1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-11-24 04:01:07 +03:00
Files
mvfst/quic/state/test/QuicStateFunctionsTest.cpp
Brandon Schlinker 83ad2ad99d Cleanup and modularize receive path, improve timestamp support [20/x]
Summary:
This diff renames `ReceivedPacket` to `ReceivedUdpPacket` to clarify that it maps to a UDP packet and not a QUIC packet. A single UDP packet can contain multiple QUIC packets due to coalescing.

--

This diff is part of a larger stack focused on the following:

- **Cleaning up client and server UDP packet receive paths while improving testability.** We currently have multiple receive paths for client and server. Capabilities vary significantly and there are few tests. For instance:
  - The server receive path supports socket RX timestamps, abet incorrectly in that it does not store timestamp per packet. In comparison, the client receive path does not currently support socket RX timestamps, although the code in `QuicClientTransport::recvmsg` and `QuicClientTransport::recvmmsg` makes reference to socket RX timestamps, making it confusing to understand the capabilities available when tracing through the code. This complicates the tests in `QuicTypedTransportTests`, as we have to disable test logic that depends on socket RX timestamps for client tests.
  - The client currently has three receive paths, and none of them are well tested.

- **Modularize and abstract components in the receive path.** This will make it easier to mock/fake the UDP socket and network layers.
  - `QuicClientTransport` and `QuicServerTransport` currently contain UDP socket handling logic that operates over lower layer primitives such `cmsg` and `io_vec` (see `QuicClientTransport::recvmmsg` and `...::recvmsg` as examples).
  - Because this UDP socket handling logic is inside of the mvfst transport implementations, it is difficult to test this logic in isolation and mock/fake the underlying socket and network layers. For instance, injecting a user space network emulator that operates at the socket layer would require faking `folly::AsyncUDPSocket`, which is non-trivial given that `AsyncUDPSocket` does not abstract away intricacies arising from the aforementioned lower layer primitives.
  - By shifting this logic into an intermediate layer between the transport and the underlying UDP socket, it will be easier to mock out the UDP socket layer when testing functionality at higher layers, and inject fake components when we want to emulate the network between a mvfst client and server. It will also be easier for us to have unit tests focused on testing interactions between the UDP socket implementation and this intermediate layer.

- **Improving receive path timestamping.** We only record a single timestamp per `NetworkData` at the moment, but (1) it is possible for a `NetworkData` to have multiple packets, each with their own timestamps, and (2) we should be able to record both userspace and socket timestamps.

Reviewed By: silver23arrow

Differential Revision: D48788809

fbshipit-source-id: 3793c30212d545e226f3e5337289bc2601dfa553
2023-11-28 07:47:57 -08:00

1274 lines
48 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <quic/state/OutstandingPacket.h>
#include <quic/codec/Types.h>
#include <quic/common/test/TestUtils.h>
#include <quic/fizz/server/handshake/FizzServerQuicHandshakeContext.h>
#include <quic/server/state/ServerStateMachine.h>
#include <quic/state/QuicStateFunctions.h>
#include <quic/state/stream/StreamReceiveHandlers.h>
#include <quic/state/stream/StreamSendHandlers.h>
#include <quic/state/test/Mocks.h>
#include <chrono>
#include <cstdint>
#include <deque>
using namespace testing;
namespace quic::test {
bool verifyToAckImmediatelyAndZeroPacketsReceived(
const QuicConnectionStateBase& conn,
const AckState& ackState) {
return !conn.pendingEvents.scheduleAckTimeout &&
ackState.needsToSendAckImmediately && ackState.numRxPacketsRecvd == 0 &&
ackState.numNonRxPacketsRecvd == 0;
}
bool verifyToScheduleAckTimeout(const QuicConnectionStateBase& conn) {
return conn.pendingEvents.scheduleAckTimeout;
}
RegularQuicWritePacket makeTestShortPacket() {
ShortHeader header(
ProtectionType::KeyPhaseZero, getTestConnectionId(), 2 /* packetNum */);
RegularQuicWritePacket packet(std::move(header));
return packet;
}
RegularQuicWritePacket makeTestLongPacket(LongHeader::Types type) {
LongHeader header(
type,
getTestConnectionId(0),
getTestConnectionId(1),
2 /* packetNum */,
QuicVersion::MVFST);
RegularQuicWritePacket packet(std::move(header));
return packet;
}
class AddPacketToAckStateTest : public TestWithParam<PacketNumberSpace> {
public:
/**
* Build a ReceivedUdpPacket::Timings structure with minimal fields set.
*/
static ReceivedUdpPacket::Timings buildPacketTimingsMinimal() {
ReceivedUdpPacket::Timings timings;
timings.receiveTimePoint = Clock::now();
return timings;
}
};
TEST_P(AddPacketToAckStateTest, FirstPacketNotOutOfOrder) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
/**
* We skip setting the getAckState(conn,
* GetParam()).largestReceivedUdpPacketNum to simulate that we haven't
* received any packets yet. `addPacketToAckState()` should return false for
* the first packet received.
*/
PacketNum firstPacket = folly::Random::rand32(1, 100);
EXPECT_FALSE(addPacketToAckState(
conn,
getAckState(conn, GetParam()),
firstPacket,
buildPacketTimingsMinimal()));
}
TEST_P(AddPacketToAckStateTest, ReceiveNew) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
getAckState(conn, GetParam()).largestRecvdPacketNum = 100;
auto currentLargestReceived =
*getAckState(conn, GetParam()).largestRecvdPacketNum;
PacketNum newReceived = currentLargestReceived + 1;
auto distance = addPacketToAckState(
conn,
getAckState(conn, GetParam()),
newReceived,
buildPacketTimingsMinimal());
EXPECT_EQ(distance, 0);
EXPECT_GT(
*getAckState(conn, GetParam()).largestRecvdPacketNum,
currentLargestReceived);
}
TEST_P(AddPacketToAckStateTest, ReceiveNewWithGap) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
getAckState(conn, GetParam()).largestRecvdPacketNum = 100;
auto currentLargestReceived =
*getAckState(conn, GetParam()).largestRecvdPacketNum;
PacketNum newReceived = currentLargestReceived + 3;
auto distance = addPacketToAckState(
conn,
getAckState(conn, GetParam()),
newReceived,
buildPacketTimingsMinimal());
EXPECT_EQ(distance, 2); // newReceived is 2 after the expected pkt num
EXPECT_GT(
*getAckState(conn, GetParam()).largestRecvdPacketNum,
currentLargestReceived);
}
TEST_P(AddPacketToAckStateTest, ReceiveOld) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
getAckState(conn, GetParam()).largestRecvdPacketNum = 100;
auto currentLargestReceived =
*getAckState(conn, GetParam()).largestRecvdPacketNum;
PacketNum newReceived = currentLargestReceived - 1;
auto distance = addPacketToAckState(
conn,
getAckState(conn, GetParam()),
newReceived,
buildPacketTimingsMinimal());
EXPECT_EQ(distance, 2); // newReceived is 2 before the expected pkt num
EXPECT_EQ(
*getAckState(conn, GetParam()).largestRecvdPacketNum,
currentLargestReceived);
}
TEST_P(AddPacketToAckStateTest, ReceiveOldWithGap) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
getAckState(conn, GetParam()).largestRecvdPacketNum = 100;
auto currentLargestReceived =
*getAckState(conn, GetParam()).largestRecvdPacketNum;
PacketNum newReceived = currentLargestReceived - 5;
auto distance = addPacketToAckState(
conn,
getAckState(conn, GetParam()),
newReceived,
buildPacketTimingsMinimal());
EXPECT_EQ(distance, 6); // newReceived is 6 before the expected pkt num
EXPECT_EQ(
*getAckState(conn, GetParam()).largestRecvdPacketNum,
currentLargestReceived);
}
INSTANTIATE_TEST_SUITE_P(
AddPacketToAckStateTests,
AddPacketToAckStateTest,
Values(
PacketNumberSpace::Initial,
PacketNumberSpace::Handshake,
PacketNumberSpace::AppData));
class UpdateReceivedUdpPacketTimestampsTest
: public TestWithParam<PacketNumberSpace> {};
TEST_P(UpdateReceivedUdpPacketTimestampsTest, TestUpdatePktReceiveTimestamps) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
PacketNum nextPacketNum = 0;
TimePoint latestTimeStamp = Clock::now();
conn.ackStates = AckStates(nextPacketNum);
for (uint64_t i = 0;
i < conn.transportSettings.maxReceiveTimestampsPerAckStored + 2;
i++) {
updateAckState(
conn,
PacketNumberSpace::AppData,
nextPacketNum++,
true /* pktHasRetransmattableData */,
false /* pktHasCryptoData */,
latestTimeStamp);
latestTimeStamp += 1ms;
}
auto& ackState = getAckState(conn, PacketNumberSpace::AppData);
EXPECT_EQ(
ackState.recvdPacketInfos.size(),
conn.transportSettings.maxReceiveTimestampsPerAckStored);
// First 2 packets (0, 1) should be popped.
EXPECT_EQ(ackState.recvdPacketInfos.front().pktNum, 2);
EXPECT_TRUE(ackState.largestRecvdPacketNum.has_value());
EXPECT_TRUE(ackState.lastRecvdPacketInfo.has_value());
EXPECT_EQ(
ackState.largestRecvdPacketNum.value(),
conn.transportSettings.maxReceiveTimestampsPerAckStored + 1);
EXPECT_EQ(
ackState.lastRecvdPacketInfo.value().pktNum,
conn.transportSettings.maxReceiveTimestampsPerAckStored + 1);
}
TEST_P(
UpdateReceivedUdpPacketTimestampsTest,
TestUpdateOutOfOrderPktReceiveTimestamps) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
std::vector<PacketNum> receivedPkts = {0, 2, 3, 1, 4, 6, 5};
conn.ackStates = AckStates(receivedPkts.front());
auto recvdTs = Clock::now();
for (auto pktNum : receivedPkts) {
updateAckState(
conn,
PacketNumberSpace::AppData,
pktNum,
true /* pktHasRetransmattableData */,
false /* pktHasCryptoData */,
recvdTs);
}
// Packets 1 and 5 are out of order and will not be stored.
auto& ackState = getAckState(conn, PacketNumberSpace::AppData);
std::deque<RecvdPacketInfo> expectedPktsInfo = {
{0, recvdTs}, {2, recvdTs}, {3, recvdTs}, {4, recvdTs}, {6, recvdTs}};
EXPECT_EQ(expectedPktsInfo.size(), ackState.recvdPacketInfos.size());
for (unsigned long i = 0; i < expectedPktsInfo.size(); i++) {
EXPECT_EQ(expectedPktsInfo[i].pktNum, ackState.recvdPacketInfos[i].pktNum);
EXPECT_EQ(
expectedPktsInfo[i].timeStamp, ackState.recvdPacketInfos[i].timeStamp);
}
EXPECT_EQ(ackState.lastRecvdPacketInfo.value().pktNum, 5);
EXPECT_EQ(ackState.lastRecvdPacketInfo.value().timeStamp, recvdTs);
}
INSTANTIATE_TEST_SUITE_P(
UpdateReceivedUdpPacketTimestampsTests,
UpdateReceivedUdpPacketTimestampsTest,
Values(PacketNumberSpace::AppData));
class UpdateAckStateTest : public TestWithParam<PacketNumberSpace> {};
TEST_P(UpdateAckStateTest, TestUpdateAckState) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
PacketNum nextPacketNum = 0;
auto& ackState = getAckState(conn, GetParam());
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_EQ(ackState.acks.size(), 1);
EXPECT_EQ(ackState.acks.front().start, 0);
EXPECT_EQ(ackState.acks.front().end, 0);
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_EQ(ackState.numRxPacketsRecvd, 1);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
conn.pendingEvents.scheduleAckTimeout = false;
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_EQ(ackState.acks.size(), 1);
EXPECT_EQ(ackState.acks.front().start, 0);
EXPECT_EQ(ackState.acks.front().end, 1);
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_EQ(ackState.numRxPacketsRecvd, 2);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
// Have a gap for next packet
nextPacketNum += 2;
conn.pendingEvents.scheduleAckTimeout = false;
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_EQ(ackState.acks.size(), 2);
EXPECT_EQ(ackState.acks.front().start, 0);
EXPECT_EQ(ackState.acks.front().end, 1);
EXPECT_EQ(ackState.acks.back().start, 4);
EXPECT_EQ(ackState.acks.back().end, 4);
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_EQ(0, ackState.numRxPacketsRecvd);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
ackState.needsToSendAckImmediately = false;
conn.pendingEvents.scheduleAckTimeout = false;
// Reaching retx limit
for (uint8_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 1;
++i) {
updateAckState(
conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(ackState.numRxPacketsRecvd, i + 1);
}
// Hit the limit
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
// Should send ack immediately once we have
// conn.transportSettings.rxPacketsBeforeAckBeforeInit retransmittable packets
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
ackState.needsToSendAckImmediately = false;
conn.pendingEvents.scheduleAckTimeout = false;
// Nonrx limit
for (uint64_t i = 0; i < kNonRtxRxPacketsPendingBeforeAck; ++i) {
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_EQ(ackState.numNonRxPacketsRecvd, i);
updateAckState(
conn, GetParam(), nextPacketNum++, false, false, Clock::now());
}
// Should send ack immediately once we have
// kNonRtxRxPacketsPendingBeforeAck non retransmittable packets
EXPECT_TRUE(ackState.needsToSendAckImmediately);
// Non-rx packets don't turn on Ack timer:
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
ackState.needsToSendAckImmediately = false;
// Crypto always triggers immediately ack:
updateAckState(conn, GetParam(), nextPacketNum++, true, true, Clock::now());
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
}
TEST_P(UpdateAckStateTest, TestUpdateAckStateFrequency) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.transportSettings.rxPacketsBeforeAckInitThreshold = 20;
conn.transportSettings.rxPacketsBeforeAckBeforeInit = 2;
conn.transportSettings.rxPacketsBeforeAckAfterInit = 10;
PacketNum nextPacketNum = 0;
auto& ackState = getAckState(conn, GetParam());
for (uint8_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 1;
++i) {
updateAckState(
conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(ackState.numRxPacketsRecvd, i + 1);
}
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
ackState.needsToSendAckImmediately = false;
conn.pendingEvents.scheduleAckTimeout = false;
for (;
nextPacketNum <= conn.transportSettings.rxPacketsBeforeAckInitThreshold;
nextPacketNum++) {
updateAckState(conn, GetParam(), nextPacketNum, true, false, Clock::now());
}
ASSERT_EQ(
ackState.largestRecvdPacketNum.value(),
conn.transportSettings.rxPacketsBeforeAckInitThreshold);
ackState.needsToSendAckImmediately = false;
conn.pendingEvents.scheduleAckTimeout = false;
ackState.numRxPacketsRecvd = 0;
for (uint8_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckAfterInit - 1;
++i) {
updateAckState(
conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(ackState.numRxPacketsRecvd, i + 1);
}
updateAckState(conn, GetParam(), nextPacketNum++, true, false, Clock::now());
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
}
TEST_P(UpdateAckStateTest, TestUpdateAckStateFrequencyFromTolerance) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
PacketNum nextPacketNum = 1;
auto& ackState = getAckState(conn, GetParam());
ackState.largestRecvdPacketNum = nextPacketNum - 1;
ackState.tolerance = 2;
for (; nextPacketNum <= 10; nextPacketNum++) {
updateAckState(conn, GetParam(), nextPacketNum, true, false, Clock::now());
if (nextPacketNum < 2) {
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(nextPacketNum, ackState.numRxPacketsRecvd);
} else {
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(0, ackState.numRxPacketsRecvd);
}
EXPECT_EQ(0, ackState.numNonRxPacketsRecvd);
}
ackState.tolerance = 10;
for (; nextPacketNum <= 40; nextPacketNum++) {
updateAckState(conn, GetParam(), nextPacketNum, true, false, Clock::now());
if (nextPacketNum < 10) {
EXPECT_FALSE(ackState.needsToSendAckImmediately);
EXPECT_TRUE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(nextPacketNum, ackState.numRxPacketsRecvd);
} else {
EXPECT_TRUE(ackState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(0, ackState.numRxPacketsRecvd);
}
EXPECT_EQ(0, ackState.numRxPacketsRecvd);
}
}
TEST_F(UpdateAckStateTest, UpdateAckStateOnAckTimeout) {
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& initialAckState = getAckState(conn, PacketNumberSpace::Initial);
auto& handshakeAckState = getAckState(conn, PacketNumberSpace::Handshake);
auto& appDataAckState = getAckState(conn, PacketNumberSpace::AppData);
initialAckState.numRxPacketsRecvd = 1;
handshakeAckState.numRxPacketsRecvd = 2;
appDataAckState.numRxPacketsRecvd = 3;
initialAckState.numNonRxPacketsRecvd = 4;
handshakeAckState.numNonRxPacketsRecvd = 5;
appDataAckState.numNonRxPacketsRecvd = 6;
updateAckStateOnAckTimeout(conn);
EXPECT_TRUE(appDataAckState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(0, appDataAckState.numRxPacketsRecvd);
EXPECT_EQ(0, appDataAckState.numNonRxPacketsRecvd);
EXPECT_FALSE(initialAckState.needsToSendAckImmediately);
EXPECT_EQ(1, initialAckState.numRxPacketsRecvd);
EXPECT_EQ(4, initialAckState.numNonRxPacketsRecvd);
EXPECT_FALSE(handshakeAckState.needsToSendAckImmediately);
EXPECT_FALSE(conn.pendingEvents.scheduleAckTimeout);
EXPECT_EQ(2, handshakeAckState.numRxPacketsRecvd);
EXPECT_EQ(5, handshakeAckState.numNonRxPacketsRecvd);
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsCrypto) {
// Crypto always leads to immediate ack
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, true);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsInitCryptoExperimental) {
// Crypto data leads to immediate ack unless init packet space.
QuicConnectionStateBase conn(QuicNodeType::Server);
bool isInitPktNumSpace = GetParam() == PacketNumberSpace::Initial;
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(
conn, ackState, false, true, true, isInitPktNumSpace);
EXPECT_EQ(
verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState),
!isInitPktNumSpace);
EXPECT_EQ(verifyToScheduleAckTimeout(conn), isInitPktNumSpace);
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsRxLimit) {
// Retx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 1;
i++) {
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a retx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsNonRxLimit) {
// Non-rx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0; i < kNonRtxRxPacketsPendingBeforeAck - 1; i++) {
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a non-rx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsNonRxLimitWithRxPackets) {
// Non-rx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
// use 1 rx packet
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
for (size_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 2;
i++) {
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a non-rx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsRxLimitFollowedByNonRx) {
// Retx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 1;
i++) {
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a non-retx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsNonRxLimitFollowedByRx) {
// Non-rx packets reach thresh
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0; i < kNonRtxRxPacketsPendingBeforeAck - 1; i++) {
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, false, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a retx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsRxAndNonRxMixed) {
// Rx and non-rx mixed together. We should still just need
// conn.transportSettings.rxPacketsBeforeAckBeforeInit to trigger an ack
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
for (size_t i = 0;
i < conn.transportSettings.rxPacketsBeforeAckBeforeInit - 1;
i++) {
bool isRetransmittable = i % 2;
updateAckSendStateOnRecvPacket(conn, ackState, 0, isRetransmittable, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_EQ(i >= 1, verifyToScheduleAckTimeout(conn));
}
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a retx packet, we will still need to ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsRxOutOfOrder) {
// Retransmittable & out of order: ack immediately
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, 1, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsRxOutOfOrderThresholdNotExceeded) {
// Retransmittable & out of order: don't ack immediately if threshold not
// exceeded.
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
ackState.reorderThreshold = 3;
updateAckSendStateOnRecvPacket(conn, ackState, 3, true, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_TRUE(verifyToScheduleAckTimeout(conn));
}
TEST_P(UpdateAckStateTest, UpdateAckSendStateOnRecvPacketsNonRxOutOfOrder) {
// Non-retransmittable & out of order: not ack immediately
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, 3, false, false);
EXPECT_FALSE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsRxOutOfOrderFollowedByInOrder) {
// Retransmittable & out of order: ack immediately
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, 1, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a retransmittable & in order: still ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
TEST_P(
UpdateAckStateTest,
UpdateAckSendStateOnRecvPacketsCryptoFollowedByNonCrypto) {
// Retransmittable & Crypto: ack immediately
QuicConnectionStateBase conn(QuicNodeType::Client);
auto& ackState = getAckState(conn, GetParam());
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, true);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
// Followed by a retransmittable & non Crypo: still ack immediately
updateAckSendStateOnRecvPacket(conn, ackState, 0, true, false);
EXPECT_TRUE(verifyToAckImmediatelyAndZeroPacketsReceived(conn, ackState));
EXPECT_FALSE(verifyToScheduleAckTimeout(conn));
}
INSTANTIATE_TEST_SUITE_P(
UpdateAckStateTests,
UpdateAckStateTest,
Values(
PacketNumberSpace::Initial,
PacketNumberSpace::Handshake,
PacketNumberSpace::AppData));
class QuicStateFunctionsTest : public TestWithParam<PacketNumberSpace> {};
TEST_F(QuicStateFunctionsTest, RttCalculationZeroAckDelayFirstRtt) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
const auto rttSample = 1100us;
const auto ackDelay = 0us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(1100, conn.lossState.srtt.count());
EXPECT_EQ(1100, conn.lossState.lrtt.count());
EXPECT_EQ(1100 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(1100, conn.lossState.mrtt.count());
EXPECT_EQ(0us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithAckDelayFirstRtt) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
const auto rttSample = 1000us;
const auto ackDelay = 300us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(1000, conn.lossState.srtt.count());
EXPECT_EQ(1000, conn.lossState.lrtt.count());
EXPECT_EQ(1000, conn.lossState.mrtt.count());
EXPECT_EQ(1000 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithExistingMrttNewLower) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
const auto rttSample = 50us;
const auto ackDelay = 100us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(50, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithExistingMrttStaysSame) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 25us;
const auto rttSample = 50us;
const auto ackDelay = 100us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(25, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithExistingMrttZeroAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 500us;
const auto rttSample = 1100us;
const auto ackDelay = 0us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(1100, conn.lossState.srtt.count());
EXPECT_EQ(1100, conn.lossState.lrtt.count());
EXPECT_EQ(100, conn.lossState.mrtt.count());
EXPECT_EQ(1100 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(500us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithExistingMrttSubtractAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
const auto rttSample = 1000us;
const auto ackDelay = 300us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(700, conn.lossState.srtt.count()); // 700 as ack delay subtracted
EXPECT_EQ(1000, conn.lossState.lrtt.count()); // 1000 as lrtt = rttSample
EXPECT_EQ(100, conn.lossState.mrtt.count());
EXPECT_EQ(
700 / 2, conn.lossState.rttvar.count()); // 700 as ack delay subtracted
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithExistingMrttIgnoreAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 700us;
const auto rttSample = 900us;
const auto ackDelay = 300us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(900, conn.lossState.srtt.count());
EXPECT_EQ(900, conn.lossState.lrtt.count());
EXPECT_EQ(700, conn.lossState.mrtt.count());
EXPECT_EQ(450, conn.lossState.rttvar.count());
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithNewLowerMrttZeroAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 500us;
const auto rttSample = 50us;
const auto ackDelay = 0us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(50, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(500us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationWithNewLowerMrttIgnoreAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
const auto rttSample = 50us;
const auto ackDelay = 25us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(50, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(25us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationMaxAckDelayIncreases) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 50us;
const auto rttSample = 500us;
const auto ackDelay = 100us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(400, conn.lossState.srtt.count()); // 400 as ack delay subtracted
EXPECT_EQ(500, conn.lossState.lrtt.count()); // 500 as lrtt = rttSample
EXPECT_EQ(100, conn.lossState.mrtt.count());
EXPECT_EQ(400 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(100us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationMaxAckDelayStaysSame) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 5000us;
const auto rttSample = 500us;
const auto ackDelay = 100us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(400, conn.lossState.srtt.count()); // 400 as ack delay subtracted
EXPECT_EQ(500, conn.lossState.lrtt.count()); // 500 as lrtt = rttSample
EXPECT_EQ(100, conn.lossState.mrtt.count());
EXPECT_EQ(400 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(5000us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationNewLowerMrttMaxAckDelayIncreases) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 50us;
const auto rttSample = 50us;
const auto ackDelay = 100us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(50, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(100us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationNewLowerMrttMaxAckDelayStaysSame) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
conn.lossState.maxAckDelay = 5000us;
const auto rttSample = 50us;
const auto ackDelay = 10us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(50, conn.lossState.srtt.count());
EXPECT_EQ(50, conn.lossState.lrtt.count());
EXPECT_EQ(50, conn.lossState.mrtt.count());
EXPECT_EQ(50 / 2, conn.lossState.rttvar.count());
EXPECT_EQ(5000us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationAckDelayLargerThanSample) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
const auto rttSample = 10us;
const auto ackDelay = 300us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(10, conn.lossState.srtt.count());
EXPECT_EQ(10, conn.lossState.lrtt.count());
EXPECT_EQ(10, conn.lossState.mrtt.count());
EXPECT_EQ(5, conn.lossState.rttvar.count());
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(
QuicStateFunctionsTest,
RttCalculationWithNewLowerMrttAckDelayLargerThanSample) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
conn.lossState.mrtt = 100us;
const auto rttSample = 10us;
const auto ackDelay = 300us;
updateRtt(conn, rttSample, ackDelay);
EXPECT_EQ(10, conn.lossState.srtt.count());
EXPECT_EQ(10, conn.lossState.lrtt.count());
EXPECT_EQ(10, conn.lossState.mrtt.count());
EXPECT_EQ(5, conn.lossState.rttvar.count());
EXPECT_EQ(300us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, RttCalculationExtraRttMetricsStoredInLossState) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
// Test cases
//
// || [ Value Expected ] |
// Case | RTT (delay) | RTT w/o delay || mRTT | w/o ACK delay | Updated
// -----|-------------|---------------||------- |----------------|----------
// 1 | 31ms (5 ms) | 26ms || 31 | 26 | (both)
// 2 | 30ms (3 ms) | 27ms || 30 | 26 | (1)
// 3 | 30ms (8 ms) | 22ms || 30 | 22 | (2)
// 4 | 37ms (8 ms) | 29ms || 30 | 22 | (none)
// 5 | 25ms (0 ms) | 29ms || 25 | 22 | (1)
// 6 | 25ms (4 ms) | 29ms || 25 | 21 | (2)
// 7 | 20ms (0 ms) | 29ms || 20 | 20 | (both)
// 8 | 0ms (0 ms) | 0ms || 0 | 0 | (both)
// 9 | 0ms (10 ms) | 0ms || 0 | 0 | (none)
// case 1
updateRtt(conn, 31ms /* RTT sample */, 5ms /* ack delay */);
EXPECT_EQ(31ms, conn.lossState.mrtt);
EXPECT_EQ(26ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(31ms, conn.lossState.maybeLrtt);
EXPECT_EQ(5ms, conn.lossState.maybeLrttAckDelay);
// case 2
updateRtt(conn, 30ms /* RTT sample */, 3ms /* ack delay */);
EXPECT_EQ(30ms, conn.lossState.mrtt);
EXPECT_EQ(26ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(30ms, conn.lossState.maybeLrtt);
EXPECT_EQ(3ms, conn.lossState.maybeLrttAckDelay);
// case 3
updateRtt(conn, 30ms /* RTT sample */, 8ms /* ack delay */);
EXPECT_EQ(30ms, conn.lossState.mrtt);
EXPECT_EQ(22ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(30ms, conn.lossState.maybeLrtt);
EXPECT_EQ(8ms, conn.lossState.maybeLrttAckDelay);
// case 4
updateRtt(conn, 37ms /* RTT sample */, 8ms /* ack delay */);
EXPECT_EQ(30ms, conn.lossState.mrtt);
EXPECT_EQ(22ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(37ms, conn.lossState.maybeLrtt);
EXPECT_EQ(8ms, conn.lossState.maybeLrttAckDelay);
// case 5
updateRtt(conn, 25ms /* RTT sample */, 0ms /* ack delay */);
EXPECT_EQ(25ms, conn.lossState.mrtt);
EXPECT_EQ(22ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(25ms, conn.lossState.maybeLrtt);
EXPECT_EQ(0ms, conn.lossState.maybeLrttAckDelay);
// case 6
updateRtt(conn, 25ms /* RTT sample */, 4ms /* ack delay */);
EXPECT_EQ(25ms, conn.lossState.mrtt);
EXPECT_EQ(21ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(25ms, conn.lossState.maybeLrtt);
EXPECT_EQ(4ms, conn.lossState.maybeLrttAckDelay);
// case 7
updateRtt(conn, 20ms /* RTT sample */, 0ms /* ack delay */);
EXPECT_EQ(20ms, conn.lossState.mrtt);
EXPECT_EQ(20ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(20ms, conn.lossState.maybeLrtt);
EXPECT_EQ(0ms, conn.lossState.maybeLrttAckDelay);
// case 8
updateRtt(conn, 0ms /* RTT sample */, 0ms /* ack delay */);
EXPECT_EQ(0ms, conn.lossState.mrtt);
EXPECT_EQ(0ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(0ms, conn.lossState.maybeLrtt);
EXPECT_EQ(0ms, conn.lossState.maybeLrttAckDelay);
// case 9
updateRtt(conn, 0ms /* RTT sample */, 10ms /* ack delay */);
EXPECT_EQ(0ms, conn.lossState.mrtt);
EXPECT_EQ(0ms, conn.lossState.maybeMrttNoAckDelay);
EXPECT_EQ(0ms, conn.lossState.maybeLrtt);
EXPECT_EQ(10ms, conn.lossState.maybeLrttAckDelay);
}
TEST_F(QuicStateFunctionsTest, TestInvokeStreamStateMachineConnectionError) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
QuicStreamState stream(1, conn);
RstStreamFrame rst(1, GenericApplicationErrorCode::UNKNOWN, 100);
stream.finalReadOffset = 1024;
EXPECT_THROW(
receiveRstStreamSMHandler(stream, std::move(rst)),
QuicTransportException);
// This doesn't change the send state machine implicitly anymore
bool matches = (stream.sendState == StreamSendState::Open);
EXPECT_TRUE(matches);
}
TEST_F(QuicStateFunctionsTest, InvokeResetDoesNotSendFlowControl) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
QuicStreamState stream(1, conn);
RstStreamFrame rst(1, GenericApplicationErrorCode::UNKNOWN, 90);
// this would normally trigger a flow control update.
stream.flowControlState.advertisedMaxOffset = 100;
stream.flowControlState.windowSize = 100;
conn.flowControlState.advertisedMaxOffset = 100;
conn.flowControlState.windowSize = 100;
receiveRstStreamSMHandler(stream, std::move(rst));
bool matches = (stream.recvState == StreamRecvState::Closed);
EXPECT_TRUE(matches);
EXPECT_FALSE(conn.streamManager->hasWindowUpdates());
EXPECT_TRUE(conn.pendingEvents.connWindowUpdate);
}
TEST_F(QuicStateFunctionsTest, TestInvokeStreamStateMachineStreamError) {
// We isolate invalid events on streams to affect only the streams. Is that
// a good idea? We'll find out.
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
QuicStreamState stream(1, conn);
RstStreamFrame rst(1, GenericApplicationErrorCode::UNKNOWN, 100);
try {
sendRstAckSMHandler(stream);
ADD_FAILURE();
} catch (QuicTransportException& ex) {
EXPECT_EQ(ex.errorCode(), TransportErrorCode::STREAM_STATE_ERROR);
}
bool matches = (stream.sendState == StreamSendState::Open);
EXPECT_TRUE(matches);
}
TEST_F(QuicStateFunctionsTest, UpdateMinRtt) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
auto qLogger = std::make_shared<FileQLogger>(VantagePoint::Server);
conn.qLogger = qLogger;
// First rtt sample, will be assign to both srtt and mrtt
auto rttSample = 100us;
updateRtt(conn, rttSample, 0us);
EXPECT_EQ(100us, conn.lossState.lrtt);
EXPECT_EQ(conn.lossState.lrtt, conn.lossState.mrtt);
EXPECT_EQ(conn.lossState.lrtt, conn.lossState.srtt);
auto oldMrtt = conn.lossState.mrtt;
// Slower packet
rttSample = 550us;
updateRtt(conn, rttSample, 0us);
EXPECT_EQ(oldMrtt, conn.lossState.mrtt);
// Faster packet
rttSample = 20us;
updateRtt(conn, rttSample, 0us);
EXPECT_EQ(20us, conn.lossState.mrtt);
std::vector<int> indices =
getQLogEventIndices(QLogEventType::MetricUpdate, qLogger);
EXPECT_EQ(indices.size(), 3);
std::array<std::chrono::microseconds, 3> rttSampleArr = {100us, 550us, 20us};
std::array<std::chrono::microseconds, 3> mrttArr = {oldMrtt, oldMrtt, 20us};
std::array<std::chrono::microseconds, 3> srttArr = {100us, 155us, 137us};
for (int i = 0; i < 3; ++i) {
auto tmp = std::move(qLogger->logs[indices[i]]);
auto event = dynamic_cast<QLogMetricUpdateEvent*>(tmp.get());
EXPECT_EQ(event->latestRtt, rttSampleArr[i]);
EXPECT_EQ(event->mrtt, mrttArr[i]);
EXPECT_EQ(event->srtt, srttArr[i]);
EXPECT_EQ(event->ackDelay, 0us);
}
}
TEST_F(QuicStateFunctionsTest, UpdateMaxAckDelay) {
QuicServerConnectionState conn(
FizzServerQuicHandshakeContext::Builder().build());
EXPECT_EQ(0us, conn.lossState.maxAckDelay);
auto rttSample = 100us;
// update maxAckDelay
updateRtt(conn, rttSample, 30us);
EXPECT_EQ(30us, conn.lossState.maxAckDelay);
// smaller ackDelay
updateRtt(conn, rttSample, 3us);
EXPECT_EQ(30us, conn.lossState.maxAckDelay);
}
TEST_F(QuicStateFunctionsTest, IsConnectionPaced) {
QuicConnectionStateBase state(QuicNodeType::Client);
EXPECT_FALSE(isConnectionPaced(state));
state.canBePaced = true;
EXPECT_FALSE(isConnectionPaced(state));
state.transportSettings.pacingEnabled = true;
EXPECT_FALSE(isConnectionPaced(state));
}
TEST_F(QuicStateFunctionsTest, GetOutstandingPackets) {
QuicConnectionStateBase conn(QuicNodeType::Client);
conn.outstandings.packets.emplace_back(
makeTestLongPacket(LongHeader::Types::Initial),
Clock::now(),
135,
0,
false,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
conn.outstandings.packets.emplace_back(
makeTestLongPacket(LongHeader::Types::Handshake),
Clock::now(),
1217,
0,
false,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
conn.outstandings.packets.emplace_back(
makeTestShortPacket(),
Clock::now(),
5556,
5000,
false,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
conn.outstandings.packets.emplace_back(
makeTestLongPacket(LongHeader::Types::Initial),
Clock::now(),
56,
0,
false,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
conn.outstandings.packets.emplace_back(
makeTestShortPacket(),
Clock::now(),
6665,
6000,
false,
0,
0,
0,
0,
LossState(),
0,
OutstandingPacketMetadata::DetailsPerStream());
EXPECT_EQ(
135,
getFirstOutstandingPacket(conn, PacketNumberSpace::Initial)
->metadata.encodedSize);
EXPECT_EQ(
0,
getFirstOutstandingPacket(conn, PacketNumberSpace::Initial)
->metadata.encodedBodySize);
EXPECT_EQ(
56,
getLastOutstandingPacket(conn, PacketNumberSpace::Initial)
->metadata.encodedSize);
EXPECT_EQ(
0,
getLastOutstandingPacket(conn, PacketNumberSpace::Initial)
->metadata.encodedBodySize);
EXPECT_EQ(
1217,
getFirstOutstandingPacket(conn, PacketNumberSpace::Handshake)
->metadata.encodedSize);
EXPECT_EQ(
0,
getFirstOutstandingPacket(conn, PacketNumberSpace::Handshake)
->metadata.encodedBodySize);
EXPECT_EQ(
5556,
getFirstOutstandingPacket(conn, PacketNumberSpace::AppData)
->metadata.encodedSize);
EXPECT_EQ(
5000,
getFirstOutstandingPacket(conn, PacketNumberSpace::AppData)
->metadata.encodedBodySize);
EXPECT_EQ(
6665,
getLastOutstandingPacket(conn, PacketNumberSpace::AppData)
->metadata.encodedSize);
EXPECT_EQ(
6000,
getLastOutstandingPacket(conn, PacketNumberSpace::AppData)
->metadata.encodedBodySize);
}
TEST_F(QuicStateFunctionsTest, UpdateLargestReceivePacketsAtLatCloseSent) {
QuicConnectionStateBase conn(QuicNodeType::Client);
EXPECT_FALSE(conn.ackStates.initialAckState->largestReceivedAtLastCloseSent);
EXPECT_FALSE(
conn.ackStates.handshakeAckState->largestReceivedAtLastCloseSent);
EXPECT_FALSE(conn.ackStates.appDataAckState.largestReceivedAtLastCloseSent);
conn.ackStates.initialAckState->largestRecvdPacketNum = 123;
conn.ackStates.handshakeAckState->largestRecvdPacketNum = 654;
conn.ackStates.appDataAckState.largestRecvdPacketNum = 789;
updateLargestReceivedUdpPacketsAtLastCloseSent(conn);
EXPECT_EQ(
123, *conn.ackStates.initialAckState->largestReceivedAtLastCloseSent);
EXPECT_EQ(
654, *conn.ackStates.handshakeAckState->largestReceivedAtLastCloseSent);
EXPECT_EQ(
789, *conn.ackStates.appDataAckState.largestReceivedAtLastCloseSent);
}
TEST_P(QuicStateFunctionsTest, HasReceivedUdpPackets) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_FALSE(hasReceivedUdpPackets(conn));
getAckState(conn, GetParam()).largestRecvdPacketNum = 123;
EXPECT_TRUE(hasReceivedUdpPackets(conn));
}
TEST_P(QuicStateFunctionsTest, HasReceivedUdpPacketsAtLastCloseSent) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_FALSE(hasReceivedUdpPacketsAtLastCloseSent(conn));
getAckState(conn, GetParam()).largestReceivedAtLastCloseSent = 1;
EXPECT_TRUE(hasReceivedUdpPacketsAtLastCloseSent(conn));
}
TEST_P(QuicStateFunctionsTest, HasNotReceivedNewPacketsSinceLastClose) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_TRUE(hasNotReceivedNewPacketsSinceLastCloseSent(conn));
getAckState(conn, GetParam()).largestRecvdPacketNum = 1;
EXPECT_FALSE(hasNotReceivedNewPacketsSinceLastCloseSent(conn));
getAckState(conn, GetParam()).largestReceivedAtLastCloseSent = 1;
EXPECT_TRUE(hasReceivedUdpPacketsAtLastCloseSent(conn));
}
TEST_F(QuicStateFunctionsTest, EarliestLossTimer) {
QuicConnectionStateBase conn(QuicNodeType::Server);
EXPECT_FALSE(earliestLossTimer(conn).first.has_value());
auto currentTime = Clock::now();
// Before handshake completed
conn.lossState.lossTimes[PacketNumberSpace::Initial] = currentTime;
EXPECT_EQ(PacketNumberSpace::Initial, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime, earliestLossTimer(conn).first.value());
conn.lossState.lossTimes[PacketNumberSpace::AppData] = currentTime - 2s;
EXPECT_EQ(PacketNumberSpace::Initial, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime, earliestLossTimer(conn).first.value());
conn.lossState.lossTimes[PacketNumberSpace::Handshake] = currentTime - 1s;
EXPECT_EQ(PacketNumberSpace::Handshake, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime - 1s, earliestLossTimer(conn).first.value());
conn.oneRttWriteCipher = createNoOpAead();
// After one-rtt cipher is available
EXPECT_EQ(PacketNumberSpace::AppData, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime - 2s, earliestLossTimer(conn).first.value());
conn.lossState.lossTimes[PacketNumberSpace::AppData] = currentTime + 1s;
EXPECT_EQ(PacketNumberSpace::Handshake, earliestLossTimer(conn).second);
EXPECT_EQ(currentTime - 1s, earliestLossTimer(conn).first.value());
}
TEST_P(QuicStateFunctionsTest, CloseTranportStateChange) {
QuicConnectionStateBase conn(QuicNodeType::Server);
getAckState(conn, GetParam()).nextPacketNum = kMaxPacketNumber - 1;
EXPECT_FALSE(conn.pendingEvents.closeTransport);
increaseNextPacketNum(conn, GetParam());
EXPECT_TRUE(conn.pendingEvents.closeTransport);
}
INSTANTIATE_TEST_SUITE_P(
QuicStateFunctionsTests,
QuicStateFunctionsTest,
Values(
PacketNumberSpace::Initial,
PacketNumberSpace::Handshake,
PacketNumberSpace::AppData));
} // namespace quic::test