <quic/server/handshake/TokenGenerator.h>
#include <quic/server/state/ServerStateMachine.h>
#include <quic/api/QuicTransportFunctions.h>
#include <quic/common/BufUtil.h>
#include <quic/congestion_control/CongestionControllerFactory.h>
#include <quic/congestion_control/TokenlessPacer.h>
#include <quic/fizz/handshake/FizzCryptoFactory.h>
#include <quic/flowcontrol/QuicFlowController.h>
#include <quic/handshake/TransportParameters.h>
#include <quic/logging/QLoggerConstants.h>
#include <quic/state/DatagramHandlers.h>
#include <quic/state/QuicPacingFunctions.h>
#include <quic/state/QuicStreamFunctions.h>
#include <quic/state/QuicTransportStatsCallback.h>
#include <quic/state/SimpleFrameFunctions.h>
#include <quic/state/stream/StreamReceiveHandlers.h>
#include <quic/state/stream/StreamSendHandlers.h>
namespace quic {
using namespace std::chrono_literals;
namespace {
constexpr size_t kConnIdEncodingRetryLimit = 16;
bool maybeNATRebinding(
const folly::SocketAddress& newPeerAddress,
const folly::SocketAddress& oldPeerAddress) {
auto& newIPAddr = newPeerAddress.getIPAddress();
auto& oldIPAddr = oldPeerAddress.getIPAddress();
// Port changed
if (newIPAddr == oldIPAddr) {
return true;
}
return newIPAddr.isV4() && oldIPAddr.isV4() &&
newIPAddr.inSubnet(oldIPAddr, 24);
}
CongestionAndRttState moveCurrentCongestionAndRttState(
QuicServerConnectionState& conn) {
CongestionAndRttState state;
state.peerAddress = conn.peerAddress;
state.recordTime = Clock::now();
state.congestionController = std::move(conn.congestionController);
state.srtt = conn.lossState.srtt;
state.lrtt = conn.lossState.lrtt;
state.rttvar = conn.lossState.rttvar;
state.mrtt = conn.lossState.mrtt;
return state;
}
void resetCongestionAndRttState(QuicServerConnectionState& conn) {
CHECK(conn.congestionControllerFactory)
<< "CongestionControllerFactory is not set.";
conn.congestionController =
conn.congestionControllerFactory->makeCongestionController(
conn, conn.transportSettings.defaultCongestionController);
conn.lossState.srtt = 0us;
conn.lossState.lrtt = 0us;
conn.lossState.rttvar = 0us;
conn.lossState.mrtt = kDefaultMinRtt;
}
void recoverOrResetCongestionAndRttState(
QuicServerConnectionState& conn,
const folly::SocketAddress& peerAddress) {
auto& lastState = conn.migrationState.lastCongestionAndRtt;
if (lastState && lastState->peerAddress == peerAddress &&
(Clock::now() - lastState->recordTime <=
kTimeToRetainLastCongestionAndRttState)) {
// recover from matched non-stale state
conn.congestionController = std::move(lastState->congestionController);
conn.lossState.srtt = lastState->srtt;
conn.lossState.lrtt = lastState->lrtt;
conn.lossState.rttvar = lastState->rttvar;
conn.lossState.mrtt = lastState->mrtt;
conn.migrationState.lastCongestionAndRtt = folly::none;
} else {
resetCongestionAndRttState(conn);
}
}
void maybeSetExperimentalSettings(QuicServerConnectionState& conn) {
// no-op versions
if (conn.version == QuicVersion::MVFST_EXPERIMENTAL) {
} else if (conn.version == QuicVersion::MVFST_EXPERIMENTAL2) {
} else if (conn.version == QuicVersion::MVFST_EXPERIMENTAL3) {
}
}
/**
* Only certain frames are allowed/disallowed in unprotected (initial,
* handshake) and zero-rtt packets.
*/
bool isUnprotectedPacketFrameInvalid(const QuicFrame& quicFrame) {
switch (quicFrame.type()) {
case QuicFrame::Type::PaddingFrame:
case QuicFrame::Type::ReadAckFrame:
case QuicFrame::Type::ConnectionCloseFrame:
case QuicFrame::Type::ReadCryptoFrame:
case QuicFrame::Type::PingFrame:
return false;
case QuicFrame::Type::RstStreamFrame:
case QuicFrame::Type::MaxDataFrame:
case QuicFrame::Type::MaxStreamDataFrame:
case QuicFrame::Type::DataBlockedFrame:
case QuicFrame::Type::StreamDataBlockedFrame:
case QuicFrame::Type::StreamsBlockedFrame:
case QuicFrame::Type::ReadStreamFrame:
case QuicFrame::Type::ReadNewTokenFrame:
case QuicFrame::Type::DatagramFrame:
case QuicFrame::Type::NoopFrame:
case QuicFrame::Type::ImmediateAckFrame:
case QuicFrame::Type::QuicSimpleFrame:
return true;
}
}
bool isZeroRttPacketSimpleFrameInvalid(const QuicSimpleFrame& quicSimpleFrame) {
switch (quicSimpleFrame.type()) {
case QuicSimpleFrame::Type::HandshakeDoneFrame:
case QuicSimpleFrame::Type::RetireConnectionIdFrame:
case QuicSimpleFrame::Type::PathResponseFrame:
case QuicSimpleFrame::Type::AckFrequencyFrame:
return true;
case QuicSimpleFrame::Type::StopSendingFrame:
case QuicSimpleFrame::Type::PathChallengeFrame:
case QuicSimpleFrame::Type::NewConnectionIdFrame:
case QuicSimpleFrame::Type::MaxStreamsFrame:
case QuicSimpleFrame::Type::KnobFrame:
case QuicSimpleFrame::Type::NewTokenFrame:
return false;
}
}
bool isZeroRttPacketFrameInvalid(const QuicFrame& quicFrame) {
switch (quicFrame.type()) {
case QuicFrame::Type::ReadAckFrame:
case QuicFrame::Type::ReadCryptoFrame:
case QuicFrame::Type::ReadNewTokenFrame:
case QuicFrame::Type::ImmediateAckFrame:
return true;
case QuicFrame::Type::PingFrame:
case QuicFrame::Type::ConnectionCloseFrame:
case QuicFrame::Type::PaddingFrame:
case QuicFrame::Type::RstStreamFrame:
case QuicFrame::Type::MaxDataFrame:
case QuicFrame::Type::MaxStreamDataFrame:
case QuicFrame::Type::DataBlockedFrame:
case QuicFrame::Type::StreamDataBlockedFrame:
case QuicFrame::Type::StreamsBlockedFrame:
case QuicFrame::Type::ReadStreamFrame:
case QuicFrame::Type::DatagramFrame:
case QuicFrame::Type::NoopFrame:
return false;
case QuicFrame::Type::QuicSimpleFrame:
return isZeroRttPacketSimpleFrameInvalid(*quicFrame.asQuicSimpleFrame());
}
}
} // namespace
void processClientInitialParams(
QuicServerConnectionState& conn,
const ClientTransportParameters& clientParams) {
auto preferredAddress = getIntegerParameter(
TransportParameterId::preferred_address, clientParams.parameters);
auto origConnId = getIntegerParameter(
TransportParameterId::original_destination_connection_id,
clientParams.parameters);
auto statelessResetToken = getIntegerParameter(
TransportParameterId::stateless_reset_token, clientParams.parameters);
auto retrySourceConnId = getIntegerParameter(
TransportParameterId::retry_source_connection_id,
clientParams.parameters);
auto maxData = getIntegerParameter(
TransportParameterId::initial_max_data, clientParams.parameters);
auto maxStreamDataBidiLocal = getIntegerParameter(
TransportParameterId::initial_max_stream_data_bidi_local,
clientParams.parameters);
auto maxStreamDataBidiRemote = getIntegerParameter(
TransportParameterId::initial_max_stream_data_bidi_remote,
clientParams.parameters);
auto maxStreamDataUni = getIntegerParameter(
TransportParameterId::initial_max_stream_data_uni,
clientParams.parameters);
auto maxStreamsBidi = getIntegerParameter(
TransportParameterId::initial_max_streams_bidi, clientParams.parameters);
auto maxStreamsUni = getIntegerParameter(
TransportParameterId::initial_max_streams_uni, clientParams.parameters);
auto idleTimeout = getIntegerParameter(
TransportParameterId::idle_timeout, clientParams.parameters);
auto ackDelayExponent = getIntegerParameter(
TransportParameterId::ack_delay_exponent, clientParams.parameters);
auto packetSize = getIntegerParameter(
TransportParameterId::max_packet_size, clientParams.parameters);
auto activeConnectionIdLimit = getIntegerParameter(
TransportParameterId::active_connection_id_limit,
clientParams.parameters);
auto d6dBasePMTU = getIntegerParameter(
static_cast<TransportParameterId>(kD6DBasePMTUParameterId),
clientParams.parameters);
auto d6dRaiseTimeout = getIntegerParameter(
static_cast<TransportParameterId>(kD6DRaiseTimeoutParameterId),
clientParams.parameters);
auto d6dProbeTimeout = getIntegerParameter(
static_cast<TransportParameterId>(kD6DProbeTimeoutParameterId),
clientParams.parameters);
auto minAckDelay = getIntegerParameter(
TransportParameterId::min_ack_delay, clientParams.parameters);
auto maxAckDelay = getIntegerParameter(
TransportParameterId::max_ack_delay, clientParams.parameters);
auto maxDatagramFrameSize = getIntegerParameter(
TransportParameterId::max_datagram_frame_size, clientParams.parameters);
auto peerMaxStreamGroupsAdvertized = getIntegerParameter(
static_cast<TransportParameterId>(kStreamGroupsEnabledCustomParamId),
clientParams.parameters);
auto isAckReceiveTimestampsEnabled = getIntegerParameter(
TransportParameterId::ack_receive_timestamps_enabled,
clientParams.parameters);
auto maxReceiveTimestampsPerAck = getIntegerParameter(
TransportParameterId::max_receive_timestamps_per_ack,
clientParams.parameters);
auto receiveTimestampsExponent = getIntegerParameter(
TransportParameterId::receive_timestamps_exponent,
clientParams.parameters);
if (conn.version == QuicVersion::QUIC_DRAFT ||
conn.version == QuicVersion::QUIC_V1 ||
conn.version == QuicVersion::QUIC_V1_ALIAS) {
auto initialSourceConnId = getConnIdParameter(
TransportParameterId::initial_source_connection_id,
clientParams.parameters);
if (!initialSourceConnId ||
initialSourceConnId.value() !=
conn.readCodec->getClientConnectionId()) {
throw QuicTransportException(
"Initial CID does not match.",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
}
// validate that we didn't receive original connection ID, stateless
// reset token, or preferred address.
if (preferredAddress && *preferredAddress != 0) {
throw QuicTransportException(
"Preferred Address is received by server",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
if (origConnId && *origConnId != 0) {
throw QuicTransportException(
"OriginalDestinationConnectionId is received by server",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
if (statelessResetToken && statelessResetToken.value() != 0) {
throw QuicTransportException(
"Stateless Reset Token is received by server",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
if (retrySourceConnId && retrySourceConnId.value() != 0) {
throw QuicTransportException(
"Retry Source Connection ID is received by server",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
if (maxAckDelay && *maxAckDelay >= kMaxAckDelay) {
throw QuicTransportException(
"Max Ack Delay is greater than 2^14 ",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
// TODO Validate active_connection_id_limit
if (packetSize && *packetSize < kMinMaxUDPPayload) {
throw QuicTransportException(
folly::to<std::string>(
"Max packet size too small. received max_packetSize = ",
*packetSize),
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
VLOG(10) << "Client advertised flow control ";
VLOG(10) << "conn=" << maxData.value_or(0);
VLOG(10) << " stream bidi local=" << maxStreamDataBidiLocal.value_or(0)
<< " ";
VLOG(10) << " stream bidi remote=" << maxStreamDataBidiRemote.value_or(0)
<< " ";
VLOG(10) << " stream uni=" << maxStreamDataUni.value_or(0) << " ";
VLOG(10) << conn;
conn.flowControlState.peerAdvertisedMaxOffset = maxData.value_or(0);
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiLocal =
maxStreamDataBidiLocal.value_or(0);
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote =
maxStreamDataBidiRemote.value_or(0);
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetUni =
maxStreamDataUni.value_or(0);
conn.streamManager->setMaxLocalBidirectionalStreams(
maxStreamsBidi.value_or(0));
conn.streamManager->setMaxLocalUnidirectionalStreams(
maxStreamsUni.value_or(0));
conn.peerIdleTimeout = std::chrono::milliseconds(idleTimeout.value_or(0));
conn.peerIdleTimeout = timeMin(conn.peerIdleTimeout, kMaxIdleTimeout);
if (ackDelayExponent && *ackDelayExponent > kMaxAckDelayExponent) {
throw QuicTransportException(
"ack_delay_exponent too large",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
conn.peerAckDelayExponent =
ackDelayExponent.value_or(kDefaultAckDelayExponent);
if (minAckDelay.hasValue()) {
conn.peerMinAckDelay = std::chrono::microseconds(minAckDelay.value());
}
if (maxDatagramFrameSize.hasValue()) {
if (maxDatagramFrameSize.value() > 0 &&
maxDatagramFrameSize.value() <= kMaxDatagramPacketOverhead) {
throw QuicTransportException(
"max_datagram_frame_size too small",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
conn.datagramState.maxWriteFrameSize = maxDatagramFrameSize.value();
}
// Default to max because we can probe PMTU now, and this will be the upper
// limit
uint64_t maxUdpPayloadSize = kDefaultMaxUDPPayload;
if (packetSize) {
maxUdpPayloadSize = std::min(*packetSize, maxUdpPayloadSize);
conn.peerMaxUdpPayloadSize = maxUdpPayloadSize;
if (conn.transportSettings.canIgnorePathMTU) {
if (*packetSize > kDefaultMaxUDPPayload) {
// A good peer should never set oversized limit, so to be safe we
// fallback to default
conn.udpSendPacketLen = kDefaultUDPSendPacketLen;
} else {
// Otherwise, canIgnorePathMTU forces us to immediately set
// udpSendPacketLen
// TODO: rename "canIgnorePathMTU" to "forciblySetPathMTU"
conn.udpSendPacketLen = maxUdpPayloadSize;
}
}
}
conn.peerActiveConnectionIdLimit =
activeConnectionIdLimit.value_or(kDefaultActiveConnectionIdLimit);
if (conn.transportSettings.d6dConfig.enabled) {
// Sanity check
if (d6dBasePMTU) {
if (*d6dBasePMTU >= kMinMaxUDPPayload &&
*d6dBasePMTU <= kDefaultMaxUDPPayload) {
// The reason to take the max is because we don't want d6d to send
// probes with a smaller packet size than udpSendPacketLen, which would
// be useless and cause meaningless delay on finding the upper bound.
conn.d6d.basePMTU = std::max(*d6dBasePMTU, conn.udpSendPacketLen);
conn.d6d.maxPMTU = maxUdpPayloadSize;
VLOG(10) << "conn.d6d.basePMTU=" << conn.d6d.basePMTU;
// Start from base
conn.d6d.state = D6DMachineState::BASE;
conn.d6d.meta.lastNonSearchState = D6DMachineState::DISABLED;
conn.d6d.meta.timeLastNonSearchState = Clock::now();
// Temporary, should be removed after transport knob pipeline works
conn.d6d.noBlackholeDetection = true;
} else {
LOG(ERROR) << "client d6dBasePMTU fails sanity check: " << *d6dBasePMTU;
// We treat base pmtu transport param as client's swich to activate d6d,
// so not receiving that means there's no need to configure the rest d6d
// params
return;
}
}
if (d6dRaiseTimeout) {
if (*d6dRaiseTimeout >= kMinD6DRaiseTimeout.count()) {
conn.d6d.raiseTimeout = std::chrono::seconds(*d6dRaiseTimeout);
VLOG(10) << "conn.d6d.raiseTimeout=" << conn.d6d.raiseTimeout.count();
} else {
LOG(ERROR) << "client d6dRaiseTimeout fails sanity check: "
<< *d6dRaiseTimeout;
}
}
if (d6dProbeTimeout) {
if (*d6dProbeTimeout >= kMinD6DProbeTimeout.count()) {
conn.d6d.probeTimeout = std::chrono::seconds(*d6dProbeTimeout);
VLOG(10) << "conn.d6d.probeTimeout=" << conn.d6d.probeTimeout.count();
} else {
LOG(ERROR) << "client d6dProbeTimeout fails sanity check: "
<< *d6dProbeTimeout;
}
}
}
if (peerMaxStreamGroupsAdvertized) {
conn.peerMaxStreamGroupsAdvertized = *peerMaxStreamGroupsAdvertized;
}
if (isAckReceiveTimestampsEnabled.has_value() &&
isAckReceiveTimestampsEnabled.value() == 1) {
if (maxReceiveTimestampsPerAck.has_value() &&
receiveTimestampsExponent.has_value()) {
conn.maybePeerAckReceiveTimestampsConfig.assign(
{std::min(
static_cast<uint8_t>(maxReceiveTimestampsPerAck.value()),
kMaxReceivedPktsTimestampsStored),
std::max(
static_cast<uint8_t>(receiveTimestampsExponent.value()),
static_cast<uint8_t>(0))});
}
}
}
void updateHandshakeState(QuicServerConnectionState& conn) {
// Zero RTT read cipher is available after chlo is processed with the
// condition that early data attempt is accepted.
auto handshakeLayer = conn.serverHandshakeLayer;
auto zeroRttReadCipher = handshakeLayer->getZeroRttReadCipher();
auto zeroRttHeaderCipher = handshakeLayer->getZeroRttReadHeaderCipher();
// One RTT write cipher is available at Fizz layer after chlo is processed.
// However, the cipher is only exported to QUIC if early data attempt is
// accepted. Otherwise, the cipher will be available after cfin is
// processed.
auto oneRttWriteCipher = handshakeLayer->getOneRttWriteCipher();
// One RTT read cipher is available after cfin is processed.
auto oneRttReadCipher = handshakeLayer->getOneRttReadCipher();
auto oneRttWriteHeaderCipher = handshakeLayer->getOneRttWriteHeaderCipher();
auto oneRttReadHeaderCipher = handshakeLayer->getOneRttReadHeaderCipher();
if (zeroRttReadCipher) {
conn.usedZeroRtt = true;
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(kDerivedZeroRttReadCipher);
}
conn.readCodec->setZeroRttReadCipher(std::move(zeroRttReadCipher));
}
if (zeroRttHeaderCipher) {
conn.readCodec->setZeroRttHeaderCipher(std::move(zeroRttHeaderCipher));
}
if (oneRttWriteHeaderCipher) {
conn.oneRttWriteHeaderCipher = std::move(oneRttWriteHeaderCipher);
}
if (oneRttReadHeaderCipher) {
conn.readCodec->setOneRttHeaderCipher(std::move(oneRttReadHeaderCipher));
}
if (oneRttWriteCipher) {
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(kDerivedOneRttWriteCipher);
}
if (conn.oneRttWriteCipher) {
throw QuicTransportException(
"Duplicate 1-rtt write cipher", TransportErrorCode::CRYPTO_ERROR);
}
conn.oneRttWriteCipher = std::move(oneRttWriteCipher);
updatePacingOnKeyEstablished(conn);
// We negotiate the transport parameters whenever we have the 1-RTT write
// keys available.
auto clientParams = handshakeLayer->getClientTransportParams();
if (!clientParams) {
throw QuicTransportException(
"No client transport params",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
processClientInitialParams(conn, std::move(*clientParams));
}
if (oneRttReadCipher) {
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(kDerivedOneRttReadCipher);
}
// Clear limit because CFIN is received at this point
conn.isClientAddrVerified = true;
conn.writableBytesLimit = folly::none;
conn.readCodec->setOneRttReadCipher(std::move(oneRttReadCipher));
}
auto handshakeReadCipher = handshakeLayer->getHandshakeReadCipher();
auto handshakeReadHeaderCipher =
handshakeLayer->getHandshakeReadHeaderCipher();
if (handshakeReadCipher) {
CHECK(handshakeReadHeaderCipher);
conn.readCodec->setHandshakeReadCipher(std::move(handshakeReadCipher));
conn.readCodec->setHandshakeHeaderCipher(
std::move(handshakeReadHeaderCipher));
}
if (handshakeLayer->isHandshakeDone()) {
CHECK(conn.oneRttWriteCipher);
if (!conn.sentHandshakeDone) {
sendSimpleFrame(conn, HandshakeDoneFrame());
conn.sentHandshakeDone = true;
}
if (!conn.sentNewTokenFrame &&
conn.transportSettings.retryTokenSecret.has_value()) {
// Create NewToken struct defaults timestamp to now
NewToken token(conn.peerAddress.getIPAddress());
// Encrypt two tuple -> (clientIp, curTimeInMs)
TokenGenerator generator(conn.transportSettings.retryTokenSecret.value());
auto encryptedToken = generator.encryptToken(token);
CHECK(encryptedToken.has_value());
std::string encryptedTokenStr =
encryptedToken.value()->moveToFbString().toStdString();
sendSimpleFrame(conn, NewTokenFrame(std::move(encryptedTokenStr)));
QUIC_STATS(conn.statsCallback, onNewTokenIssued);
conn.sentNewTokenFrame = true;
}
}
}
bool validateAndUpdateSourceToken(
QuicServerConnectionState& conn,
std::vector<folly::IPAddress> sourceAddresses) {
DCHECK(conn.peerAddress.isInitialized());
bool foundMatch = false;
for (int ii = sourceAddresses.size() - 1; ii >= 0; --ii) {
// TODO T33014230 subnet matching
if (conn.peerAddress.getIPAddress() == sourceAddresses[ii]) {
foundMatch = true;
// If peer address is found in the token, move the element to the end
// of vector to increase its favorability.
sourceAddresses.erase(sourceAddresses.begin() + ii);
sourceAddresses.push_back(conn.peerAddress.getIPAddress());
conn.isClientAddrVerified = true;
}
}
conn.sourceTokenMatching = foundMatch;
bool acceptZeroRtt =
(conn.transportSettings.zeroRttSourceTokenMatchingPolicy !=
ZeroRttSourceTokenMatchingPolicy::ALWAYS_REJECT) &&
foundMatch;
if (!foundMatch) {
// Add peer address to token for next resumption
if (sourceAddresses.size() >= kMaxNumTokenSourceAddresses) {
sourceAddresses.erase(sourceAddresses.begin());
}
sourceAddresses.push_back(conn.peerAddress.getIPAddress());
switch (conn.transportSettings.zeroRttSourceTokenMatchingPolicy) {
case ZeroRttSourceTokenMatchingPolicy::ALWAYS_REJECT:
case ZeroRttSourceTokenMatchingPolicy::REJECT_IF_NO_EXACT_MATCH:
acceptZeroRtt = false;
break;
case ZeroRttSourceTokenMatchingPolicy::LIMIT_IF_NO_EXACT_MATCH:
acceptZeroRtt = true;
conn.writableBytesLimit =
conn.transportSettings.limitedCwndInMss * conn.udpSendPacketLen;
break;
}
}
// Save the source token so that it can be written to client via NST later
conn.tokenSourceAddresses = std::move(sourceAddresses);
return acceptZeroRtt;
}
void updateWritableByteLimitOnRecvPacket(QuicServerConnectionState& conn) {
// When we receive a packet we increase the limit again. The reasoning this is
// that a peer can do the same by opening a new connection.
if (conn.writableBytesLimit) {
conn.writableBytesLimit = *conn.writableBytesLimit +
conn.transportSettings.limitedCwndInMss * conn.udpSendPacketLen;
} else if (
!conn.isClientAddrVerified &&
conn.transportSettings.enableWritableBytesLimit) {
conn.writableBytesLimit =
conn.transportSettings.limitedCwndInMss * conn.udpSendPacketLen;
}
}
void updateTransportParamsFromTicket(
QuicServerConnectionState& conn,
uint64_t idleTimeout,
uint64_t maxRecvPacketSize,
uint64_t initialMaxData,
uint64_t initialMaxStreamDataBidiLocal,
uint64_t initialMaxStreamDataBidiRemote,
uint64_t initialMaxStreamDataUni,
uint64_t initialMaxStreamsBidi,
uint64_t initialMaxStreamsUni) {
conn.transportSettings.idleTimeout = std::chrono::milliseconds(idleTimeout);
conn.transportSettings.maxRecvPacketSize = maxRecvPacketSize;
conn.transportSettings.advertisedInitialConnectionWindowSize = initialMaxData;
conn.transportSettings.advertisedInitialBidiLocalStreamWindowSize =
initialMaxStreamDataBidiLocal;
conn.transportSettings.advertisedInitialBidiRemoteStreamWindowSize =
initialMaxStreamDataBidiRemote;
conn.transportSettings.advertisedInitialUniStreamWindowSize =
initialMaxStreamDataUni;
updateFlowControlStateWithSettings(
conn.flowControlState, conn.transportSettings);
conn.transportSettings.advertisedInitialMaxStreamsBidi =
initialMaxStreamsBidi;
conn.transportSettings.advertisedInitialMaxStreamsUni = initialMaxStreamsUni;
}
void onConnectionMigration(
QuicServerConnectionState& conn,
const folly::SocketAddress& newPeerAddress,
bool isIntentional) {
if (conn.migrationState.numMigrations >=
conn.transportSettings.maxNumMigrationsAllowed) {
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
0,
PacketDropReason(PacketDropReason::PEER_ADDRESS_CHANGE)._to_string());
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::PEER_ADDRESS_CHANGE);
throw QuicTransportException(
"Too many migrations", TransportErrorCode::INVALID_MIGRATION);
}
++conn.migrationState.numMigrations;
bool hasPendingPathChallenge = conn.pendingEvents.pathChallenge.has_value();
// Clear any pending path challenge frame that is not sent
conn.pendingEvents.pathChallenge = folly::none;
auto& previousPeerAddresses = conn.migrationState.previousPeerAddresses;
auto it = std::find(
previousPeerAddresses.begin(),
previousPeerAddresses.end(),
newPeerAddress);
if (it == previousPeerAddresses.end()) {
// Send new path challenge
uint64_t pathData;
folly::Random::secureRandom(&pathData, sizeof(pathData));
conn.pendingEvents.pathChallenge = PathChallengeFrame(pathData);
// If we are already in the middle of a migration reset
// the available bytes in the rate-limited window, but keep the
// window.
conn.pathValidationLimiter =
std::make_unique<PendingPathRateLimiter>(conn.udpSendPacketLen);
} else {
previousPeerAddresses.erase(it);
}
// At this point, path validation scheduled, writable bytes limit set
// However if this is NAT rebinding, keep congestion state unchanged
bool isNATRebinding = maybeNATRebinding(newPeerAddress, conn.peerAddress);
// Cancel current path validation if any
if (hasPendingPathChallenge || conn.outstandingPathValidation) {
conn.pendingEvents.schedulePathValidationTimeout = false;
conn.outstandingPathValidation = folly::none;
// Only change congestion & rtt state if not NAT rebinding
if (!isNATRebinding) {
recoverOrResetCongestionAndRttState(conn, newPeerAddress);
}
} else {
// Only add validated addresses to previousPeerAddresses
conn.migrationState.previousPeerAddresses.push_back(conn.peerAddress);
// Only change congestion & rtt state if not NAT rebinding
if (!isNATRebinding) {
// Current peer address is validated,
// remember its congestion state and rtt stats
CongestionAndRttState state = moveCurrentCongestionAndRttState(conn);
recoverOrResetCongestionAndRttState(conn, newPeerAddress);
conn.migrationState.lastCongestionAndRtt = std::move(state);
}
}
if (conn.qLogger) {
conn.qLogger->addConnectionMigrationUpdate(isIntentional);
}
conn.peerAddress = newPeerAddress;
}
void onServerReadData(
QuicServerConnectionState& conn,
ServerEvents::ReadData& readData) {
switch (conn.state) {
case ServerState::Open:
onServerReadDataFromOpen(conn, readData);
return;
case ServerState::Closed:
onServerReadDataFromClosed(conn, readData);
return;
}
}
static void handleCipherUnavailable(
CipherUnavailable* originalData,
QuicServerConnectionState& conn,
size_t packetSize,
ServerEvents::ReadData& readData) {
if (!originalData->packet || originalData->packet->empty()) {
VLOG(10) << "drop because no data " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kNoData);
}
QUIC_STATS(
conn.statsCallback, onPacketDropped, PacketDropReason::EMPTY_DATA);
return;
}
if (originalData->protectionType != ProtectionType::ZeroRtt &&
originalData->protectionType != ProtectionType::KeyPhaseZero) {
VLOG(10) << "drop because unexpected protection level " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kUnexpectedProtectionLevel);
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::UNEXPECTED_PROTECTION_LEVEL);
return;
}
size_t combinedSize =
(conn.pendingZeroRttData ? conn.pendingZeroRttData->size() : 0) +
(conn.pendingOneRttData ? conn.pendingOneRttData->size() : 0);
if (combinedSize >= conn.transportSettings.maxPacketsToBuffer) {
VLOG(10) << "drop because max buffered " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kMaxBuffered);
}
QUIC_STATS(
conn.statsCallback, onPacketDropped, PacketDropReason::MAX_BUFFERED);
return;
}
auto& pendingData = originalData->protectionType == ProtectionType::ZeroRtt
? conn.pendingZeroRttData
: conn.pendingOneRttData;
if (pendingData) {
if (conn.qLogger) {
conn.qLogger->addPacketBuffered(originalData->protectionType, packetSize);
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::PARSE_ERROR_PACKET_BUFFERED);
ServerEvents::ReadData pendingReadData;
pendingReadData.peer = readData.peer;
pendingReadData.networkData = NetworkDataSingle(
std::move(originalData->packet), readData.networkData.receiveTimePoint);
pendingData->emplace_back(std::move(pendingReadData));
VLOG(10) << "Adding pending data to "
<< toString(originalData->protectionType)
<< " buffer size=" << pendingData->size() << " " << conn;
} else {
VLOG(10) << "drop because " << toString(originalData->protectionType)
<< " buffer no longer available " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kBufferUnavailable);
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::BUFFER_UNAVAILABLE);
return;
}
}
void onServerReadDataFromOpen(
QuicServerConnectionState& conn,
ServerEvents::ReadData& readData) {
CHECK_EQ(conn.state, ServerState::Open);
// Don't bother parsing if the data is empty.
if (!readData.networkData.data ||
readData.networkData.data->computeChainDataLength() == 0) {
return;
}
bool firstPacketFromPeer = false;
if (!conn.readCodec) {
firstPacketFromPeer = true;
folly::io::Cursor cursor(readData.networkData.data.get());
auto initialByte = cursor.readBE<uint8_t>();
auto parsedLongHeader = parseLongHeaderInvariant(initialByte, cursor);
if (!parsedLongHeader) {
VLOG(4) << "Could not parse initial packet header";
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
0,
PacketDropReason(PacketDropReason::PARSE_ERROR_LONG_HEADER_INITIAL)
._to_string());
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::PARSE_ERROR_LONG_HEADER_INITIAL);
return;
}
QuicVersion version = parsedLongHeader->invariant.version;
if (version == QuicVersion::VERSION_NEGOTIATION) {
VLOG(4) << "Server droppiong VN packet";
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
0,
PacketDropReason(PacketDropReason::INVALID_PACKET_VN)._to_string());
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::INVALID_PACKET_VN);
return;
}
const auto& clientConnectionId = parsedLongHeader->invariant.srcConnId;
const auto& initialDestinationConnectionId =
parsedLongHeader->invariant.dstConnId;
if (initialDestinationConnectionId.size() < kDefaultConnectionIdSize) {
VLOG(4) << "Initial connectionid too small";
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
0,
PacketDropReason(PacketDropReason::INITIAL_CONNID_SMALL)
._to_string());
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::INITIAL_CONNID_SMALL);
return;
}
CHECK(conn.connIdAlgo) << "ConnectionIdAlgo is not set.";
CHECK(!conn.serverConnectionId.has_value());
// serverConnIdParams must be set by the QuicServerTransport
CHECK(conn.serverConnIdParams);
auto newServerConnIdData = conn.createAndAddNewSelfConnId();
CHECK(newServerConnIdData.has_value());
conn.serverConnectionId = newServerConnIdData->connId;
auto customTransportParams = setSupportedExtensionTransportParameters(conn);
QUIC_STATS(conn.statsCallback, onStatelessReset);
conn.serverHandshakeLayer->accept(
std::make_shared<ServerTransportParametersExtension>(
version,
conn.transportSettings.advertisedInitialConnectionWindowSize,
conn.transportSettings.advertisedInitialBidiLocalStreamWindowSize,
conn.transportSettings.advertisedInitialBidiRemoteStreamWindowSize,
conn.transportSettings.advertisedInitialUniStreamWindowSize,
conn.transportSettings.advertisedInitialMaxStreamsBidi,
conn.transportSettings.advertisedInitialMaxStreamsUni,
conn.transportSettings.idleTimeout,
conn.transportSettings.ackDelayExponent,
conn.transportSettings.maxRecvPacketSize,
*newServerConnIdData->token,
conn.serverConnectionId.value(),
initialDestinationConnectionId,
customTransportParams));
conn.transportParametersEncoded = true;
const CryptoFactory& cryptoFactory =
conn.serverHandshakeLayer->getCryptoFactory();
conn.readCodec = std::make_unique<QuicReadCodec>(QuicNodeType::Server);
conn.readCodec->setInitialReadCipher(cryptoFactory.getClientInitialCipher(
initialDestinationConnectionId, version));
conn.readCodec->setClientConnectionId(clientConnectionId);
conn.readCodec->setServerConnectionId(*conn.serverConnectionId);
if (conn.qLogger) {
conn.qLogger->setScid(conn.serverConnectionId);
conn.qLogger->setDcid(initialDestinationConnectionId);
}
conn.readCodec->setCodecParameters(CodecParameters(
conn.peerAckDelayExponent,
version,
conn.transportSettings.maybeAckReceiveTimestampsConfigSentToPeer));
conn.initialWriteCipher = cryptoFactory.getServerInitialCipher(
initialDestinationConnectionId, version);
conn.readCodec->setInitialHeaderCipher(
cryptoFactory.makeClientInitialHeaderCipher(
initialDestinationConnectionId, version));
conn.initialHeaderCipher = cryptoFactory.makeServerInitialHeaderCipher(
initialDestinationConnectionId, version);
conn.peerAddress = conn.originalPeerAddress;
}
BufQueue udpData;
udpData.append(std::move(readData.networkData.data));
for (uint16_t processedPackets = 0;
!udpData.empty() && processedPackets < kMaxNumCoalescedPackets;
processedPackets++) {
size_t dataSize = udpData.chainLength();
auto parsedPacket = conn.readCodec->parsePacket(udpData, conn.ackStates);
size_t packetSize = dataSize - udpData.chainLength();
switch (parsedPacket.type()) {
case CodecResult::Type::CIPHER_UNAVAILABLE: {
handleCipherUnavailable(
parsedPacket.cipherUnavailable(), conn, packetSize, readData);
break;
}
case CodecResult::Type::RETRY: {
VLOG(10) << "drop because the server is not supposed to "
<< "receive a retry " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kRetry);
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::UNEXPECTED_RETRY);
break;
}
case CodecResult::Type::STATELESS_RESET: {
VLOG(10) << "drop because reset " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kReset);
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::UNEXPECTED_RESET);
break;
}
case CodecResult::Type::NOTHING: {
VLOG(10) << "drop cipher unavailable, no data " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kCipherUnavailable);
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::UNEXPECTED_NOTHING);
if (firstPacketFromPeer) {
throw QuicInternalException(
"Failed to decrypt first packet from peer",
LocalErrorCode::CONNECTION_ABANDONED);
}
break;
}
case CodecResult::Type::REGULAR_PACKET:
break;
}
RegularQuicPacket* regularOptional = parsedPacket.regularPacket();
if (!regularOptional) {
// We were unable to parse the packet, drop for now. All the drop reasons
// should have already been logged into QLogger and QuicTrace inside the
// previous switch-case block. All stats have already been updated.
VLOG(10) << "Not able to parse QUIC packet " << conn;
continue;
}
if (regularOptional->frames.empty()) {
// This packet had a pareseable header (most probably short header)
// but no data. This is a protocol violation so we throw an exception.
// This drop has not been recorded in the switch-case block above
// so we record it here.
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
PacketDropReason(PacketDropReason::PROTOCOL_VIOLATION)
._to_string());
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::PROTOCOL_VIOLATION);
throw QuicTransportException(
"Packet has no frames", TransportErrorCode::PROTOCOL_VIOLATION);
}
auto protectionLevel = regularOptional->header.getProtectionType();
auto encryptionLevel = protectionTypeToEncryptionLevel(protectionLevel);
auto packetNum = regularOptional->header.getPacketSequenceNum();
auto packetNumberSpace = regularOptional->header.getPacketNumberSpace();
auto& regularPacket = *regularOptional;
bool isProtectedPacket = protectionLevel == ProtectionType::ZeroRtt ||
protectionLevel == ProtectionType::KeyPhaseZero ||
protectionLevel == ProtectionType::KeyPhaseOne;
bool isZeroRttPacket = protectionLevel == ProtectionType::ZeroRtt;
if (!isProtectedPacket || isZeroRttPacket) {
// there are some frame restrictions
auto isFrameInvalidFn = !isProtectedPacket
? isUnprotectedPacketFrameInvalid
: isZeroRttPacketFrameInvalid;
for (auto& quicFrame : regularPacket.frames) {
bool isFrameInvalid = isFrameInvalidFn(quicFrame);
if (isFrameInvalid) {
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::PROTOCOL_VIOLATION);
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
PacketDropReason(PacketDropReason::PROTOCOL_VIOLATION)
._to_string());
}
throw QuicTransportException(
"Invalid frame", TransportErrorCode::PROTOCOL_VIOLATION);
}
}
}
CHECK(conn.clientConnectionId);
if (conn.qLogger) {
conn.qLogger->addPacket(regularPacket, packetSize);
}
// We assume that the higher layer takes care of validating that the version
// is supported.
if (!conn.version) {
LongHeader* longHeader = regularPacket.header.asLong();
if (!longHeader) {
throw QuicTransportException(
"Invalid packet type", TransportErrorCode::PROTOCOL_VIOLATION);
}
conn.version = longHeader->getVersion();
maybeSetExperimentalSettings(conn);
}
if (conn.peerAddress != readData.peer) {
auto migrationDenied = (encryptionLevel != EncryptionLevel::AppData) ||
conn.transportSettings.disableMigration;
if (migrationDenied) {
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
PacketDropReason(PacketDropReason::PEER_ADDRESS_CHANGE)
._to_string());
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::PEER_ADDRESS_CHANGE);
const char* errMsg = encryptionLevel != EncryptionLevel::AppData
? "Migration not allowed during handshake"
: "Migration disabled";
throw QuicTransportException(
errMsg, TransportErrorCode::INVALID_MIGRATION);
}
}
auto& ackState = getAckState(conn, packetNumberSpace);
uint64_t distanceFromExpectedPacketNum = updateLargestReceivedPacketNum(
ackState, packetNum, readData.networkData.receiveTimePoint);
if (distanceFromExpectedPacketNum > 0) {
QUIC_STATS(conn.statsCallback, onOutOfOrderPacketReceived);
}
DCHECK(hasReceivedPackets(conn));
bool pktHasRetransmittableData = false;
bool pktHasCryptoData = false;
bool isNonProbingPacket = false;
bool handshakeConfirmedThisLoop = false;
for (auto& quicFrame : regularPacket.frames) {
switch (quicFrame.type()) {
case QuicFrame::Type::ReadAckFrame: {
VLOG(10) << "Server received ack frame packet=" << packetNum << " "
<< conn;
isNonProbingPacket = true;
ReadAckFrame& ackFrame = *quicFrame.asReadAckFrame();
conn.lastProcessedAckEvents.emplace_back(processAckFrame(
conn,
packetNumberSpace,
ackFrame,
[&](const OutstandingPacket& packet,
const QuicWriteFrame& packetFrame,
const ReadAckFrame&) {
switch (packetFrame.type()) {
case QuicWriteFrame::Type::WriteStreamFrame: {
const WriteStreamFrame& frame =
*packetFrame.asWriteStreamFrame();
VLOG(4)
<< "Server received ack for stream=" << frame.streamId
<< " offset=" << frame.offset << " fin=" << frame.fin
<< " len=" << frame.len << " " << conn;
auto ackedStream =
conn.streamManager->getStream(frame.streamId);
if (ackedStream) {
sendAckSMHandler(*ackedStream, frame);
}
break;
}
case QuicWriteFrame::Type::WriteCryptoFrame: {
const WriteCryptoFrame& frame =
*packetFrame.asWriteCryptoFrame();
auto cryptoStream =
getCryptoStream(*conn.cryptoState, encryptionLevel);
processCryptoStreamAck(
*cryptoStream, frame.offset, frame.len);
break;
}
case QuicWriteFrame::Type::RstStreamFrame: {
const RstStreamFrame& frame =
*packetFrame.asRstStreamFrame();
VLOG(4) << "Server received ack for reset stream="
<< frame.streamId << " " << conn;
auto stream = conn.streamManager->getStream(frame.streamId);
if (stream) {
sendRstAckSMHandler(*stream);
}
break;
}
case QuicWriteFrame::Type::WriteAckFrame: {
const WriteAckFrame& frame = *packetFrame.asWriteAckFrame();
DCHECK(!frame.ackBlocks.empty());
VLOG(4) << "Server received ack for largestAcked="
<< frame.ackBlocks.front().end << " " << conn;
commonAckVisitorForAckFrame(ackState, frame);
break;
}
case QuicWriteFrame::Type::PingFrame:
if (!packet.metadata.isD6DProbe) {
conn.pendingEvents.cancelPingTimeout = true;
}
return;
case QuicWriteFrame::Type::QuicSimpleFrame: {
const QuicSimpleFrame& frame =
*packetFrame.asQuicSimpleFrame();
// ACK of HandshakeDone is a server-specific behavior.
if (frame.asHandshakeDoneFrame()) {
// Call handshakeConfirmed outside of the packet
// processing loop to avoid a re-entrancy.
handshakeConfirmedThisLoop = true;
}
break;
}
default: {
break;
}
}
},
markPacketLoss,
readData.networkData.receiveTimePoint));
break;
}
case QuicFrame::Type::RstStreamFrame: {
RstStreamFrame& frame = *quicFrame.asRstStreamFrame();
VLOG(10) << "Server received reset stream=" << frame.streamId << " "
<< conn;
pktHasRetransmittableData = true;
isNonProbingPacket = true;
auto stream = conn.streamManager->getStream(frame.streamId);
if (!stream) {
break;
}
receiveRstStreamSMHandler(*stream, frame);
break;
}
case QuicFrame::Type::ReadCryptoFrame: {
pktHasRetransmittableData = true;
pktHasCryptoData = true;
isNonProbingPacket = true;
ReadCryptoFrame& cryptoFrame = *quicFrame.asReadCryptoFrame();
VLOG(10) << "Server received crypto data offset="
<< cryptoFrame.offset
<< " len=" << cryptoFrame.data->computeChainDataLength()
<< " currentReadOffset="
<< getCryptoStream(*conn.cryptoState, encryptionLevel)
->currentReadOffset
<< " " << conn;
appendDataToReadBuffer(
*getCryptoStream(*conn.cryptoState, encryptionLevel),
StreamBuffer(
std::move(cryptoFrame.data), cryptoFrame.offset, false));
break;
}
case QuicFrame::Type::ReadStreamFrame: {
ReadStreamFrame& frame = *quicFrame.asReadStreamFrame();
VLOG(10) << "Server received stream data for stream="
<< frame.streamId << ", offset=" << frame.offset
<< " len=" << frame.data->computeChainDataLength()
<< " fin=" << frame.fin << " " << conn;
pktHasRetransmittableData = true;
isNonProbingPacket = true;
auto stream = conn.streamManager->getStream(
frame.streamId, frame.streamGroupId);
// Ignore data from closed streams that we don't have the
// state for any more.
if (stream) {
receiveReadStreamFrameSMHandler(*stream, std::move(frame));
}
break;
}
case QuicFrame::Type::MaxDataFrame: {
MaxDataFrame& connWindowUpdate = *quicFrame.asMaxDataFrame();
VLOG(10) << "Server received max data offset="
<< connWindowUpdate.maximumData << " " << conn;
pktHasRetransmittableData = true;
isNonProbingPacket = true;
handleConnWindowUpdate(conn, connWindowUpdate, packetNum);
break;
}
case QuicFrame::Type::MaxStreamDataFrame: {
MaxStreamDataFrame& streamWindowUpdate =
*quicFrame.asMaxStreamDataFrame();
VLOG(10) << "Server received max stream data stream="
<< streamWindowUpdate.streamId
<< " offset=" << streamWindowUpdate.maximumData << " "
<< conn;
if (isReceivingStream(conn.nodeType, streamWindowUpdate.streamId)) {
throw QuicTransportException(
"Received MaxStreamDataFrame for receiving stream.",
TransportErrorCode::STREAM_STATE_ERROR);
}
pktHasRetransmittableData = true;
isNonProbingPacket = true;
auto stream =
conn.streamManager->getStream(streamWindowUpdate.streamId);
if (stream) {
handleStreamWindowUpdate(
*stream, streamWindowUpdate.maximumData, packetNum);
}
break;
}
case QuicFrame::Type::DataBlockedFrame: {
VLOG(10) << "Server received blocked " << conn;
pktHasRetransmittableData = true;
isNonProbingPacket = true;
handleConnBlocked(conn);
break;
}
case QuicFrame::Type::StreamDataBlockedFrame: {
StreamDataBlockedFrame& blocked =
*quicFrame.asStreamDataBlockedFrame();
VLOG(10) << "Server received blocked stream=" << blocked.streamId
<< " " << conn;
pktHasRetransmittableData = true;
isNonProbingPacket = true;
auto stream = conn.streamManager->getStream(blocked.streamId);
if (stream) {
handleStreamBlocked(*stream);
}
break;
}
case QuicFrame::Type::StreamsBlockedFrame: {
StreamsBlockedFrame& blocked = *quicFrame.asStreamsBlockedFrame();
// peer wishes to open a stream, but is unable to due to the maximum
// stream limit set by us
// TODO implement the handler
isNonProbingPacket = true;
VLOG(10) << "Server received streams blocked limit="
<< blocked.streamLimit << ", " << conn;
break;
}
case QuicFrame::Type::ConnectionCloseFrame: {
isNonProbingPacket = true;
ConnectionCloseFrame& connFrame = *quicFrame.asConnectionCloseFrame();
auto errMsg = folly::to<std::string>(
"Server closed by peer reason=", connFrame.reasonPhrase);
VLOG(4) << errMsg << " " << conn;
// we want to deliver app callbacks with the peer supplied error,
// but send a NO_ERROR to the peer.
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(getPeerClose(errMsg));
}
conn.peerConnectionError =
QuicError(QuicErrorCode(connFrame.errorCode), std::move(errMsg));
if (getSendConnFlowControlBytesWire(conn) == 0 &&
conn.flowControlState.sumCurStreamBufferLen) {
VLOG(2) << "Client gives up a flow control blocked connection";
}
throw QuicTransportException(
"Peer closed", TransportErrorCode::NO_ERROR);
break;
}
case QuicFrame::Type::PingFrame:
isNonProbingPacket = true;
// Ping isn't retransmittable data. But we would like to ack them
// early.
pktHasRetransmittableData = true;
conn.pendingEvents.notifyPingReceived = true;
break;
case QuicFrame::Type::PaddingFrame:
break;
case QuicFrame::Type::QuicSimpleFrame: {
auto dstConnId =
regularPacket.header.getHeaderForm() == HeaderForm::Short
? regularPacket.header.asShort()->getConnectionId()
: regularPacket.header.asLong()->getDestinationConnId();
pktHasRetransmittableData = true;
QuicSimpleFrame& simpleFrame = *quicFrame.asQuicSimpleFrame();
isNonProbingPacket |= updateSimpleFrameOnPacketReceived(
conn, simpleFrame, dstConnId, readData.peer != conn.peerAddress);
break;
}
case QuicFrame::Type::DatagramFrame: {
DatagramFrame& frame = *quicFrame.asDatagramFrame();
VLOG(10) << "Server received datagram data: "
<< " len=" << frame.length;
// Datagram isn't retransmittable. But we would like to ack them
// early. So, make Datagram frames count towards ack policy
pktHasRetransmittableData = true;
handleDatagram(conn, frame, readData.networkData.receiveTimePoint);
break;
}
case QuicFrame::Type::ImmediateAckFrame: {
if (!conn.transportSettings.minAckDelay.hasValue()) {
// We do not accept IMMEDIATE_ACK frames. This is a protocol
// violation.
throw QuicTransportException(
"Received IMMEDIATE_ACK frame without announcing min_ack_delay",
TransportErrorCode::PROTOCOL_VIOLATION,
FrameType::IMMEDIATE_ACK);
}
// Send an ACK from any packet number space.
conn.ackStates.initialAckState.needsToSendAckImmediately = true;
conn.ackStates.handshakeAckState.needsToSendAckImmediately = true;
conn.ackStates.appDataAckState.needsToSendAckImmediately = true;
break;
}
default: {
break;
}
}
}
if (handshakeConfirmedThisLoop) {
handshakeConfirmed(conn);
}
// Update writable limit before processing the handshake data. This is so
// that if we haven't decided whether or not to validate the peer, we won't
// increase the limit.
updateWritableByteLimitOnRecvPacket(conn);
if (conn.peerAddress != readData.peer) {
// TODO use new conn id, make sure the other endpoint has new conn id
if (isNonProbingPacket) {
if (packetNum == ackState.largestRecvdPacketNum) {
ShortHeader* shortHeader = regularPacket.header.asShort();
bool intentionalMigration = false;
if (shortHeader &&
shortHeader->getConnectionId() != conn.serverConnectionId) {
intentionalMigration = true;
}
onConnectionMigration(conn, readData.peer, intentionalMigration);
}
} else {
// Server will need to response with PathResponse to the new address
// while not updating peerAddress to new address
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
PacketDropReason(PacketDropReason::PEER_ADDRESS_CHANGE)
._to_string());
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::PEER_ADDRESS_CHANGE);
throw QuicTransportException(
"Probing not supported yet", TransportErrorCode::INVALID_MIGRATION);
}
}
// Try reading bytes off of crypto, and performing a handshake.
auto data = readDataFromCryptoStream(
*getCryptoStream(*conn.cryptoState, encryptionLevel));
if (data) {
conn.serverHandshakeLayer->doHandshake(std::move(data), encryptionLevel);
try {
updateHandshakeState(conn);
} catch (...) {
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
PacketDropReason(PacketDropReason::TRANSPORT_PARAMETER_ERROR)
._to_string());
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::TRANSPORT_PARAMETER_ERROR);
throw;
}
}
updateAckSendStateOnRecvPacket(
conn,
ackState,
distanceFromExpectedPacketNum,
pktHasRetransmittableData,
pktHasCryptoData,
packetNumberSpace == PacketNumberSpace::Initial);
if (encryptionLevel == EncryptionLevel::Handshake &&
conn.initialWriteCipher) {
conn.initialWriteCipher.reset();
conn.initialHeaderCipher.reset();
conn.readCodec->setInitialReadCipher(nullptr);
conn.readCodec->setInitialHeaderCipher(nullptr);
implicitAckCryptoStream(conn, EncryptionLevel::Initial);
}
QUIC_STATS(conn.statsCallback, onPacketProcessed);
}
VLOG_IF(4, !udpData.empty())
<< "Leaving " << udpData.chainLength()
<< " bytes unprocessed after attempting to process "
<< kMaxNumCoalescedPackets << " packets.";
}
void onServerReadDataFromClosed(
QuicServerConnectionState& conn,
ServerEvents::ReadData& readData) {
CHECK_EQ(conn.state, ServerState::Closed);
BufQueue udpData;
udpData.append(std::move(readData.networkData.data));
auto packetSize = udpData.empty() ? 0 : udpData.chainLength();
if (!conn.readCodec) {
// drop data. We closed before we even got the first packet. This is
// normally not possible but might as well.
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
PacketDropReason(PacketDropReason::SERVER_STATE_CLOSED)._to_string());
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::SERVER_STATE_CLOSED);
return;
}
if (conn.peerConnectionError) {
// We already got a peer error. We can ignore any futher peer errors.
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
PacketDropReason(PacketDropReason::SERVER_STATE_CLOSED)._to_string());
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::SERVER_STATE_CLOSED);
return;
}
auto parsedPacket = conn.readCodec->parsePacket(udpData, conn.ackStates);
switch (parsedPacket.type()) {
case CodecResult::Type::CIPHER_UNAVAILABLE: {
VLOG(10) << "drop cipher unavailable " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kCipherUnavailable);
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::CIPHER_UNAVAILABLE);
break;
}
case CodecResult::Type::RETRY: {
VLOG(10) << "drop because the server is not supposed to "
<< "receive a retry " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kRetry);
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::UNEXPECTED_RETRY);
break;
}
case CodecResult::Type::STATELESS_RESET: {
VLOG(10) << "drop because reset " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kReset);
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::UNEXPECTED_RESET);
break;
}
case CodecResult::Type::NOTHING: {
VLOG(10) << "drop cipher unavailable, no data " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kCipherUnavailable);
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::UNEXPECTED_NOTHING);
break;
}
case CodecResult::Type::REGULAR_PACKET:
break;
}
auto regularOptional = parsedPacket.regularPacket();
if (!regularOptional) {
// We were unable to parse the packet, drop for now.
// Packet drop has already been added to qlog and stats
VLOG(10) << "Not able to parse QUIC packet " << conn;
return;
}
if (regularOptional->frames.empty()) {
// This packet had a pareseable header (most probably short header)
// but no data. This is a protocol violation so we throw an exception.
// This drop has not been recorded in the switch-case block above
// so we record it here.
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
PacketDropReason(PacketDropReason::PROTOCOL_VIOLATION)._to_string());
}
QUIC_STATS(
conn.statsCallback,
onPacketDropped,
PacketDropReason::PROTOCOL_VIOLATION);
throw QuicTransportException(
"Packet has no frames", TransportErrorCode::PROTOCOL_VIOLATION);
}
auto& regularPacket = *regularOptional;
auto packetNum = regularPacket.header.getPacketSequenceNum();
auto pnSpace = regularPacket.header.getPacketNumberSpace();
if (conn.qLogger) {
conn.qLogger->addPacket(regularPacket, packetSize);
}
// Only process the close frames in the packet
for (auto& quicFrame : regularPacket.frames) {
switch (quicFrame.type()) {
case QuicFrame::Type::ConnectionCloseFrame: {
ConnectionCloseFrame& connFrame = *quicFrame.asConnectionCloseFrame();
auto errMsg = folly::to<std::string>(
"Server closed by peer reason=", connFrame.reasonPhrase);
VLOG(4) << errMsg << " " << conn;
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(getPeerClose(errMsg));
}
// we want to deliver app callbacks with the peer supplied error,
// but send a NO_ERROR to the peer.
conn.peerConnectionError =
QuicError(QuicErrorCode(connFrame.errorCode), std::move(errMsg));
break;
}
default:
break;
}
}
// We only need to set the largest received packet number in order to
// determine whether or not we need to send a new close.
auto& largestRecvdPacketNum =
getAckState(conn, pnSpace).largestRecvdPacketNum;
largestRecvdPacketNum =
std::max<PacketNum>(largestRecvdPacketNum.value_or(packetNum), packetNum);
}
void onServerClose(QuicServerConnectionState& conn) {
switch (conn.state) {
case ServerState::Open:
onServerCloseOpenState(conn);
return;
case ServerState::Closed:
return;
}
}
void onServerCloseOpenState(QuicServerConnectionState& conn) {
conn.state = ServerState::Closed;
}
folly::Optional<ConnectionIdData>
QuicServerConnectionState::createAndAddNewSelfConnId() {
// Should be set right after server transport construction.
CHECK(connIdAlgo);
CHECK(serverConnIdParams);
CHECK(transportSettings.statelessResetTokenSecret);
StatelessResetGenerator generator(
transportSettings.statelessResetTokenSecret.value(),
serverAddr.getFullyQualified());
// The default connectionId algo has 36 bits of randomness.
auto encodedCid = connIdAlgo->encodeConnectionId(*serverConnIdParams);
size_t encodedTimes = 0;
while (encodedCid && connIdRejector &&
connIdRejector->rejectConnectionId(*encodedCid) &&
++encodedTimes < kConnIdEncodingRetryLimit) {
encodedCid = connIdAlgo->encodeConnectionId(*serverConnIdParams);
}
LOG_IF(ERROR, encodedTimes == kConnIdEncodingRetryLimit)
<< "Quic CIDRejector rejected all conneectionIDs";
if (encodedCid.hasError()) {
return folly::none;
}
auto newConnIdData =
ConnectionIdData{*encodedCid, nextSelfConnectionIdSequence++};
newConnIdData.token = generator.generateToken(newConnIdData.connId);
selfConnectionIds.push_back(newConnIdData);
return newConnIdData;
}
std::vector<TransportParameter> setSupportedExtensionTransportParameters(
QuicServerConnectionState& conn) {
std::vector<TransportParameter> customTransportParams;
if (conn.transportSettings.datagramConfig.enabled) {
auto maxDatagramFrameSize =
std::make_unique<CustomIntegralTransportParameter>(
static_cast<uint64_t>(
TransportParameterId::max_datagram_frame_size),
conn.datagramState.maxReadFrameSize);
customTransportParams.push_back(maxDatagramFrameSize->encode());
}
if (conn.transportSettings.maxStreamGroupsAdvertized > 0) {
auto streamGroupsEnabledParam =
std::make_unique<CustomIntegralTransportParameter>(
kStreamGroupsEnabledCustomParamId,
conn.transportSettings.maxStreamGroupsAdvertized);
if (!setCustomTransportParameter(
std::move(streamGroupsEnabledParam), customTransportParams)) {
LOG(ERROR) << "failed to set stream groups enabled transport parameter";
}
}
auto ackReceiveTimestampsEnabled =
std::make_unique<CustomIntegralTransportParameter>(
static_cast<uint64_t>(
TransportParameterId::ack_receive_timestamps_enabled),
conn.transportSettings.maybeAckReceiveTimestampsConfigSentToPeer
.has_value()
? 1
: 0);
customTransportParams.push_back(ackReceiveTimestampsEnabled->encode());
if (conn.transportSettings.maybeAckReceiveTimestampsConfigSentToPeer
.has_value()) {
auto maxReceiveTimestampsPerAck =
std::make_unique<CustomIntegralTransportParameter>(
static_cast<uint64_t>(
TransportParameterId::max_receive_timestamps_per_ack),
conn.transportSettings.maybeAckReceiveTimestampsConfigSentToPeer
.value()
.max_receive_timestamps_per_ack);
customTransportParams.push_back(maxReceiveTimestampsPerAck->encode());
auto receiveTimestampsExponent =
std::make_unique<CustomIntegralTransportParameter>(
static_cast<uint64_t>(
TransportParameterId::receive_timestamps_exponent),
conn.transportSettings.maybeAckReceiveTimestampsConfigSentToPeer
.value()
.receive_timestamps_exponent);
customTransportParams.push_back(receiveTimestampsExponent->encode());
}
return customTransportParams;
}
} // namespace quic