1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-04-18 17:24:03 +03:00
mvfst/quic/api/test/QuicPacketSchedulerTest.cpp
Sharad Jaiswal (Eng) 96abc8160d Codec changes to support ACK_RECEIVE_TIMESTAMPS
Summary: Create a new ACK_RECEIVE_TIMESTAMPS frame, as outlined in https://www.ietf.org/archive/id/draft-smith-quic-receive-ts-00.html#name-ack_receive_timestamps-fram

Reviewed By: mjoras

Differential Revision: D37799050

fbshipit-source-id: 0157c7fa7c4e489bb310f7c9cd6c0c1877e4967f
2022-11-16 13:02:27 -08:00

2464 lines
99 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <folly/portability/GTest.h>
#include <quic/api/QuicPacketScheduler.h>
#include <quic/api/QuicTransportFunctions.h>
#include <quic/api/test/Mocks.h>
#include <quic/client/state/ClientStateMachine.h>
#include <quic/codec/QuicPacketBuilder.h>
#include <quic/codec/test/Mocks.h>
#include <quic/common/test/TestUtils.h>
#include <quic/dsr/Types.h>
#include <quic/dsr/test/Mocks.h>
#include <quic/fizz/client/handshake/FizzClientQuicHandshakeContext.h>
#include <quic/fizz/server/handshake/FizzServerQuicHandshakeContext.h>
#include <quic/server/state/ServerStateMachine.h>
#include <quic/state/QuicStreamFunctions.h>
#include <quic/state/test/MockQuicStats.h>
using namespace quic;
using namespace testing;
enum PacketBuilderType { Regular, Inplace };
namespace {
SchedulingResult sendD6DProbe(
QuicConnectionStateBase& conn,
uint64_t cipherOverhead,
uint32_t probeSize,
PacketBuilderType builderType) {
auto connId = quic::test::getTestConnectionId();
D6DProbeScheduler d6dProbeScheduler(
conn, "d6d probe", cipherOverhead, probeSize);
EXPECT_TRUE(d6dProbeScheduler.hasData());
ShortHeader shortHeader(
ProtectionType::KeyPhaseZero,
connId,
getNextPacketNum(conn, PacketNumberSpace::AppData));
if (builderType == PacketBuilderType::Regular) {
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(shortHeader),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto result = d6dProbeScheduler.scheduleFramesForPacket(
std::move(builder), kDefaultUDPSendPacketLen);
EXPECT_FALSE(d6dProbeScheduler.hasData());
return result;
} else {
// Just enough to build the probe
auto simpleBufAccessor = std::make_unique<SimpleBufAccessor>(probeSize);
InplaceQuicPacketBuilder builder(
*simpleBufAccessor,
conn.udpSendPacketLen,
std::move(shortHeader),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto result = d6dProbeScheduler.scheduleFramesForPacket(
std::move(builder), kDefaultUDPSendPacketLen);
EXPECT_FALSE(d6dProbeScheduler.hasData());
return result;
}
folly::assume_unreachable();
}
PacketNum addInitialOutstandingPacket(QuicConnectionStateBase& conn) {
PacketNum nextPacketNum = getNextPacketNum(conn, PacketNumberSpace::Initial);
std::vector<uint8_t> zeroConnIdData(quic::kDefaultConnectionIdSize, 0);
ConnectionId srcConnId(zeroConnIdData);
LongHeader header(
LongHeader::Types::Initial,
srcConnId,
conn.clientConnectionId.value_or(quic::test::getTestConnectionId()),
nextPacketNum,
QuicVersion::QUIC_DRAFT);
RegularQuicWritePacket packet(std::move(header));
conn.outstandings.packets.emplace_back(
packet,
Clock::now(),
0,
0,
true,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
conn.outstandings.packetCount[PacketNumberSpace::Initial]++;
increaseNextPacketNum(conn, PacketNumberSpace::Initial);
return nextPacketNum;
}
PacketNum addHandshakeOutstandingPacket(QuicConnectionStateBase& conn) {
PacketNum nextPacketNum =
getNextPacketNum(conn, PacketNumberSpace::Handshake);
std::vector<uint8_t> zeroConnIdData(quic::kDefaultConnectionIdSize, 0);
ConnectionId srcConnId(zeroConnIdData);
LongHeader header(
LongHeader::Types::Handshake,
srcConnId,
conn.clientConnectionId.value_or(quic::test::getTestConnectionId()),
nextPacketNum,
QuicVersion::QUIC_DRAFT);
RegularQuicWritePacket packet(std::move(header));
conn.outstandings.packets.emplace_back(
packet,
Clock::now(),
0,
0,
true,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
conn.outstandings.packetCount[PacketNumberSpace::Handshake]++;
increaseNextPacketNum(conn, PacketNumberSpace::Handshake);
return nextPacketNum;
}
PacketNum addOutstandingPacket(QuicConnectionStateBase& conn) {
PacketNum nextPacketNum = getNextPacketNum(conn, PacketNumberSpace::AppData);
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(quic::test::getTestConnectionId()),
nextPacketNum);
RegularQuicWritePacket packet(std::move(header));
conn.outstandings.packets.emplace_back(
packet,
Clock::now(),
0,
0,
false,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
increaseNextPacketNum(conn, PacketNumberSpace::AppData);
return nextPacketNum;
}
} // namespace
namespace quic {
namespace test {
class QuicPacketSchedulerTest : public TestWithParam<PacketBuilderType> {
public:
QuicVersion version{QuicVersion::MVFST};
};
TEST_F(QuicPacketSchedulerTest, CryptoPaddingInitialPacket) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
auto connId = getTestConnectionId();
LongHeader longHeader(
LongHeader::Types::Initial,
getTestConnectionId(1),
connId,
getNextPacketNum(conn, PacketNumberSpace::Initial),
QuicVersion::MVFST);
increaseNextPacketNum(conn, PacketNumberSpace::Initial);
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(longHeader),
conn.ackStates.initialAckState.largestAckedByPeer.value_or(0));
FrameScheduler cryptoOnlyScheduler =
std::move(
FrameScheduler::Builder(
conn,
EncryptionLevel::Initial,
LongHeader::typeToPacketNumberSpace(LongHeader::Types::Initial),
"CryptoOnlyScheduler")
.cryptoFrames())
.build();
writeDataToQuicStream(
conn.cryptoState->initialStream, folly::IOBuf::copyBuffer("chlo"));
auto result = cryptoOnlyScheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen);
auto packetLength = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength();
EXPECT_EQ(conn.udpSendPacketLen, packetLength);
}
TEST_F(QuicPacketSchedulerTest, PaddingInitialPureAcks) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
auto connId = getTestConnectionId();
LongHeader longHeader(
LongHeader::Types::Initial,
connId,
connId,
getNextPacketNum(conn, PacketNumberSpace::Initial),
QuicVersion::MVFST);
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(longHeader),
conn.ackStates.handshakeAckState.largestAckedByPeer.value_or(0));
conn.ackStates.initialAckState.largestRecvdPacketTime = Clock::now();
conn.ackStates.initialAckState.needsToSendAckImmediately = true;
conn.ackStates.initialAckState.acks.insert(10);
FrameScheduler acksOnlyScheduler =
std::move(
FrameScheduler::Builder(
conn,
EncryptionLevel::Initial,
LongHeader::typeToPacketNumberSpace(LongHeader::Types::Initial),
"AcksOnlyScheduler")
.ackFrames())
.build();
auto result = acksOnlyScheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen);
auto packetLength = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength();
EXPECT_EQ(conn.udpSendPacketLen, packetLength);
}
TEST_F(QuicPacketSchedulerTest, InitialPaddingDoesNotUseWrapper) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
auto connId = getTestConnectionId();
size_t cipherOverhead = 30;
LongHeader longHeader(
LongHeader::Types::Initial,
connId,
connId,
getNextPacketNum(conn, PacketNumberSpace::Initial),
QuicVersion::MVFST);
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(longHeader),
conn.ackStates.handshakeAckState.largestAckedByPeer.value_or(0));
conn.ackStates.initialAckState.largestRecvdPacketTime = Clock::now();
conn.ackStates.initialAckState.needsToSendAckImmediately = true;
conn.ackStates.initialAckState.acks.insert(10);
FrameScheduler acksOnlyScheduler =
std::move(
FrameScheduler::Builder(
conn,
EncryptionLevel::Initial,
LongHeader::typeToPacketNumberSpace(LongHeader::Types::Initial),
"AcksOnlyScheduler")
.ackFrames())
.build();
auto result = acksOnlyScheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen - cipherOverhead);
auto packetLength = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength();
EXPECT_EQ(conn.udpSendPacketLen, packetLength);
}
TEST_F(QuicPacketSchedulerTest, CryptoServerInitialPadded) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
auto connId = getTestConnectionId();
PacketNum nextPacketNum = getNextPacketNum(conn, PacketNumberSpace::Initial);
LongHeader longHeader1(
LongHeader::Types::Initial,
getTestConnectionId(1),
connId,
nextPacketNum,
QuicVersion::MVFST);
RegularQuicPacketBuilder builder1(
conn.udpSendPacketLen,
std::move(longHeader1),
conn.ackStates.initialAckState.largestAckedByPeer.value_or(0));
FrameScheduler scheduler =
std::move(
FrameScheduler::Builder(
conn,
EncryptionLevel::Initial,
LongHeader::typeToPacketNumberSpace(LongHeader::Types::Initial),
"CryptoOnlyScheduler")
.cryptoFrames())
.build();
writeDataToQuicStream(
conn.cryptoState->initialStream, folly::IOBuf::copyBuffer("shlo"));
auto result = scheduler.scheduleFramesForPacket(
std::move(builder1), conn.udpSendPacketLen);
auto packetLength = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength();
EXPECT_EQ(conn.udpSendPacketLen, packetLength);
}
TEST_F(QuicPacketSchedulerTest, PadTwoInitialPackets) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
auto connId = getTestConnectionId();
PacketNum nextPacketNum = getNextPacketNum(conn, PacketNumberSpace::Initial);
LongHeader longHeader1(
LongHeader::Types::Initial,
getTestConnectionId(1),
connId,
nextPacketNum,
QuicVersion::MVFST);
RegularQuicPacketBuilder builder1(
conn.udpSendPacketLen,
std::move(longHeader1),
conn.ackStates.initialAckState.largestAckedByPeer.value_or(0));
FrameScheduler scheduler =
std::move(
FrameScheduler::Builder(
conn,
EncryptionLevel::Initial,
LongHeader::typeToPacketNumberSpace(LongHeader::Types::Initial),
"CryptoOnlyScheduler")
.cryptoFrames())
.build();
writeDataToQuicStream(
conn.cryptoState->initialStream, folly::IOBuf::copyBuffer("shlo"));
auto result = scheduler.scheduleFramesForPacket(
std::move(builder1), conn.udpSendPacketLen);
auto packetLength = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength();
EXPECT_EQ(conn.udpSendPacketLen, packetLength);
increaseNextPacketNum(conn, PacketNumberSpace::Initial);
LongHeader longHeader2(
LongHeader::Types::Initial,
getTestConnectionId(1),
connId,
nextPacketNum,
QuicVersion::MVFST);
RegularQuicPacketBuilder builder2(
conn.udpSendPacketLen,
std::move(longHeader2),
conn.ackStates.initialAckState.largestAckedByPeer.value_or(0));
writeDataToQuicStream(
conn.cryptoState->initialStream, folly::IOBuf::copyBuffer("shlo again"));
auto result2 = scheduler.scheduleFramesForPacket(
std::move(builder2), conn.udpSendPacketLen);
packetLength = result2.packet->header->computeChainDataLength() +
result2.packet->body->computeChainDataLength();
EXPECT_EQ(conn.udpSendPacketLen, packetLength);
}
TEST_F(QuicPacketSchedulerTest, CryptoPaddingRetransmissionClientInitial) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
auto connId = getTestConnectionId();
LongHeader longHeader(
LongHeader::Types::Initial,
getTestConnectionId(1),
connId,
getNextPacketNum(conn, PacketNumberSpace::Initial),
QuicVersion::MVFST);
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(longHeader),
conn.ackStates.initialAckState.largestAckedByPeer.value_or(0));
FrameScheduler scheduler =
std::move(
FrameScheduler::Builder(
conn,
EncryptionLevel::Initial,
LongHeader::typeToPacketNumberSpace(LongHeader::Types::Initial),
"CryptoOnlyScheduler")
.cryptoFrames())
.build();
conn.cryptoState->initialStream.lossBuffer.push_back(
StreamBuffer{folly::IOBuf::copyBuffer("chlo"), 0, false});
auto result = scheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen);
auto packetLength = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength();
EXPECT_EQ(conn.udpSendPacketLen, packetLength);
}
TEST_F(QuicPacketSchedulerTest, CryptoSchedulerOnlySingleLossFits) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
auto connId = getTestConnectionId();
LongHeader longHeader(
LongHeader::Types::Handshake,
connId,
connId,
getNextPacketNum(conn, PacketNumberSpace::Handshake),
QuicVersion::MVFST);
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(longHeader),
conn.ackStates.handshakeAckState.largestAckedByPeer.value_or(0));
builder.encodePacketHeader();
PacketBuilderWrapper builderWrapper(builder, 13);
CryptoStreamScheduler scheduler(
conn, *getCryptoStream(*conn.cryptoState, EncryptionLevel::Handshake));
conn.cryptoState->handshakeStream.lossBuffer.push_back(
StreamBuffer{folly::IOBuf::copyBuffer("shlo"), 0, false});
conn.cryptoState->handshakeStream.lossBuffer.push_back(StreamBuffer{
folly::IOBuf::copyBuffer(
"certificatethatisverylongseriouslythisisextremelylongandcannotfitintoapacket"),
7,
false});
EXPECT_TRUE(scheduler.writeCryptoData(builderWrapper));
}
TEST_F(QuicPacketSchedulerTest, CryptoWritePartialLossBuffer) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
auto connId = getTestConnectionId();
LongHeader longHeader(
LongHeader::Types::Initial,
ConnectionId(std::vector<uint8_t>()),
connId,
getNextPacketNum(conn, PacketNumberSpace::Initial),
QuicVersion::MVFST);
RegularQuicPacketBuilder builder(
25,
std::move(longHeader),
conn.ackStates.initialAckState.largestAckedByPeer.value_or(
conn.ackStates.initialAckState.nextPacketNum));
FrameScheduler cryptoOnlyScheduler =
std::move(
FrameScheduler::Builder(
conn,
EncryptionLevel::Initial,
LongHeader::typeToPacketNumberSpace(LongHeader::Types::Initial),
"CryptoOnlyScheduler")
.cryptoFrames())
.build();
conn.cryptoState->initialStream.lossBuffer.push_back(StreamBuffer{
folly::IOBuf::copyBuffer("return the special duration value max"),
0,
false});
auto result = cryptoOnlyScheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen);
auto packetLength = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength();
EXPECT_LE(packetLength, 25);
EXPECT_TRUE(result.packet->packet.frames[0].asWriteCryptoFrame() != nullptr);
EXPECT_FALSE(conn.cryptoState->initialStream.lossBuffer.empty());
}
TEST_F(QuicPacketSchedulerTest, StreamFrameSchedulerExists) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
auto connId = getTestConnectionId();
auto stream = conn.streamManager->createNextBidirectionalStream().value();
WindowUpdateScheduler scheduler(conn);
ShortHeader shortHeader(
ProtectionType::KeyPhaseZero,
connId,
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(shortHeader),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder.encodePacketHeader();
auto originalSpace = builder.remainingSpaceInPkt();
conn.streamManager->queueWindowUpdate(stream->id);
scheduler.writeWindowUpdates(builder);
EXPECT_LT(builder.remainingSpaceInPkt(), originalSpace);
}
TEST_F(QuicPacketSchedulerTest, StreamFrameNoSpace) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
auto connId = getTestConnectionId();
auto stream = conn.streamManager->createNextBidirectionalStream().value();
WindowUpdateScheduler scheduler(conn);
ShortHeader shortHeader(
ProtectionType::KeyPhaseZero,
connId,
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(shortHeader),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder.encodePacketHeader();
PacketBuilderWrapper builderWrapper(builder, 2);
auto originalSpace = builder.remainingSpaceInPkt();
conn.streamManager->queueWindowUpdate(stream->id);
scheduler.writeWindowUpdates(builderWrapper);
EXPECT_EQ(builder.remainingSpaceInPkt(), originalSpace);
}
TEST_F(QuicPacketSchedulerTest, StreamFrameSchedulerStreamNotExists) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
auto connId = getTestConnectionId();
StreamId nonExistentStream = 11;
WindowUpdateScheduler scheduler(conn);
ShortHeader shortHeader(
ProtectionType::KeyPhaseZero,
connId,
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(shortHeader),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder.encodePacketHeader();
auto originalSpace = builder.remainingSpaceInPkt();
conn.streamManager->queueWindowUpdate(nonExistentStream);
scheduler.writeWindowUpdates(builder);
EXPECT_EQ(builder.remainingSpaceInPkt(), originalSpace);
}
TEST_F(QuicPacketSchedulerTest, NoCloningForDSR) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
FrameScheduler noopScheduler("frame", conn);
ASSERT_FALSE(noopScheduler.hasData());
CloningScheduler cloningScheduler(noopScheduler, conn, "Juice WRLD", 0);
EXPECT_FALSE(cloningScheduler.hasData());
addOutstandingPacket(conn);
EXPECT_TRUE(cloningScheduler.hasData());
conn.outstandings.packets.back().isDSRPacket = true;
conn.outstandings.dsrCount++;
EXPECT_FALSE(cloningScheduler.hasData());
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto result = cloningScheduler.scheduleFramesForPacket(
std::move(builder), kDefaultUDPSendPacketLen);
EXPECT_FALSE(result.packetEvent.hasValue());
EXPECT_FALSE(result.packet.hasValue());
}
TEST_F(QuicPacketSchedulerTest, CloningSchedulerTest) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
FrameScheduler noopScheduler("frame", conn);
ASSERT_FALSE(noopScheduler.hasData());
CloningScheduler cloningScheduler(noopScheduler, conn, "CopyCat", 0);
EXPECT_FALSE(cloningScheduler.hasData());
auto packetNum = addOutstandingPacket(conn);
// There needs to have retransmittable frame for the rebuilder to work
conn.outstandings.packets.back().packet.frames.push_back(
MaxDataFrame(conn.flowControlState.advertisedMaxOffset));
EXPECT_TRUE(cloningScheduler.hasData());
ASSERT_FALSE(noopScheduler.hasData());
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto result = cloningScheduler.scheduleFramesForPacket(
std::move(builder), kDefaultUDPSendPacketLen);
EXPECT_TRUE(result.packetEvent.has_value() && result.packet.has_value());
EXPECT_EQ(packetNum, result.packetEvent->packetNumber);
}
TEST_P(QuicPacketSchedulerTest, D6DProbeSchedulerTest) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
uint64_t cipherOverhead = 2;
uint32_t probeSize = 1450;
auto connId = getTestConnectionId();
D6DProbeScheduler d6dProbeScheduler(
conn, "d6d probe", cipherOverhead, probeSize);
EXPECT_TRUE(d6dProbeScheduler.hasData());
ShortHeader shortHeader(
ProtectionType::KeyPhaseZero,
connId,
getNextPacketNum(conn, PacketNumberSpace::AppData));
auto param = GetParam();
auto result = sendD6DProbe(conn, cipherOverhead, probeSize, param);
ASSERT_TRUE(result.packet.has_value());
auto packetSize = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength() + cipherOverhead;
EXPECT_EQ(packetSize, probeSize);
}
TEST_P(QuicPacketSchedulerTest, NoCloningWithOnlyD6DProbes) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
uint64_t cipherOverhead = 2;
uint32_t probeSize = 1450;
auto param = GetParam();
auto result = sendD6DProbe(conn, cipherOverhead, probeSize, param);
ASSERT_TRUE(result.packet.has_value());
auto packetSize = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength() + cipherOverhead;
updateConnection(
conn,
folly::none,
result.packet->packet,
Clock::now(),
packetSize,
result.packet->body->computeChainDataLength(),
false /* isDSRPacket */);
ASSERT_EQ(1, conn.outstandings.packets.size());
EXPECT_TRUE(conn.outstandings.packets.back().metadata.isD6DProbe);
FrameScheduler noopScheduler("noopScheduler", conn);
CloningScheduler cloningScheduler(
noopScheduler, conn, "MarShall Mathers", cipherOverhead);
EXPECT_FALSE(cloningScheduler.hasData());
}
TEST_F(QuicPacketSchedulerTest, WriteOnlyOutstandingPacketsTest) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
FrameScheduler noopScheduler("frame", conn);
ASSERT_FALSE(noopScheduler.hasData());
CloningScheduler cloningScheduler(noopScheduler, conn, "CopyCat", 0);
EXPECT_FALSE(cloningScheduler.hasData());
auto packetNum = addOutstandingPacket(conn);
// There needs to have retransmittable frame for the rebuilder to work
conn.outstandings.packets.back().packet.frames.push_back(
MaxDataFrame(conn.flowControlState.advertisedMaxOffset));
EXPECT_TRUE(cloningScheduler.hasData());
ASSERT_FALSE(noopScheduler.hasData());
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder regularBuilder(
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
// Create few frames
ConnectionCloseFrame connCloseFrame(
QuicErrorCode(TransportErrorCode::FRAME_ENCODING_ERROR),
"The sun is in the sky.");
MaxStreamsFrame maxStreamFrame(999, true);
PingFrame pingFrame;
AckBlocks ackBlocks;
ackBlocks.insert(10, 100);
ackBlocks.insert(200, 1000);
WriteAckState writeAckState = {.acks = ackBlocks};
AckFrameMetaData ackMeta = {
.ackState = writeAckState,
.ackDelay = 0us,
.ackDelayExponent = static_cast<uint8_t>(kDefaultAckDelayExponent)};
// Write those framses with a regular builder
writeFrame(connCloseFrame, regularBuilder);
writeFrame(QuicSimpleFrame(maxStreamFrame), regularBuilder);
writeFrame(pingFrame, regularBuilder);
writeAckFrame(ackMeta, regularBuilder);
auto result = cloningScheduler.scheduleFramesForPacket(
std::move(regularBuilder), kDefaultUDPSendPacketLen);
EXPECT_TRUE(result.packetEvent.hasValue() && result.packet.hasValue());
EXPECT_EQ(packetNum, result.packetEvent->packetNumber);
// written packet should not have any frame in the builder
auto& writtenPacket = *result.packet;
auto shortHeader = writtenPacket.packet.header.asShort();
CHECK(shortHeader);
EXPECT_EQ(ProtectionType::KeyPhaseOne, shortHeader->getProtectionType());
EXPECT_EQ(
conn.ackStates.appDataAckState.nextPacketNum,
shortHeader->getPacketSequenceNum());
// Test that the only frame that's written is maxdataframe
EXPECT_GE(writtenPacket.packet.frames.size(), 1);
auto& writtenFrame = writtenPacket.packet.frames.at(0);
auto maxDataFrame = writtenFrame.asMaxDataFrame();
CHECK(maxDataFrame);
for (auto& frame : writtenPacket.packet.frames) {
bool present = false;
/* the next four frames should not be written */
present |= frame.asConnectionCloseFrame() ? true : false;
present |= frame.asQuicSimpleFrame() ? true : false;
present |= frame.asQuicSimpleFrame() ? true : false;
present |= frame.asWriteAckFrame() ? true : false;
ASSERT_FALSE(present);
}
}
TEST_F(QuicPacketSchedulerTest, DoNotCloneProcessedClonedPacket) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
FrameScheduler noopScheduler("frame", conn);
CloningScheduler cloningScheduler(noopScheduler, conn, "CopyCat", 0);
// Add two outstanding packets, but then mark the second one processed by
// adding a PacketEvent that's missing from the outstandings.packetEvents set
PacketNum expected = addOutstandingPacket(conn);
// There needs to have retransmittable frame for the rebuilder to work
conn.outstandings.packets.back().packet.frames.push_back(
MaxDataFrame(conn.flowControlState.advertisedMaxOffset));
addOutstandingPacket(conn);
conn.outstandings.packets.back().associatedEvent =
PacketEvent(PacketNumberSpace::AppData, 1);
// There needs to have retransmittable frame for the rebuilder to work
conn.outstandings.packets.back().packet.frames.push_back(
MaxDataFrame(conn.flowControlState.advertisedMaxOffset));
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.initialAckState.largestAckedByPeer.value_or(0));
auto result = cloningScheduler.scheduleFramesForPacket(
std::move(builder), kDefaultUDPSendPacketLen);
EXPECT_TRUE(result.packetEvent.has_value() && result.packet.has_value());
EXPECT_EQ(expected, result.packetEvent->packetNumber);
}
TEST_F(QuicPacketSchedulerTest, CloneSchedulerHasHandshakeData) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
FrameScheduler noopScheduler("frame", conn);
CloningScheduler cloningScheduler(noopScheduler, conn, "CopyCat", 0);
EXPECT_FALSE(cloningScheduler.hasData());
addHandshakeOutstandingPacket(conn);
EXPECT_TRUE(cloningScheduler.hasData());
}
/**
* This test case covers the following scenario:
1) conn sent out a handshake packet that did not get acked yet
2) conn received some handshake data that needs to be acked
3) imitate that we're emitting a PTO packet (that is generated via cloning
scheduler)
4) emitted cloned packet MUST have both cloned crypto data AND ack
frame(s)
There was a bug that would result in mvfst emit a "empty" PTO packet with
acks; this is the test case to cover that scenario.
*/
TEST_F(QuicPacketSchedulerTest, CloneSchedulerHasHandshakeDataAndAcks) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.version = QuicVersion::MVFST_EXPERIMENTAL2;
FrameScheduler noopScheduler = std::move(FrameScheduler::Builder(
conn,
EncryptionLevel::Handshake,
PacketNumberSpace::Handshake,
"testScheduler")
.ackFrames())
.build();
addHandshakeOutstandingPacket(conn);
// Add some crypto data for the outstanding packet to make it look legit.
// This is so cloning scheduler can actually copy something.
getCryptoStream(*conn.cryptoState, EncryptionLevel::Handshake)
->retransmissionBuffer.emplace(
0,
std::make_unique<StreamBuffer>(
folly::IOBuf::copyBuffer("test"), 0, false));
conn.outstandings.packets.back().packet.frames.push_back(
WriteCryptoFrame(0, 4));
// Make it look like we received some acks from the peer.
conn.ackStates.handshakeAckState.acks.insert(10);
conn.ackStates.handshakeAckState.largestRecvdPacketTime = Clock::now();
// Create cloning scheduler.
CloningScheduler cloningScheduler(noopScheduler, conn, "CopyCat", 0);
EXPECT_TRUE(cloningScheduler.hasData());
// Get the packet builder going for the clone packet.
PacketNum nextPacketNum =
getNextPacketNum(conn, PacketNumberSpace::Handshake);
std::vector<uint8_t> zeroConnIdData(quic::kDefaultConnectionIdSize, 0);
ConnectionId srcConnId(zeroConnIdData);
LongHeader header(
LongHeader::Types::Handshake,
srcConnId,
conn.clientConnectionId.value_or(quic::test::getTestConnectionId()),
nextPacketNum,
QuicVersion::QUIC_DRAFT);
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
// Clone the packet.
auto result = cloningScheduler.scheduleFramesForPacket(
std::move(builder), kDefaultUDPSendPacketLen);
EXPECT_TRUE(result.packetEvent.has_value());
EXPECT_TRUE(result.packet.has_value());
// Cloned packet has to have crypto data and no acks.
bool hasAckFrame = false;
bool hasCryptoFrame = false;
for (auto iter = result.packet->packet.frames.cbegin();
iter != result.packet->packet.frames.cend();
iter++) {
const QuicWriteFrame& frame = *iter;
switch (frame.type()) {
case QuicWriteFrame::Type::WriteAckFrame:
hasAckFrame = true;
break;
case QuicWriteFrame::Type::WriteCryptoFrame:
hasCryptoFrame = true;
break;
default:
break;
}
}
EXPECT_FALSE(hasAckFrame);
EXPECT_TRUE(hasCryptoFrame);
}
TEST_F(QuicPacketSchedulerTest, CloneSchedulerHasInitialData) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
FrameScheduler noopScheduler("frame", conn);
CloningScheduler cloningScheduler(noopScheduler, conn, "CopyCat", 0);
EXPECT_FALSE(cloningScheduler.hasData());
addInitialOutstandingPacket(conn);
EXPECT_TRUE(cloningScheduler.hasData());
}
TEST_F(QuicPacketSchedulerTest, CloneSchedulerHasAppDataData) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
FrameScheduler noopScheduler("frame", conn);
CloningScheduler cloningScheduler(noopScheduler, conn, "CopyCat", 0);
EXPECT_FALSE(cloningScheduler.hasData());
addOutstandingPacket(conn);
EXPECT_TRUE(cloningScheduler.hasData());
}
TEST_F(QuicPacketSchedulerTest, DoNotCloneHandshake) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
FrameScheduler noopScheduler("frame", conn);
CloningScheduler cloningScheduler(noopScheduler, conn, "CopyCat", 0);
// Add two outstanding packets, with second one being handshake
auto expected = addOutstandingPacket(conn);
// There needs to have retransmittable frame for the rebuilder to work
conn.outstandings.packets.back().packet.frames.push_back(
MaxDataFrame(conn.flowControlState.advertisedMaxOffset));
addHandshakeOutstandingPacket(conn);
conn.outstandings.packets.back().packet.frames.push_back(
MaxDataFrame(conn.flowControlState.advertisedMaxOffset));
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto result = cloningScheduler.scheduleFramesForPacket(
std::move(builder), kDefaultUDPSendPacketLen);
EXPECT_TRUE(result.packetEvent.has_value() && result.packet.has_value());
EXPECT_EQ(expected, result.packetEvent->packetNumber);
}
TEST_F(QuicPacketSchedulerTest, CloneSchedulerUseNormalSchedulerFirst) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.version = QuicVersion::MVFST_EXPERIMENTAL2;
NiceMock<MockFrameScheduler> mockScheduler(&conn);
CloningScheduler cloningScheduler(mockScheduler, conn, "Mocker", 0);
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
EXPECT_CALL(mockScheduler, hasImmediateData())
.Times(1)
.WillOnce(Return(true));
EXPECT_CALL(mockScheduler, _scheduleFramesForPacket(_, _))
.Times(1)
.WillOnce(Invoke(
[&, headerCopy = header](PacketBuilderInterface*, uint32_t) mutable {
RegularQuicWritePacket packet(std::move(headerCopy));
packet.frames.push_back(MaxDataFrame(2832));
RegularQuicPacketBuilder::Packet builtPacket(
std::move(packet),
folly::IOBuf::copyBuffer("if you are the dealer"),
folly::IOBuf::copyBuffer("I'm out of the game"));
return SchedulingResult(folly::none, std::move(builtPacket));
}));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto result = cloningScheduler.scheduleFramesForPacket(
std::move(builder), kDefaultUDPSendPacketLen);
EXPECT_EQ(folly::none, result.packetEvent);
EXPECT_EQ(result.packet->packet.header.getHeaderForm(), HeaderForm::Short);
ShortHeader& shortHeader = *result.packet->packet.header.asShort();
EXPECT_EQ(ProtectionType::KeyPhaseOne, shortHeader.getProtectionType());
EXPECT_EQ(
conn.ackStates.appDataAckState.nextPacketNum,
shortHeader.getPacketSequenceNum());
EXPECT_EQ(1, result.packet->packet.frames.size());
MaxDataFrame* maxDataFrame =
result.packet->packet.frames.front().asMaxDataFrame();
ASSERT_NE(maxDataFrame, nullptr);
EXPECT_EQ(2832, maxDataFrame->maximumData);
EXPECT_TRUE(folly::IOBufEqualTo{}(
*folly::IOBuf::copyBuffer("if you are the dealer"),
*result.packet->header));
EXPECT_TRUE(folly::IOBufEqualTo{}(
*folly::IOBuf::copyBuffer("I'm out of the game"), *result.packet->body));
}
TEST_F(QuicPacketSchedulerTest, CloneWillGenerateNewWindowUpdate) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
auto stream = conn.streamManager->createNextBidirectionalStream().value();
FrameScheduler noopScheduler("frame", conn);
CloningScheduler cloningScheduler(noopScheduler, conn, "GiantsShoulder", 0);
PacketEvent expectedPacketEvent(
PacketNumberSpace::AppData, addOutstandingPacket(conn));
ASSERT_EQ(1, conn.outstandings.packets.size());
conn.outstandings.packets.back().packet.frames.push_back(MaxDataFrame(1000));
conn.outstandings.packets.back().packet.frames.push_back(
MaxStreamDataFrame(stream->id, 1000));
conn.flowControlState.advertisedMaxOffset = 1000;
stream->flowControlState.advertisedMaxOffset = 1000;
conn.flowControlState.sumCurReadOffset = 300;
conn.flowControlState.windowSize = 3000;
stream->currentReadOffset = 200;
stream->flowControlState.windowSize = 1500;
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto packetResult = cloningScheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen);
EXPECT_EQ(expectedPacketEvent, *packetResult.packetEvent);
int32_t verifyConnWindowUpdate = 1, verifyStreamWindowUpdate = 1;
for (const auto& frame : packetResult.packet->packet.frames) {
switch (frame.type()) {
case QuicWriteFrame::Type::MaxStreamDataFrame: {
const MaxStreamDataFrame& maxStreamDataFrame =
*frame.asMaxStreamDataFrame();
EXPECT_EQ(stream->id, maxStreamDataFrame.streamId);
verifyStreamWindowUpdate--;
break;
}
case QuicWriteFrame::Type::MaxDataFrame: {
verifyConnWindowUpdate--;
break;
}
case QuicWriteFrame::Type::PaddingFrame: {
break;
}
default:
// should never happen
EXPECT_TRUE(false);
}
}
EXPECT_EQ(0, verifyStreamWindowUpdate);
EXPECT_EQ(0, verifyConnWindowUpdate);
// Verify the built out packet has refreshed window update values
EXPECT_GE(packetResult.packet->packet.frames.size(), 2);
uint32_t streamWindowUpdateCounter = 0;
uint32_t connWindowUpdateCounter = 0;
for (auto& frame : packetResult.packet->packet.frames) {
auto streamFlowControl = frame.asMaxStreamDataFrame();
if (!streamFlowControl) {
continue;
}
streamWindowUpdateCounter++;
EXPECT_EQ(1700, streamFlowControl->maximumData);
}
for (auto& frame : packetResult.packet->packet.frames) {
auto connFlowControl = frame.asMaxDataFrame();
if (!connFlowControl) {
continue;
}
connWindowUpdateCounter++;
EXPECT_EQ(3300, connFlowControl->maximumData);
}
EXPECT_EQ(1, connWindowUpdateCounter);
EXPECT_EQ(1, streamWindowUpdateCounter);
}
TEST_F(QuicPacketSchedulerTest, CloningSchedulerWithInplaceBuilder) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.transportSettings.dataPathType = DataPathType::ContinuousMemory;
SimpleBufAccessor bufAccessor(2000);
auto buf = bufAccessor.obtain();
EXPECT_EQ(buf->length(), 0);
bufAccessor.release(std::move(buf));
conn.bufAccessor = &bufAccessor;
FrameScheduler noopScheduler("frame", conn);
ASSERT_FALSE(noopScheduler.hasData());
CloningScheduler cloningScheduler(noopScheduler, conn, "93MillionMiles", 0);
auto packetNum = addOutstandingPacket(conn);
// There needs to have retransmittable frame for the rebuilder to work
conn.outstandings.packets.back().packet.frames.push_back(
MaxDataFrame(conn.flowControlState.advertisedMaxOffset));
EXPECT_TRUE(cloningScheduler.hasData());
ASSERT_FALSE(noopScheduler.hasData());
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
InplaceQuicPacketBuilder builder(
bufAccessor,
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto result = cloningScheduler.scheduleFramesForPacket(
std::move(builder), kDefaultUDPSendPacketLen);
EXPECT_TRUE(result.packetEvent.has_value() && result.packet.has_value());
EXPECT_EQ(packetNum, result.packetEvent->packetNumber);
// Something was written into the buffer:
EXPECT_TRUE(bufAccessor.ownsBuffer());
buf = bufAccessor.obtain();
EXPECT_GT(buf->length(), 10);
}
TEST_F(QuicPacketSchedulerTest, CloningSchedulerWithInplaceBuilderFullPacket) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 100000;
conn.transportSettings.dataPathType = DataPathType::ContinuousMemory;
SimpleBufAccessor bufAccessor(2000);
auto buf = bufAccessor.obtain();
EXPECT_EQ(buf->length(), 0);
bufAccessor.release(std::move(buf));
conn.bufAccessor = &bufAccessor;
auto stream = *conn.streamManager->createNextBidirectionalStream();
auto inBuf = buildRandomInputData(conn.udpSendPacketLen * 10);
writeDataToQuicStream(*stream, inBuf->clone(), false);
FrameScheduler scheduler = std::move(FrameScheduler::Builder(
conn,
EncryptionLevel::AppData,
PacketNumberSpace::AppData,
"streamScheduler")
.streamFrames())
.build();
auto packetNum = getNextPacketNum(conn, PacketNumberSpace::AppData);
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
packetNum);
InplaceQuicPacketBuilder builder(
bufAccessor,
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
ASSERT_TRUE(scheduler.hasData());
auto result = scheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen);
auto bufferLength = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength();
EXPECT_EQ(conn.udpSendPacketLen, bufferLength);
updateConnection(
conn,
folly::none,
result.packet->packet,
Clock::now(),
bufferLength,
0,
false /* isDSRPacket */);
buf = bufAccessor.obtain();
ASSERT_EQ(conn.udpSendPacketLen, buf->length());
buf->clear();
bufAccessor.release(std::move(buf));
FrameScheduler noopScheduler("noopScheduler", conn);
ASSERT_FALSE(noopScheduler.hasData());
CloningScheduler cloningScheduler(noopScheduler, conn, "93MillionMiles", 0);
EXPECT_TRUE(cloningScheduler.hasData());
ASSERT_FALSE(noopScheduler.hasData());
// Exact same header, so header encoding should be the same
ShortHeader dupHeader(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
packetNum);
InplaceQuicPacketBuilder internalBuilder(
bufAccessor,
conn.udpSendPacketLen,
std::move(dupHeader),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto cloneResult = cloningScheduler.scheduleFramesForPacket(
std::move(internalBuilder), conn.udpSendPacketLen);
EXPECT_TRUE(
cloneResult.packetEvent.has_value() && cloneResult.packet.has_value());
EXPECT_EQ(packetNum, cloneResult.packetEvent->packetNumber);
// Something was written into the buffer:
EXPECT_TRUE(bufAccessor.ownsBuffer());
buf = bufAccessor.obtain();
EXPECT_EQ(buf->length(), conn.udpSendPacketLen);
}
TEST_F(QuicPacketSchedulerTest, CloneLargerThanOriginalPacket) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.udpSendPacketLen = 1000;
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 100000;
auto stream = conn.streamManager->createNextBidirectionalStream().value();
auto inputData = buildRandomInputData(conn.udpSendPacketLen * 10);
writeDataToQuicStream(*stream, inputData->clone(), false);
FrameScheduler scheduler = std::move(FrameScheduler::Builder(
conn,
EncryptionLevel::AppData,
PacketNumberSpace::AppData,
"streamScheduler")
.streamFrames())
.build();
auto cipherOverhead = 16;
PacketNum packetNum = 0;
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
packetNum);
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto packetResult = scheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen - cipherOverhead);
auto encodedSize = packetResult.packet->body->computeChainDataLength() +
packetResult.packet->header->computeChainDataLength() + cipherOverhead;
EXPECT_EQ(encodedSize, conn.udpSendPacketLen);
updateConnection(
conn,
folly::none,
packetResult.packet->packet,
Clock::now(),
encodedSize,
0,
false /* isDSRPacket */);
// make packetNum too larger to be encoded into the same size:
packetNum += 0xFF;
ShortHeader cloneHeader(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
packetNum);
RegularQuicPacketBuilder throwawayBuilder(
conn.udpSendPacketLen,
std::move(cloneHeader),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
FrameScheduler noopScheduler("noopScheduler", conn);
CloningScheduler cloningScheduler(
noopScheduler, conn, "CopyCat", cipherOverhead);
auto cloneResult = cloningScheduler.scheduleFramesForPacket(
std::move(throwawayBuilder), kDefaultUDPSendPacketLen);
EXPECT_FALSE(cloneResult.packet.hasValue());
EXPECT_FALSE(cloneResult.packetEvent.hasValue());
}
class AckSchedulingTest : public TestWithParam<PacketNumberSpace> {};
TEST_F(QuicPacketSchedulerTest, AckStateHasAcksToSchedule) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
EXPECT_FALSE(hasAcksToSchedule(conn.ackStates.initialAckState));
EXPECT_FALSE(hasAcksToSchedule(conn.ackStates.handshakeAckState));
EXPECT_FALSE(hasAcksToSchedule(conn.ackStates.appDataAckState));
conn.ackStates.initialAckState.acks.insert(0, 100);
EXPECT_TRUE(hasAcksToSchedule(conn.ackStates.initialAckState));
conn.ackStates.handshakeAckState.acks.insert(0, 100);
conn.ackStates.handshakeAckState.largestAckScheduled = 200;
EXPECT_FALSE(hasAcksToSchedule(conn.ackStates.handshakeAckState));
conn.ackStates.handshakeAckState.largestAckScheduled = folly::none;
EXPECT_TRUE(hasAcksToSchedule(conn.ackStates.handshakeAckState));
}
TEST_F(QuicPacketSchedulerTest, AckSchedulerHasAcksToSchedule) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
AckScheduler initialAckScheduler(
conn, getAckState(conn, PacketNumberSpace::Initial));
AckScheduler handshakeAckScheduler(
conn, getAckState(conn, PacketNumberSpace::Handshake));
AckScheduler appDataAckScheduler(
conn, getAckState(conn, PacketNumberSpace::AppData));
EXPECT_FALSE(initialAckScheduler.hasPendingAcks());
EXPECT_FALSE(handshakeAckScheduler.hasPendingAcks());
EXPECT_FALSE(appDataAckScheduler.hasPendingAcks());
conn.ackStates.initialAckState.acks.insert(0, 100);
EXPECT_TRUE(initialAckScheduler.hasPendingAcks());
conn.ackStates.handshakeAckState.acks.insert(0, 100);
conn.ackStates.handshakeAckState.largestAckScheduled = 200;
EXPECT_FALSE(handshakeAckScheduler.hasPendingAcks());
conn.ackStates.handshakeAckState.largestAckScheduled = folly::none;
EXPECT_TRUE(handshakeAckScheduler.hasPendingAcks());
}
TEST_F(QuicPacketSchedulerTest, LargestAckToSend) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
EXPECT_EQ(folly::none, largestAckToSend(conn.ackStates.initialAckState));
EXPECT_EQ(folly::none, largestAckToSend(conn.ackStates.handshakeAckState));
EXPECT_EQ(folly::none, largestAckToSend(conn.ackStates.appDataAckState));
conn.ackStates.initialAckState.acks.insert(0, 50);
conn.ackStates.handshakeAckState.acks.insert(0, 50);
conn.ackStates.handshakeAckState.acks.insert(75, 150);
EXPECT_EQ(50, *largestAckToSend(conn.ackStates.initialAckState));
EXPECT_EQ(150, *largestAckToSend(conn.ackStates.handshakeAckState));
EXPECT_EQ(folly::none, largestAckToSend(conn.ackStates.appDataAckState));
}
TEST_F(QuicPacketSchedulerTest, NeedsToSendAckWithoutAcksAvailable) {
// This covers the scheduler behavior when an IMMEDIATE_ACK frame is received.
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
AckScheduler initialAckScheduler(
conn, getAckState(conn, PacketNumberSpace::Initial));
AckScheduler handshakeAckScheduler(
conn, getAckState(conn, PacketNumberSpace::Handshake));
AckScheduler appDataAckScheduler(
conn, getAckState(conn, PacketNumberSpace::AppData));
EXPECT_FALSE(initialAckScheduler.hasPendingAcks());
EXPECT_FALSE(handshakeAckScheduler.hasPendingAcks());
EXPECT_FALSE(appDataAckScheduler.hasPendingAcks());
conn.ackStates.initialAckState.needsToSendAckImmediately = true;
conn.ackStates.handshakeAckState.needsToSendAckImmediately = true;
conn.ackStates.appDataAckState.needsToSendAckImmediately = true;
conn.ackStates.initialAckState.acks.insert(0, 100);
EXPECT_TRUE(initialAckScheduler.hasPendingAcks());
conn.ackStates.handshakeAckState.acks.insert(0, 100);
conn.ackStates.handshakeAckState.largestAckScheduled = 200;
EXPECT_FALSE(handshakeAckScheduler.hasPendingAcks());
conn.ackStates.handshakeAckState.largestAckScheduled = folly::none;
EXPECT_TRUE(handshakeAckScheduler.hasPendingAcks());
}
TEST_F(QuicPacketSchedulerTest, StreamFrameSchedulerAllFit) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 100000;
auto connId = getTestConnectionId();
StreamFrameScheduler scheduler(conn);
ShortHeader shortHeader(
ProtectionType::KeyPhaseZero,
connId,
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(shortHeader),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder.encodePacketHeader();
auto stream1 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream2 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream3 =
conn.streamManager->createNextBidirectionalStream().value()->id;
writeDataToQuicStream(
*conn.streamManager->findStream(stream1),
folly::IOBuf::copyBuffer("some data"),
false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream2),
folly::IOBuf::copyBuffer("some data"),
false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream3),
folly::IOBuf::copyBuffer("some data"),
false);
scheduler.writeStreams(builder);
EXPECT_EQ(conn.streamManager->writableStreams().getNextScheduledStream(), 0);
}
TEST_F(QuicPacketSchedulerTest, StreamFrameSchedulerRoundRobin) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 100000;
auto connId = getTestConnectionId();
StreamFrameScheduler scheduler(conn);
ShortHeader shortHeader1(
ProtectionType::KeyPhaseZero,
connId,
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(shortHeader1),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder.encodePacketHeader();
auto stream1 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream2 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream3 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto largeBuf = folly::IOBuf::createChain(conn.udpSendPacketLen * 2, 4096);
auto curBuf = largeBuf.get();
do {
curBuf->append(curBuf->capacity());
curBuf = curBuf->next();
} while (curBuf != largeBuf.get());
auto chainLen = largeBuf->computeChainDataLength();
writeDataToQuicStream(
*conn.streamManager->findStream(stream1), std::move(largeBuf), false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream2),
folly::IOBuf::copyBuffer("some data"),
false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream3),
folly::IOBuf::copyBuffer("some data"),
false);
// Force the wraparound initially.
scheduler.writeStreams(builder);
EXPECT_EQ(conn.streamManager->writableStreams().getNextScheduledStream(), 4);
// Should write frames for stream2, stream3, followed by stream1 again.
NiceMock<MockQuicPacketBuilder> builder2;
EXPECT_CALL(builder2, remainingSpaceInPkt()).WillRepeatedly(Return(4096));
EXPECT_CALL(builder2, appendFrame(_)).WillRepeatedly(Invoke([&](auto f) {
builder2.frames_.push_back(f);
}));
scheduler.writeStreams(builder2);
auto& frames = builder2.frames_;
ASSERT_EQ(frames.size(), 3);
WriteStreamFrame f1(stream2, 0, 9, false);
WriteStreamFrame f2(stream3, 0, 9, false);
WriteStreamFrame f3(stream1, 0, chainLen, false);
ASSERT_TRUE(frames[0].asWriteStreamFrame());
EXPECT_EQ(*frames[0].asWriteStreamFrame(), f1);
ASSERT_TRUE(frames[1].asWriteStreamFrame());
EXPECT_EQ(*frames[1].asWriteStreamFrame(), f2);
ASSERT_TRUE(frames[2].asWriteStreamFrame());
EXPECT_EQ(*frames[2].asWriteStreamFrame(), f3);
}
TEST_F(QuicPacketSchedulerTest, StreamFrameSchedulerRoundRobinStreamPerPacket) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 100000;
conn.transportSettings.streamFramePerPacket = true;
auto connId = getTestConnectionId();
StreamFrameScheduler scheduler(conn);
ShortHeader shortHeader1(
ProtectionType::KeyPhaseZero,
connId,
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder1(
conn.udpSendPacketLen,
std::move(shortHeader1),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto stream1 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream2 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream3 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto largeBuf = folly::IOBuf::createChain(conn.udpSendPacketLen * 2, 4096);
auto curBuf = largeBuf.get();
do {
curBuf->append(curBuf->capacity());
curBuf = curBuf->next();
} while (curBuf != largeBuf.get());
auto chainLen = largeBuf->computeChainDataLength();
writeDataToQuicStream(
*conn.streamManager->findStream(stream1), std::move(largeBuf), false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream2),
folly::IOBuf::copyBuffer("some data"),
false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream3),
folly::IOBuf::copyBuffer("some data"),
false);
// The default is to wraparound initially.
scheduler.writeStreams(builder1);
EXPECT_EQ(
conn.streamManager->writableStreams().getNextScheduledStream(), stream2);
// Should write frames for stream2, stream3, followed by stream1 again.
NiceMock<MockQuicPacketBuilder> builder2;
EXPECT_CALL(builder2, remainingSpaceInPkt()).WillRepeatedly(Return(4096));
EXPECT_CALL(builder2, appendFrame(_)).WillRepeatedly(Invoke([&](auto f) {
builder2.frames_.push_back(f);
}));
auto& frames = builder2.frames_;
scheduler.writeStreams(builder2);
ASSERT_EQ(frames.size(), 1);
scheduler.writeStreams(builder2);
ASSERT_EQ(frames.size(), 2);
scheduler.writeStreams(builder2);
ASSERT_EQ(frames.size(), 3);
WriteStreamFrame f1(stream2, 0, 9, false);
WriteStreamFrame f2(stream3, 0, 9, false);
WriteStreamFrame f3(stream1, 0, chainLen, false);
ASSERT_TRUE(frames[0].asWriteStreamFrame());
EXPECT_EQ(*frames[0].asWriteStreamFrame(), f1);
ASSERT_TRUE(frames[1].asWriteStreamFrame());
EXPECT_EQ(*frames[1].asWriteStreamFrame(), f2);
ASSERT_TRUE(frames[2].asWriteStreamFrame());
EXPECT_EQ(*frames[2].asWriteStreamFrame(), f3);
}
TEST_F(QuicPacketSchedulerTest, StreamFrameSchedulerSequential) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 100000;
auto connId = getTestConnectionId();
StreamFrameScheduler scheduler(conn);
ShortHeader shortHeader1(
ProtectionType::KeyPhaseZero,
connId,
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder1(
conn.udpSendPacketLen,
std::move(shortHeader1),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto stream1 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream2 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream3 =
conn.streamManager->createNextBidirectionalStream().value()->id;
conn.streamManager->findStream(stream1)->priority = Priority(0, false);
conn.streamManager->findStream(stream2)->priority = Priority(0, false);
conn.streamManager->findStream(stream3)->priority = Priority(0, false);
auto largeBuf = folly::IOBuf::createChain(conn.udpSendPacketLen * 2, 4096);
auto curBuf = largeBuf.get();
do {
curBuf->append(curBuf->capacity());
curBuf = curBuf->next();
} while (curBuf != largeBuf.get());
auto chainLen = largeBuf->computeChainDataLength();
writeDataToQuicStream(
*conn.streamManager->findStream(stream1), std::move(largeBuf), false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream2),
folly::IOBuf::copyBuffer("some data"),
false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream3),
folly::IOBuf::copyBuffer("some data"),
false);
// The default is to wraparound initially.
scheduler.writeStreams(builder1);
EXPECT_EQ(
conn.streamManager->writableStreams().getNextScheduledStream(
Priority(0, false)),
stream1);
// Should write frames for stream1, stream2, stream3, in that order.
NiceMock<MockQuicPacketBuilder> builder2;
EXPECT_CALL(builder2, remainingSpaceInPkt()).WillRepeatedly(Return(4096));
EXPECT_CALL(builder2, appendFrame(_)).WillRepeatedly(Invoke([&](auto f) {
builder2.frames_.push_back(f);
}));
scheduler.writeStreams(builder2);
auto& frames = builder2.frames_;
ASSERT_EQ(frames.size(), 3);
WriteStreamFrame f1(stream1, 0, chainLen, false);
WriteStreamFrame f2(stream2, 0, 9, false);
WriteStreamFrame f3(stream3, 0, 9, false);
ASSERT_TRUE(frames[0].asWriteStreamFrame());
EXPECT_EQ(*frames[0].asWriteStreamFrame(), f1);
ASSERT_TRUE(frames[1].asWriteStreamFrame());
EXPECT_EQ(*frames[1].asWriteStreamFrame(), f2);
ASSERT_TRUE(frames[2].asWriteStreamFrame());
EXPECT_EQ(*frames[2].asWriteStreamFrame(), f3);
}
TEST_F(QuicPacketSchedulerTest, StreamFrameSchedulerRoundRobinControl) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 100000;
auto connId = getTestConnectionId();
StreamFrameScheduler scheduler(conn);
ShortHeader shortHeader1(
ProtectionType::KeyPhaseZero,
connId,
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(shortHeader1),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder.encodePacketHeader();
auto stream1 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream2 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream3 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream4 =
conn.streamManager->createNextBidirectionalStream().value()->id;
conn.streamManager->setStreamAsControl(
*conn.streamManager->findStream(stream2));
conn.streamManager->setStreamAsControl(
*conn.streamManager->findStream(stream4));
auto largeBuf = folly::IOBuf::createChain(conn.udpSendPacketLen * 2, 4096);
auto curBuf = largeBuf.get();
do {
curBuf->append(curBuf->capacity());
curBuf = curBuf->next();
} while (curBuf != largeBuf.get());
auto chainLen = largeBuf->computeChainDataLength();
writeDataToQuicStream(
*conn.streamManager->findStream(stream1), std::move(largeBuf), false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream2),
folly::IOBuf::copyBuffer("some data"),
false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream3),
folly::IOBuf::copyBuffer("some data"),
false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream4),
folly::IOBuf::copyBuffer("some data"),
false);
// The default is to wraparound initially.
scheduler.writeStreams(builder);
EXPECT_EQ(
conn.streamManager->writableStreams().getNextScheduledStream(), stream3);
EXPECT_EQ(conn.schedulingState.nextScheduledControlStream, stream2);
// Should write frames for stream2, stream4, followed by stream 3 then 1.
NiceMock<MockQuicPacketBuilder> builder2;
EXPECT_CALL(builder2, remainingSpaceInPkt()).WillRepeatedly(Return(4096));
EXPECT_CALL(builder2, appendFrame(_)).WillRepeatedly(Invoke([&](auto f) {
builder2.frames_.push_back(f);
}));
scheduler.writeStreams(builder2);
auto& frames = builder2.frames_;
ASSERT_EQ(frames.size(), 4);
WriteStreamFrame f1(stream2, 0, 9, false);
WriteStreamFrame f2(stream4, 0, 9, false);
WriteStreamFrame f3(stream3, 0, 9, false);
WriteStreamFrame f4(stream1, 0, chainLen, false);
ASSERT_TRUE(frames[0].asWriteStreamFrame());
EXPECT_EQ(*frames[0].asWriteStreamFrame(), f1);
ASSERT_TRUE(frames[1].asWriteStreamFrame());
EXPECT_EQ(*frames[1].asWriteStreamFrame(), f2);
ASSERT_TRUE(frames[2].asWriteStreamFrame());
EXPECT_EQ(*frames[2].asWriteStreamFrame(), f3);
ASSERT_TRUE(frames[3].asWriteStreamFrame());
EXPECT_EQ(*frames[3].asWriteStreamFrame(), f4);
EXPECT_EQ(
conn.streamManager->writableStreams().getNextScheduledStream(), stream3);
EXPECT_EQ(conn.schedulingState.nextScheduledControlStream, stream2);
}
TEST_F(QuicPacketSchedulerTest, StreamFrameSchedulerOneStream) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 100000;
auto connId = getTestConnectionId();
StreamFrameScheduler scheduler(conn);
ShortHeader shortHeader(
ProtectionType::KeyPhaseZero,
connId,
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(shortHeader),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder.encodePacketHeader();
auto stream1 = conn.streamManager->createNextBidirectionalStream().value();
writeDataToQuicStream(*stream1, folly::IOBuf::copyBuffer("some data"), false);
scheduler.writeStreams(builder);
EXPECT_EQ(conn.streamManager->writableStreams().getNextScheduledStream(), 0);
}
TEST_F(QuicPacketSchedulerTest, StreamFrameSchedulerRemoveOne) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 100000;
StreamFrameScheduler scheduler(conn);
NiceMock<MockQuicPacketBuilder> builder;
auto stream1 =
conn.streamManager->createNextBidirectionalStream().value()->id;
auto stream2 =
conn.streamManager->createNextBidirectionalStream().value()->id;
writeDataToQuicStream(
*conn.streamManager->findStream(stream1),
folly::IOBuf::copyBuffer("some data"),
false);
writeDataToQuicStream(
*conn.streamManager->findStream(stream2),
folly::IOBuf::copyBuffer("some data"),
false);
EXPECT_CALL(builder, remainingSpaceInPkt()).WillRepeatedly(Return(4096));
EXPECT_CALL(builder, appendFrame(_)).WillRepeatedly(Invoke([&](auto f) {
builder.frames_.push_back(f);
}));
scheduler.writeStreams(builder);
WriteStreamFrame f1(stream1, 0, 9, false);
WriteStreamFrame f2(stream2, 0, 9, false);
ASSERT_TRUE(builder.frames_[0].asWriteStreamFrame());
EXPECT_EQ(*builder.frames_[0].asWriteStreamFrame(), f1);
ASSERT_TRUE(builder.frames_[1].asWriteStreamFrame());
EXPECT_EQ(*builder.frames_[1].asWriteStreamFrame(), f2);
// Manually remove a stream and set the next scheduled to that stream.
builder.frames_.clear();
conn.streamManager->writableStreams().setNextScheduledStream(stream2);
conn.streamManager->removeWritable(*conn.streamManager->findStream(stream2));
scheduler.writeStreams(builder);
ASSERT_EQ(builder.frames_.size(), 1);
ASSERT_TRUE(builder.frames_[0].asWriteStreamFrame());
EXPECT_EQ(*builder.frames_[0].asWriteStreamFrame(), f1);
}
TEST_F(
QuicPacketSchedulerTest,
CloningSchedulerWithInplaceBuilderDoNotEncodeHeaderWithoutBuild) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.transportSettings.dataPathType = DataPathType::ContinuousMemory;
SimpleBufAccessor bufAccessor(2000);
auto buf = bufAccessor.obtain();
EXPECT_EQ(buf->length(), 0);
bufAccessor.release(std::move(buf));
conn.bufAccessor = &bufAccessor;
FrameScheduler noopScheduler("frame", conn);
ASSERT_FALSE(noopScheduler.hasData());
CloningScheduler cloningScheduler(noopScheduler, conn, "Little Hurry", 0);
addOutstandingPacket(conn);
// There needs to have retransmittable frame for the rebuilder to work
conn.outstandings.packets.back().packet.frames.push_back(
MaxDataFrame(conn.flowControlState.advertisedMaxOffset));
// Lie about the encodedSize to let the Cloner skip it:
conn.outstandings.packets.back().metadata.encodedSize =
kDefaultUDPSendPacketLen * 2;
EXPECT_TRUE(cloningScheduler.hasData());
ASSERT_FALSE(noopScheduler.hasData());
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
InplaceQuicPacketBuilder builder(
bufAccessor,
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto result = cloningScheduler.scheduleFramesForPacket(
std::move(builder), kDefaultUDPSendPacketLen);
EXPECT_FALSE(result.packetEvent.has_value());
// Nothing was written into the buffer:
EXPECT_TRUE(bufAccessor.ownsBuffer());
buf = bufAccessor.obtain();
EXPECT_EQ(buf->length(), 0);
}
TEST_F(
QuicPacketSchedulerTest,
CloningSchedulerWithInplaceBuilderRollbackBufWhenFailToRebuild) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.transportSettings.dataPathType = DataPathType::ContinuousMemory;
SimpleBufAccessor bufAccessor(2000);
auto buf = bufAccessor.obtain();
EXPECT_EQ(buf->length(), 0);
bufAccessor.release(std::move(buf));
conn.bufAccessor = &bufAccessor;
FrameScheduler noopScheduler("frame", conn);
ASSERT_FALSE(noopScheduler.hasData());
CloningScheduler cloningScheduler(noopScheduler, conn, "HotPot", 0);
addOutstandingPacket(conn);
// Not adding frame to this outstanding packet so that rebuild will fail:
ASSERT_TRUE(conn.outstandings.packets.back().packet.frames.empty());
EXPECT_TRUE(cloningScheduler.hasData());
ASSERT_FALSE(noopScheduler.hasData());
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
InplaceQuicPacketBuilder builder(
bufAccessor,
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
auto result = cloningScheduler.scheduleFramesForPacket(
std::move(builder), kDefaultUDPSendPacketLen);
EXPECT_FALSE(result.packetEvent.has_value());
// Nothing was written into the buffer:
EXPECT_TRUE(bufAccessor.ownsBuffer());
buf = bufAccessor.obtain();
EXPECT_EQ(buf->length(), 0);
}
TEST_F(QuicPacketSchedulerTest, HighPriNewDataBeforeLowPriLossData) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 100000;
auto lowPriStreamId =
(*conn.streamManager->createNextBidirectionalStream())->id;
auto highPriStreamId =
(*conn.streamManager->createNextBidirectionalStream())->id;
auto lowPriStream = conn.streamManager->findStream(lowPriStreamId);
auto highPriStream = conn.streamManager->findStream(highPriStreamId);
lowPriStream->lossBuffer.push_back(
StreamBuffer(folly::IOBuf::copyBuffer("Onegin"), 0, false));
conn.streamManager->updateWritableStreams(*lowPriStream);
conn.streamManager->setStreamPriority(lowPriStream->id, 5, false);
auto inBuf = buildRandomInputData(conn.udpSendPacketLen * 10);
writeDataToQuicStream(*highPriStream, inBuf->clone(), false);
conn.streamManager->updateWritableStreams(*highPriStream);
conn.streamManager->setStreamPriority(highPriStream->id, 0, false);
StreamFrameScheduler scheduler(conn);
ShortHeader shortHeader(
ProtectionType::KeyPhaseZero,
getTestConnectionId(),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(shortHeader),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder.encodePacketHeader();
scheduler.writeStreams(builder);
auto packet = std::move(builder).buildPacket().packet;
EXPECT_EQ(1, packet.frames.size());
auto& writeStreamFrame = *packet.frames[0].asWriteStreamFrame();
EXPECT_EQ(highPriStream->id, writeStreamFrame.streamId);
EXPECT_FALSE(lowPriStream->lossBuffer.empty());
}
TEST_F(QuicPacketSchedulerTest, WriteLossWithoutFlowControl) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 1000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 1000;
auto streamId = (*conn.streamManager->createNextBidirectionalStream())->id;
auto stream = conn.streamManager->findStream(streamId);
auto data = buildRandomInputData(1000);
writeDataToQuicStream(*stream, std::move(data), true);
conn.streamManager->updateWritableStreams(*stream);
StreamFrameScheduler scheduler(conn);
EXPECT_TRUE(scheduler.hasPendingData());
ShortHeader shortHeader1(
ProtectionType::KeyPhaseZero,
getTestConnectionId(),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder1(
conn.udpSendPacketLen,
std::move(shortHeader1),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder1.encodePacketHeader();
scheduler.writeStreams(builder1);
auto packet1 = std::move(builder1).buildPacket().packet;
updateConnection(
conn, folly::none, packet1, Clock::now(), 1000, 0, false /* isDSR */);
EXPECT_EQ(1, packet1.frames.size());
auto& writeStreamFrame1 = *packet1.frames[0].asWriteStreamFrame();
EXPECT_EQ(streamId, writeStreamFrame1.streamId);
EXPECT_EQ(0, getSendConnFlowControlBytesWire(conn));
EXPECT_EQ(0, stream->writeBuffer.chainLength());
EXPECT_EQ(1, stream->retransmissionBuffer.size());
EXPECT_EQ(1000, stream->retransmissionBuffer[0]->data.chainLength());
// Move the bytes to loss buffer:
stream->lossBuffer.emplace_back(std::move(*stream->retransmissionBuffer[0]));
stream->retransmissionBuffer.clear();
conn.streamManager->updateWritableStreams(*stream);
conn.streamManager->updateLossStreams(*stream);
EXPECT_TRUE(scheduler.hasPendingData());
// Write again
ShortHeader shortHeader2(
ProtectionType::KeyPhaseZero,
getTestConnectionId(),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder2(
conn.udpSendPacketLen,
std::move(shortHeader2),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder2.encodePacketHeader();
scheduler.writeStreams(builder2);
auto packet2 = std::move(builder2).buildPacket().packet;
updateConnection(
conn, folly::none, packet2, Clock::now(), 1000, 0, false /* isDSR */);
EXPECT_EQ(1, packet2.frames.size());
auto& writeStreamFrame2 = *packet2.frames[0].asWriteStreamFrame();
EXPECT_EQ(streamId, writeStreamFrame2.streamId);
EXPECT_EQ(0, getSendConnFlowControlBytesWire(conn));
EXPECT_TRUE(stream->lossBuffer.empty());
EXPECT_EQ(1, stream->retransmissionBuffer.size());
EXPECT_EQ(1000, stream->retransmissionBuffer[0]->data.chainLength());
}
TEST_F(QuicPacketSchedulerTest, WriteLossWithoutFlowControlIgnoreDSR) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 1000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 1000;
auto streamId = (*conn.streamManager->createNextBidirectionalStream())->id;
auto dsrStream = conn.streamManager->createNextBidirectionalStream().value();
auto stream = conn.streamManager->findStream(streamId);
auto data = buildRandomInputData(1000);
writeDataToQuicStream(*stream, std::move(data), true);
WriteBufferMeta bufMeta{};
bufMeta.offset = 0;
bufMeta.length = 100;
bufMeta.eof = false;
dsrStream->insertIntoLossBufMeta(bufMeta);
conn.streamManager->updateWritableStreams(*stream);
conn.streamManager->updateWritableStreams(*dsrStream);
conn.streamManager->updateLossStreams(*dsrStream);
StreamFrameScheduler scheduler(conn);
EXPECT_TRUE(scheduler.hasPendingData());
ShortHeader shortHeader1(
ProtectionType::KeyPhaseZero,
getTestConnectionId(),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder1(
conn.udpSendPacketLen,
std::move(shortHeader1),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder1.encodePacketHeader();
scheduler.writeStreams(builder1);
auto packet1 = std::move(builder1).buildPacket().packet;
updateConnection(
conn, folly::none, packet1, Clock::now(), 1000, 0, false /* isDSR */);
EXPECT_EQ(1, packet1.frames.size());
auto& writeStreamFrame1 = *packet1.frames[0].asWriteStreamFrame();
EXPECT_EQ(streamId, writeStreamFrame1.streamId);
EXPECT_EQ(0, getSendConnFlowControlBytesWire(conn));
EXPECT_EQ(0, stream->writeBuffer.chainLength());
EXPECT_EQ(1, stream->retransmissionBuffer.size());
EXPECT_EQ(1000, stream->retransmissionBuffer[0]->data.chainLength());
EXPECT_FALSE(scheduler.hasPendingData());
}
TEST_F(QuicPacketSchedulerTest, WriteLossWithoutFlowControlSequential) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 1000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 1000;
auto streamId = (*conn.streamManager->createNextBidirectionalStream())->id;
conn.streamManager->setStreamPriority(streamId, 0, false);
auto stream = conn.streamManager->findStream(streamId);
auto data = buildRandomInputData(1000);
writeDataToQuicStream(*stream, std::move(data), true);
conn.streamManager->updateWritableStreams(*stream);
StreamFrameScheduler scheduler(conn);
EXPECT_TRUE(scheduler.hasPendingData());
ShortHeader shortHeader1(
ProtectionType::KeyPhaseZero,
getTestConnectionId(),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder1(
conn.udpSendPacketLen,
std::move(shortHeader1),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder1.encodePacketHeader();
scheduler.writeStreams(builder1);
auto packet1 = std::move(builder1).buildPacket().packet;
updateConnection(
conn, folly::none, packet1, Clock::now(), 1000, 0, false /* isDSR */);
EXPECT_EQ(1, packet1.frames.size());
auto& writeStreamFrame1 = *packet1.frames[0].asWriteStreamFrame();
EXPECT_EQ(streamId, writeStreamFrame1.streamId);
EXPECT_EQ(0, getSendConnFlowControlBytesWire(conn));
EXPECT_EQ(0, stream->writeBuffer.chainLength());
EXPECT_EQ(1, stream->retransmissionBuffer.size());
EXPECT_EQ(1000, stream->retransmissionBuffer[0]->data.chainLength());
// Move the bytes to loss buffer:
stream->lossBuffer.emplace_back(std::move(*stream->retransmissionBuffer[0]));
stream->retransmissionBuffer.clear();
conn.streamManager->updateWritableStreams(*stream);
conn.streamManager->updateLossStreams(*stream);
EXPECT_TRUE(scheduler.hasPendingData());
// Write again
ShortHeader shortHeader2(
ProtectionType::KeyPhaseZero,
getTestConnectionId(),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder2(
conn.udpSendPacketLen,
std::move(shortHeader2),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder2.encodePacketHeader();
scheduler.writeStreams(builder2);
auto packet2 = std::move(builder2).buildPacket().packet;
updateConnection(
conn, folly::none, packet2, Clock::now(), 1000, 0, false /* isDSR */);
EXPECT_EQ(1, packet2.frames.size());
auto& writeStreamFrame2 = *packet2.frames[0].asWriteStreamFrame();
EXPECT_EQ(streamId, writeStreamFrame2.streamId);
EXPECT_EQ(0, getSendConnFlowControlBytesWire(conn));
EXPECT_TRUE(stream->lossBuffer.empty());
EXPECT_EQ(1, stream->retransmissionBuffer.size());
EXPECT_EQ(1000, stream->retransmissionBuffer[0]->data.chainLength());
}
TEST_F(QuicPacketSchedulerTest, RunOutFlowControlDuringStreamWrite) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 1000;
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote = 1000;
conn.udpSendPacketLen = 2000;
auto streamId1 = (*conn.streamManager->createNextBidirectionalStream())->id;
auto streamId2 = (*conn.streamManager->createNextBidirectionalStream())->id;
auto stream1 = conn.streamManager->findStream(streamId1);
auto stream2 = conn.streamManager->findStream(streamId2);
auto newData = buildRandomInputData(1000);
writeDataToQuicStream(*stream1, std::move(newData), true);
conn.streamManager->updateWritableStreams(*stream1);
// Fake a loss data for stream2:
stream2->currentWriteOffset = 201;
auto lossData = buildRandomInputData(200);
stream2->lossBuffer.emplace_back(std::move(lossData), 0, true);
conn.streamManager->updateWritableStreams(*stream2);
StreamFrameScheduler scheduler(conn);
ShortHeader shortHeader1(
ProtectionType::KeyPhaseZero,
getTestConnectionId(),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder1(
conn.udpSendPacketLen,
std::move(shortHeader1),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder1.encodePacketHeader();
scheduler.writeStreams(builder1);
auto packet1 = std::move(builder1).buildPacket().packet;
updateConnection(
conn, folly::none, packet1, Clock::now(), 1200, 0, false /* isDSR */);
EXPECT_EQ(2, packet1.frames.size());
auto& writeStreamFrame1 = *packet1.frames[0].asWriteStreamFrame();
EXPECT_EQ(streamId1, writeStreamFrame1.streamId);
EXPECT_EQ(0, getSendConnFlowControlBytesWire(conn));
EXPECT_EQ(0, stream1->writeBuffer.chainLength());
EXPECT_EQ(1, stream1->retransmissionBuffer.size());
EXPECT_EQ(1000, stream1->retransmissionBuffer[0]->data.chainLength());
auto& writeStreamFrame2 = *packet1.frames[1].asWriteStreamFrame();
EXPECT_EQ(streamId2, writeStreamFrame2.streamId);
EXPECT_EQ(200, writeStreamFrame2.len);
EXPECT_TRUE(stream2->lossBuffer.empty());
EXPECT_EQ(1, stream2->retransmissionBuffer.size());
EXPECT_EQ(200, stream2->retransmissionBuffer[0]->data.chainLength());
}
TEST_F(QuicPacketSchedulerTest, WritingFINWithAndWithoutBufMetas) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
auto* stream = *(conn.streamManager->createNextBidirectionalStream());
stream->flowControlState.peerAdvertisedMaxOffset = 100000;
writeDataToQuicStream(*stream, folly::IOBuf::copyBuffer("Ascent"), false);
stream->dsrSender = std::make_unique<MockDSRPacketizationRequestSender>();
BufferMeta bufferMeta(5000);
writeBufMetaToQuicStream(*stream, bufferMeta, true);
EXPECT_TRUE(stream->finalWriteOffset.hasValue());
PacketNum packetNum = 0;
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
packetNum);
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder.encodePacketHeader();
StreamFrameScheduler scheduler(conn);
scheduler.writeStreams(builder);
auto packet = std::move(builder).buildPacket().packet;
EXPECT_EQ(1, packet.frames.size());
auto streamFrame = *packet.frames[0].asWriteStreamFrame();
EXPECT_EQ(streamFrame.len, 6);
EXPECT_EQ(streamFrame.offset, 0);
EXPECT_FALSE(streamFrame.fin);
handleNewStreamDataWritten(*stream, streamFrame.len, streamFrame.fin);
// Pretent all the bufMetas were sent, without FIN bit
stream->writeBufMeta.split(5000);
ASSERT_EQ(0, stream->writeBufMeta.length);
ASSERT_GT(stream->writeBufMeta.offset, 0);
conn.streamManager->updateWritableStreams(*stream);
// Do another non-DSR stream write, it will write FIN with correct offset
ShortHeader header2(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
1);
RegularQuicPacketBuilder builder2(
conn.udpSendPacketLen,
std::move(header2),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder2.encodePacketHeader();
StreamFrameScheduler scheduler2(conn);
scheduler2.writeStreams(builder2);
auto packet2 = std::move(builder2).buildPacket().packet;
EXPECT_EQ(1, packet2.frames.size());
auto streamFrame2 = *packet2.frames[0].asWriteStreamFrame();
EXPECT_EQ(streamFrame2.len, 0);
EXPECT_EQ(streamFrame2.offset, 6 + 5000);
EXPECT_TRUE(streamFrame2.fin);
}
TEST_F(QuicPacketSchedulerTest, NoFINWriteWhenBufMetaWrittenFIN) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.streamManager->setMaxLocalBidirectionalStreams(10);
conn.flowControlState.peerAdvertisedMaxOffset = 100000;
auto* stream = *(conn.streamManager->createNextBidirectionalStream());
stream->flowControlState.peerAdvertisedMaxOffset = 100000;
writeDataToQuicStream(*stream, folly::IOBuf::copyBuffer("Ascent"), false);
stream->dsrSender = std::make_unique<MockDSRPacketizationRequestSender>();
BufferMeta bufferMeta(5000);
writeBufMetaToQuicStream(*stream, bufferMeta, true);
EXPECT_TRUE(stream->finalWriteOffset.hasValue());
PacketNum packetNum = 0;
ShortHeader header(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
packetNum);
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(header),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
builder.encodePacketHeader();
StreamFrameScheduler scheduler(conn);
scheduler.writeStreams(builder);
auto packet = std::move(builder).buildPacket().packet;
EXPECT_EQ(1, packet.frames.size());
auto streamFrame = *packet.frames[0].asWriteStreamFrame();
EXPECT_EQ(streamFrame.len, 6);
EXPECT_EQ(streamFrame.offset, 0);
EXPECT_FALSE(streamFrame.fin);
handleNewStreamDataWritten(*stream, streamFrame.len, streamFrame.fin);
// Pretent all the bufMetas were sent, without FIN bit
stream->writeBufMeta.split(5000);
stream->writeBufMeta.offset++;
ASSERT_EQ(0, stream->writeBufMeta.length);
ASSERT_GT(stream->writeBufMeta.offset, 0);
conn.streamManager->updateWritableStreams(*stream);
StreamFrameScheduler scheduler2(conn);
EXPECT_FALSE(scheduler2.hasPendingData());
}
TEST_F(QuicPacketSchedulerTest, DatagramFrameSchedulerMultipleFramesPerPacket) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.datagramState.maxReadFrameSize = std::numeric_limits<uint16_t>::max();
conn.datagramState.maxReadBufferSize = 10;
conn.transportSettings.datagramConfig.framePerPacket = false;
DatagramFrameScheduler scheduler(conn);
// Add datagrams
std::string s1(conn.udpSendPacketLen / 3, '*');
conn.datagramState.writeBuffer.emplace_back(folly::IOBuf::copyBuffer(s1));
std::string s2(conn.udpSendPacketLen / 3, '%');
conn.datagramState.writeBuffer.emplace_back(folly::IOBuf::copyBuffer(s2));
NiceMock<MockQuicPacketBuilder> builder;
EXPECT_CALL(builder, remainingSpaceInPkt()).WillRepeatedly(Return(4096));
EXPECT_CALL(builder, appendFrame(_)).WillRepeatedly(Invoke([&](auto f) {
builder.frames_.push_back(f);
}));
NiceMock<MockQuicStats> quicStats;
conn.statsCallback = &quicStats;
EXPECT_CALL(quicStats, onDatagramWrite(_))
.Times(2)
.WillRepeatedly(Invoke([](uint64_t bytes) { EXPECT_GT(bytes, 0); }));
// Call scheduler
auto& frames = builder.frames_;
scheduler.writeDatagramFrames(builder);
ASSERT_EQ(frames.size(), 2);
}
TEST_F(QuicPacketSchedulerTest, DatagramFrameSchedulerOneFramePerPacket) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.datagramState.maxReadFrameSize = std::numeric_limits<uint16_t>::max();
conn.datagramState.maxReadBufferSize = 10;
conn.transportSettings.datagramConfig.framePerPacket = true;
DatagramFrameScheduler scheduler(conn);
// Add datagrams
std::string s1(conn.udpSendPacketLen / 3, '*');
conn.datagramState.writeBuffer.emplace_back(folly::IOBuf::copyBuffer(s1));
std::string s2(conn.udpSendPacketLen / 3, '%');
conn.datagramState.writeBuffer.emplace_back(folly::IOBuf::copyBuffer(s2));
NiceMock<MockQuicPacketBuilder> builder;
EXPECT_CALL(builder, remainingSpaceInPkt()).WillRepeatedly(Return(4096));
EXPECT_CALL(builder, appendFrame(_)).WillRepeatedly(Invoke([&](auto f) {
builder.frames_.push_back(f);
}));
NiceMock<MockQuicStats> quicStats;
conn.statsCallback = &quicStats;
// Call scheduler
auto& frames = builder.frames_;
EXPECT_CALL(quicStats, onDatagramWrite(_))
.Times(1)
.WillRepeatedly(Invoke([](uint64_t bytes) { EXPECT_GT(bytes, 0); }));
scheduler.writeDatagramFrames(builder);
ASSERT_EQ(frames.size(), 1);
EXPECT_CALL(quicStats, onDatagramWrite(_))
.Times(1)
.WillRepeatedly(Invoke([](uint64_t bytes) { EXPECT_GT(bytes, 0); }));
scheduler.writeDatagramFrames(builder);
ASSERT_EQ(frames.size(), 2);
}
TEST_F(QuicPacketSchedulerTest, DatagramFrameWriteWhenRoomAvailable) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.datagramState.maxReadFrameSize = std::numeric_limits<uint16_t>::max();
conn.datagramState.maxReadBufferSize = 10;
conn.transportSettings.datagramConfig.framePerPacket = true;
DatagramFrameScheduler scheduler(conn);
// Add datagram
std::string s(conn.udpSendPacketLen / 3, '*');
conn.datagramState.writeBuffer.emplace_back(folly::IOBuf::copyBuffer(s));
NiceMock<MockQuicPacketBuilder> builder;
EXPECT_CALL(builder, remainingSpaceInPkt())
.WillRepeatedly(Return(conn.udpSendPacketLen / 4));
EXPECT_CALL(builder, appendFrame(_)).WillRepeatedly(Invoke([&](auto f) {
builder.frames_.push_back(f);
}));
NiceMock<MockQuicStats> quicStats;
conn.statsCallback = &quicStats;
// Call scheduler
auto& frames = builder.frames_;
scheduler.writeDatagramFrames(builder);
ASSERT_EQ(frames.size(), 0);
EXPECT_CALL(builder, remainingSpaceInPkt())
.WillRepeatedly(Return(conn.udpSendPacketLen / 2));
EXPECT_CALL(quicStats, onDatagramWrite(_))
.Times(1)
.WillRepeatedly(Invoke([](uint64_t bytes) { EXPECT_GT(bytes, 0); }));
scheduler.writeDatagramFrames(builder);
ASSERT_EQ(frames.size(), 1);
}
TEST_F(QuicPacketSchedulerTest, ShortHeaderPaddingWithSpaceForPadding) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
size_t paddingModulo = 16;
conn.transportSettings.paddingModulo = paddingModulo;
// create enough input data to partially fill packet
size_t inputDataLength1 = conn.udpSendPacketLen / 2;
size_t inputDataLength2 = inputDataLength1 + 1;
auto inputData1 = buildRandomInputData(inputDataLength1);
auto inputData2 = buildRandomInputData(inputDataLength2);
FrameScheduler scheduler = std::move(FrameScheduler::Builder(
conn,
EncryptionLevel::AppData,
PacketNumberSpace::AppData,
"streamScheduler")
.streamFrames())
.build();
ShortHeader shortHeader1(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
ShortHeader shortHeader2(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder1(
conn.udpSendPacketLen,
std::move(shortHeader1),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
RegularQuicPacketBuilder builder2(
conn.udpSendPacketLen,
std::move(shortHeader2),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
DatagramFrame frame1(inputDataLength1, std::move(inputData1));
DatagramFrame frame2(inputDataLength2, std::move(inputData2));
writeFrame(frame1, builder1);
writeFrame(frame2, builder2);
NiceMock<MockQuicStats> quicStats;
conn.statsCallback = &quicStats;
EXPECT_CALL(quicStats, onShortHeaderPadding(_)).Times(1);
auto result1 = scheduler.scheduleFramesForPacket(
std::move(builder1), conn.udpSendPacketLen);
EXPECT_CALL(quicStats, onShortHeaderPadding(_)).Times(1);
auto result2 = scheduler.scheduleFramesForPacket(
std::move(builder2), conn.udpSendPacketLen);
auto headerLength1 = result1.packet->header->computeChainDataLength();
auto bodyLength1 = result1.packet->body->computeChainDataLength();
auto packetLength1 = headerLength1 + bodyLength1;
auto expectedPadding1 =
(conn.udpSendPacketLen - (inputDataLength1 + headerLength1)) %
paddingModulo;
auto headerLength2 = result2.packet->header->computeChainDataLength();
auto bodyLength2 = result2.packet->body->computeChainDataLength();
auto packetLength2 = headerLength2 + bodyLength2;
auto expectedPadding2 =
(conn.udpSendPacketLen - (inputDataLength2 + headerLength2)) %
paddingModulo;
EXPECT_EQ(packetLength1, headerLength1 + inputDataLength1 + expectedPadding1);
EXPECT_EQ(packetLength2, headerLength2 + inputDataLength2 + expectedPadding2);
// ensure two similar size input data get padded up to same length
EXPECT_EQ(packetLength1, packetLength2);
}
TEST_F(QuicPacketSchedulerTest, ShortHeaderPaddingNearMaxPacketLength) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.udpSendPacketLen = 1000;
size_t paddingModulo = 50;
conn.transportSettings.paddingModulo = paddingModulo;
// create enough input data to almost fill packet
size_t inputDataLength = conn.udpSendPacketLen - 20;
auto inputData = buildRandomInputData(inputDataLength);
FrameScheduler scheduler = std::move(FrameScheduler::Builder(
conn,
EncryptionLevel::AppData,
PacketNumberSpace::AppData,
"streamScheduler")
.streamFrames())
.build();
ShortHeader shortHeader(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(shortHeader),
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0));
DatagramFrame frame(inputDataLength, std::move(inputData));
writeFrame(frame, builder);
NiceMock<MockQuicStats> quicStats;
conn.statsCallback = &quicStats;
EXPECT_CALL(quicStats, onShortHeaderPadding(_)).Times(1);
auto result = scheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen);
auto headerLength = result.packet->header->computeChainDataLength();
auto bodyLength = result.packet->body->computeChainDataLength();
auto packetLength = headerLength + bodyLength;
auto expectedPadding =
(conn.udpSendPacketLen - (inputDataLength + headerLength)) %
paddingModulo;
EXPECT_EQ(packetLength, headerLength + inputDataLength + expectedPadding);
EXPECT_EQ(packetLength, conn.udpSendPacketLen);
}
TEST_F(QuicPacketSchedulerTest, ShortHeaderPaddingMaxPacketLength) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.udpSendPacketLen = 1000;
size_t paddingModulo = 50;
conn.transportSettings.paddingModulo = paddingModulo;
FrameScheduler scheduler = std::move(FrameScheduler::Builder(
conn,
EncryptionLevel::AppData,
PacketNumberSpace::AppData,
"streamScheduler")
.streamFrames())
.build();
ShortHeader shortHeader(
ProtectionType::KeyPhaseOne,
conn.clientConnectionId.value_or(getTestConnectionId()),
getNextPacketNum(conn, PacketNumberSpace::AppData));
size_t largestAckedPacketNum =
conn.ackStates.appDataAckState.largestAckedByPeer.value_or(0);
auto packetNumberEncoding = encodePacketNumber(
shortHeader.getPacketSequenceNum(), largestAckedPacketNum);
auto connectionIdSize = shortHeader.getConnectionId().size();
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen, std::move(shortHeader), largestAckedPacketNum);
// create enough input data to fully fill packet
while (builder.remainingSpaceInPkt() >
connectionIdSize + packetNumberEncoding.length + 1) {
writeFrame(PaddingFrame(), builder);
}
NiceMock<MockQuicStats> quicStats;
conn.statsCallback = &quicStats;
EXPECT_CALL(quicStats, onShortHeaderPadding(_)).Times(1);
auto result = scheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen);
auto headerLength = result.packet->header->computeChainDataLength();
auto bodyLength = result.packet->body->computeChainDataLength();
auto packetLength = headerLength + bodyLength;
EXPECT_EQ(packetLength, conn.udpSendPacketLen);
}
TEST_F(QuicPacketSchedulerTest, ImmediateAckFrameSchedulerOnRequest) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.pendingEvents.requestImmediateAck = true;
auto connId = getTestConnectionId();
LongHeader longHeader(
LongHeader::Types::Initial,
getTestConnectionId(1),
connId,
getNextPacketNum(conn, PacketNumberSpace::Initial),
QuicVersion::MVFST);
increaseNextPacketNum(conn, PacketNumberSpace::Initial);
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(longHeader),
conn.ackStates.initialAckState.largestAckedByPeer.value_or(0));
FrameScheduler immediateAckOnlyScheduler =
std::move(
FrameScheduler::Builder(
conn,
EncryptionLevel::Initial,
LongHeader::typeToPacketNumberSpace(LongHeader::Types::Initial),
"ImmediateAckOnlyScheduler")
.immediateAckFrames())
.build();
auto result = immediateAckOnlyScheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen);
auto packetLength = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength();
EXPECT_EQ(conn.udpSendPacketLen, packetLength);
}
TEST_F(QuicPacketSchedulerTest, ImmediateAckFrameSchedulerNotRequested) {
QuicClientConnectionState conn(
FizzClientQuicHandshakeContext::Builder().build());
conn.pendingEvents.requestImmediateAck = false;
auto connId = getTestConnectionId();
LongHeader longHeader(
LongHeader::Types::Initial,
getTestConnectionId(1),
connId,
getNextPacketNum(conn, PacketNumberSpace::Initial),
QuicVersion::MVFST);
increaseNextPacketNum(conn, PacketNumberSpace::Initial);
RegularQuicPacketBuilder builder(
conn.udpSendPacketLen,
std::move(longHeader),
conn.ackStates.initialAckState.largestAckedByPeer.value_or(0));
FrameScheduler immediateAckOnlyScheduler =
std::move(
FrameScheduler::Builder(
conn,
EncryptionLevel::Initial,
LongHeader::typeToPacketNumberSpace(LongHeader::Types::Initial),
"ImmediateAckOnlyScheduler")
.immediateAckFrames())
.build();
auto result = immediateAckOnlyScheduler.scheduleFramesForPacket(
std::move(builder), conn.udpSendPacketLen);
auto packetLength = result.packet->header->computeChainDataLength() +
result.packet->body->computeChainDataLength();
// The immediate ACK scheduler was not triggered. This packet has no frames
// and it shouldn't get padded.
EXPECT_LT(packetLength, conn.udpSendPacketLen);
}
INSTANTIATE_TEST_SUITE_P(
QuicPacketSchedulerTests,
QuicPacketSchedulerTest,
Values(PacketBuilderType::Regular, PacketBuilderType::Inplace));
} // namespace test
} // namespace quic