1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-11-24 04:01:07 +03:00
Files
mvfst/quic/common/test/TestUtils.cpp
Yang Chi 826031a8f2 New Quic packet builder that builds into user provided IOBuf
Summary:
As title.

For now the buildPacket() api will still build out separate IOBufs for header and body even though they are just two separate IOBuf wrapping continuous memory. This is so that API in other layers don't have to change for now, and I can reuse all the existing packet builder unit tests for the new builder.

Reviewed By: mjoras

Differential Revision: D20781977

fbshipit-source-id: 64e5ed9fbcff102ca20d3730511b02e6e7426b40
2020-04-07 08:46:14 -07:00

730 lines
24 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
*/
#include <quic/common/test/TestUtils.h>
#include <fizz/crypto/test/TestUtil.h>
#include <fizz/protocol/clock/test/Mocks.h>
#include <fizz/protocol/test/Mocks.h>
#include <quic/api/QuicTransportFunctions.h>
#include <quic/codec/DefaultConnectionIdAlgo.h>
#include <quic/fizz/handshake/QuicFizzFactory.h>
#include <quic/handshake/test/Mocks.h>
#include <quic/server/handshake/StatelessResetGenerator.h>
#include <quic/state/stream/StreamSendHandlers.h>
namespace quic {
namespace test {
std::function<MockClock::time_point()> MockClock::mockNow;
const RegularQuicWritePacket& writeQuicPacket(
QuicServerConnectionState& conn,
ConnectionId srcConnId,
ConnectionId dstConnId,
folly::test::MockAsyncUDPSocket& sock,
QuicStreamState& stream,
const folly::IOBuf& data,
bool eof) {
auto version = conn.version.value_or(*conn.originalVersion);
auto aead = createNoOpAead();
auto headerCipher = createNoOpHeaderCipher();
writeDataToQuicStream(stream, data.clone(), eof);
writeQuicDataToSocket(
sock,
conn,
srcConnId,
dstConnId,
*aead,
*headerCipher,
version,
conn.transportSettings.writeConnectionDataPacketsLimit);
CHECK(
conn.outstandingPackets.rend() !=
getLastOutstandingPacket(conn, PacketNumberSpace::AppData));
return getLastOutstandingPacket(conn, PacketNumberSpace::AppData)->packet;
}
PacketNum rstStreamAndSendPacket(
QuicServerConnectionState& conn,
folly::AsyncUDPSocket& sock,
QuicStreamState& stream,
ApplicationErrorCode errorCode) {
auto aead = createNoOpAead();
auto headerCipher = createNoOpHeaderCipher();
auto version = conn.version.value_or(*conn.originalVersion);
sendRstSMHandler(stream, errorCode);
writeQuicDataToSocket(
sock,
conn,
*conn.clientConnectionId,
*conn.serverConnectionId,
*aead,
*headerCipher,
version,
conn.transportSettings.writeConnectionDataPacketsLimit);
for (const auto& packet : conn.outstandingPackets) {
for (const auto& frame : packet.packet.frames) {
auto rstFrame = frame.asRstStreamFrame();
if (!rstFrame) {
continue;
}
if (rstFrame->streamId == stream.id) {
return packet.packet.header.getPacketSequenceNum();
}
}
}
CHECK(false) << "no packet with reset stream";
// some compilers are weird.
return 0;
}
RegularQuicPacketBuilder::Packet createAckPacket(
QuicConnectionStateBase& dstConn,
PacketNum pn,
AckBlocks& acks,
PacketNumberSpace pnSpace,
const Aead* aead) {
// This function sends ACK to dstConn
auto srcConnId =
(dstConn.nodeType == QuicNodeType::Client ? *dstConn.serverConnectionId
: *dstConn.clientConnectionId);
auto dstConnId =
(dstConn.nodeType == QuicNodeType::Client ? *dstConn.clientConnectionId
: *dstConn.serverConnectionId);
folly::Optional<PacketHeader> header;
if (pnSpace == PacketNumberSpace::Initial) {
header = LongHeader(
LongHeader::Types::Initial,
srcConnId,
dstConnId,
pn,
QuicVersion::MVFST);
} else if (pnSpace == PacketNumberSpace::Handshake) {
header = LongHeader(
LongHeader::Types::Handshake,
srcConnId,
dstConnId,
pn,
QuicVersion::MVFST);
} else {
header = ShortHeader(ProtectionType::KeyPhaseZero, dstConnId, pn);
}
RegularQuicPacketBuilder builder(
dstConn.udpSendPacketLen,
std::move(*header),
getAckState(dstConn, pnSpace).largestAckedByPeer);
if (aead) {
builder.setCipherOverhead(aead->getCipherOverhead());
}
DCHECK(builder.canBuildPacket());
AckFrameMetaData ackData(
acks, 0us, dstConn.transportSettings.ackDelayExponent);
writeAckFrame(ackData, builder);
return std::move(builder).buildPacket();
}
std::shared_ptr<fizz::SelfCert> readCert() {
auto certificate = fizz::test::getCert(fizz::test::kP256Certificate);
auto privKey = fizz::test::getPrivateKey(fizz::test::kP256Key);
std::vector<folly::ssl::X509UniquePtr> certs;
certs.emplace_back(std::move(certificate));
return std::make_shared<fizz::SelfCertImpl<fizz::KeyType::P256>>(
std::move(privKey), std::move(certs));
}
std::shared_ptr<fizz::server::FizzServerContext> createServerCtx() {
auto cert = readCert();
auto certManager = std::make_unique<fizz::server::CertManager>();
certManager->addCert(std::move(cert), true);
auto serverCtx = std::make_shared<fizz::server::FizzServerContext>();
serverCtx->setFactory(std::make_shared<QuicFizzFactory>());
serverCtx->setCertManager(std::move(certManager));
serverCtx->setOmitEarlyRecordLayer(true);
serverCtx->setClock(std::make_shared<NiceMock<fizz::test::MockClock>>());
return serverCtx;
}
class AcceptingTicketCipher : public fizz::server::TicketCipher {
public:
~AcceptingTicketCipher() override = default;
folly::Future<folly::Optional<
std::pair<std::unique_ptr<folly::IOBuf>, std::chrono::seconds>>>
encrypt(fizz::server::ResumptionState) const override {
// Fake handshake, no need todo anything here.
return std::make_pair(folly::IOBuf::create(0), 2s);
}
void setPsk(const QuicCachedPsk& cachedPsk) {
cachedPsk_ = cachedPsk;
}
fizz::server::ResumptionState createResumptionState() const {
fizz::server::ResumptionState resState;
resState.version = cachedPsk_.cachedPsk.version;
resState.cipher = cachedPsk_.cachedPsk.cipher;
resState.resumptionSecret =
folly::IOBuf::copyBuffer(cachedPsk_.cachedPsk.secret);
resState.serverCert = cachedPsk_.cachedPsk.serverCert;
resState.alpn = cachedPsk_.cachedPsk.alpn;
resState.ticketAgeAdd = 0;
resState.ticketIssueTime = std::chrono::system_clock::time_point();
resState.handshakeTime = std::chrono::system_clock::time_point();
AppToken appToken;
appToken.transportParams = createTicketTransportParameters(
kDefaultIdleTimeout.count(),
kDefaultUDPReadBufferSize,
kDefaultConnectionWindowSize,
kDefaultStreamWindowSize,
kDefaultStreamWindowSize,
kDefaultStreamWindowSize,
kDefaultMaxStreamsBidirectional,
kDefaultMaxStreamsUnidirectional);
appToken.version = QuicVersion::MVFST;
resState.appToken = encodeAppToken(appToken);
return resState;
}
folly::Future<
std::pair<fizz::PskType, folly::Optional<fizz::server::ResumptionState>>>
decrypt(std::unique_ptr<folly::IOBuf>) const override {
return std::make_pair(fizz::PskType::Resumption, createResumptionState());
}
private:
QuicCachedPsk cachedPsk_;
};
void setupZeroRttOnServerCtx(
fizz::server::FizzServerContext& serverCtx,
const QuicCachedPsk& cachedPsk) {
serverCtx.setEarlyDataSettings(
true,
fizz::server::ClockSkewTolerance{-100000ms, 100000ms},
std::make_shared<fizz::server::AllowAllReplayReplayCache>());
auto ticketCipher = std::make_shared<AcceptingTicketCipher>();
ticketCipher->setPsk(cachedPsk);
serverCtx.setTicketCipher(ticketCipher);
}
QuicCachedPsk setupZeroRttOnClientCtx(
fizz::client::FizzClientContext& clientCtx,
std::string hostname) {
clientCtx.setSendEarlyData(true);
QuicCachedPsk quicCachedPsk;
auto& psk = quicCachedPsk.cachedPsk;
psk.psk = std::string("psk");
psk.secret = std::string("secret");
psk.type = fizz::PskType::Resumption;
psk.version = clientCtx.getSupportedVersions()[0];
psk.cipher = clientCtx.getSupportedCiphers()[0];
psk.group = clientCtx.getSupportedGroups()[0];
auto mockCert = std::make_shared<NiceMock<fizz::test::MockCert>>();
ON_CALL(*mockCert, getIdentity()).WillByDefault(Return(hostname));
psk.serverCert = mockCert;
psk.alpn = clientCtx.getSupportedAlpns()[0];
psk.ticketAgeAdd = 1;
psk.ticketIssueTime = std::chrono::system_clock::time_point();
psk.ticketExpirationTime =
std::chrono::system_clock::time_point(std::chrono::minutes(100));
psk.ticketHandshakeTime = std::chrono::system_clock::time_point();
psk.maxEarlyDataSize = 2;
quicCachedPsk.transportParams.idleTimeout = kDefaultIdleTimeout.count();
quicCachedPsk.transportParams.maxRecvPacketSize = kDefaultUDPReadBufferSize;
quicCachedPsk.transportParams.initialMaxData = kDefaultConnectionWindowSize;
quicCachedPsk.transportParams.initialMaxStreamDataBidiLocal =
kDefaultStreamWindowSize;
quicCachedPsk.transportParams.initialMaxStreamDataBidiRemote =
kDefaultStreamWindowSize;
quicCachedPsk.transportParams.initialMaxStreamDataUni =
kDefaultStreamWindowSize;
quicCachedPsk.transportParams.initialMaxStreamsBidi =
kDefaultMaxStreamsBidirectional;
quicCachedPsk.transportParams.initialMaxStreamsUni =
kDefaultMaxStreamsUnidirectional;
return quicCachedPsk;
}
void setupCtxWithTestCert(fizz::server::FizzServerContext& ctx) {
auto cert = readCert();
auto certManager = std::make_unique<fizz::server::CertManager>();
certManager->addCert(std::move(cert), true);
ctx.setCertManager(std::move(certManager));
}
template <class T>
std::unique_ptr<T> createNoOpAeadImpl() {
// Fake that the handshake has already occured
auto aead = std::make_unique<NiceMock<T>>();
ON_CALL(*aead, _encrypt(_, _, _))
.WillByDefault(Invoke([&](auto& buf, auto, auto) {
if (buf) {
return buf->clone();
} else {
return folly::IOBuf::create(0);
}
}));
// Fake that the handshake has already occured and fix the keys.
ON_CALL(*aead, _decrypt(_, _, _))
.WillByDefault(
Invoke([&](auto& buf, auto, auto) { return buf->clone(); }));
ON_CALL(*aead, _tryDecrypt(_, _, _))
.WillByDefault(
Invoke([&](auto& buf, auto, auto) { return buf->clone(); }));
ON_CALL(*aead, getCipherOverhead()).WillByDefault(Return(0));
return aead;
}
std::unique_ptr<MockAead> createNoOpAead() {
return createNoOpAeadImpl<MockAead>();
}
std::unique_ptr<PacketNumberCipher> createNoOpHeaderCipher() {
auto headerCipher = std::make_unique<NiceMock<MockPacketNumberCipher>>();
ON_CALL(*headerCipher, mask(_)).WillByDefault(Return(HeaderProtectionMask{}));
ON_CALL(*headerCipher, keyLength()).WillByDefault(Return(16));
return headerCipher;
}
RegularQuicPacketBuilder::Packet createStreamPacket(
ConnectionId srcConnId,
ConnectionId dstConnId,
PacketNum packetNum,
StreamId streamId,
folly::IOBuf& data,
uint8_t cipherOverhead,
PacketNum largestAcked,
folly::Optional<std::pair<LongHeader::Types, QuicVersion>>
longHeaderOverride,
bool eof,
folly::Optional<ProtectionType> shortHeaderOverride,
uint64_t offset,
uint64_t packetSizeLimit) {
std::unique_ptr<RegularQuicPacketBuilder> builder;
if (longHeaderOverride) {
LongHeader header(
longHeaderOverride->first,
srcConnId,
dstConnId,
packetNum,
longHeaderOverride->second);
builder.reset(new RegularQuicPacketBuilder(
packetSizeLimit, std::move(header), largestAcked));
} else {
ProtectionType protectionType = ProtectionType::KeyPhaseZero;
if (shortHeaderOverride) {
protectionType = *shortHeaderOverride;
}
ShortHeader header(protectionType, dstConnId, packetNum);
builder.reset(new RegularQuicPacketBuilder(
packetSizeLimit, std::move(header), largestAcked));
}
builder->setCipherOverhead(cipherOverhead);
writeStreamFrameHeader(
*builder,
streamId,
offset,
data.computeChainDataLength(),
data.computeChainDataLength(),
eof);
writeStreamFrameData(*builder, data.clone(), data.computeChainDataLength());
return std::move(*builder).buildPacket();
}
RegularQuicPacketBuilder::Packet createInitialCryptoPacket(
ConnectionId srcConnId,
ConnectionId dstConnId,
PacketNum packetNum,
QuicVersion version,
folly::IOBuf& data,
const Aead& aead,
PacketNum largestAcked,
uint64_t offset,
const BuilderProvider& builderProvider) {
LongHeader header(
LongHeader::Types::Initial, srcConnId, dstConnId, packetNum, version);
LongHeader copyHeader(header);
PacketBuilderInterface* builder = nullptr;
if (builderProvider) {
builder = builderProvider(std::move(header), largestAcked);
}
RegularQuicPacketBuilder fallbackBuilder(
kDefaultUDPSendPacketLen, std::move(copyHeader), largestAcked);
if (!builder) {
builder = &fallbackBuilder;
}
builder->setCipherOverhead(aead.getCipherOverhead());
writeCryptoFrame(offset, data.clone(), *builder);
return std::move(*builder).buildPacket();
}
RegularQuicPacketBuilder::Packet createCryptoPacket(
ConnectionId srcConnId,
ConnectionId dstConnId,
PacketNum packetNum,
QuicVersion version,
ProtectionType protectionType,
folly::IOBuf& data,
const Aead& aead,
PacketNum largestAcked,
uint64_t offset,
uint64_t packetSizeLimit) {
folly::Optional<PacketHeader> header;
switch (protectionType) {
case ProtectionType::Initial:
header = LongHeader(
LongHeader::Types::Initial, srcConnId, dstConnId, packetNum, version);
break;
case ProtectionType::Handshake:
header = LongHeader(
LongHeader::Types::Handshake,
srcConnId,
dstConnId,
packetNum,
version);
break;
case ProtectionType::ZeroRtt:
header = LongHeader(
LongHeader::Types::ZeroRtt, srcConnId, dstConnId, packetNum, version);
break;
case ProtectionType::KeyPhaseOne:
case ProtectionType::KeyPhaseZero:
header = ShortHeader(protectionType, dstConnId, packetNum);
break;
}
RegularQuicPacketBuilder builder(
packetSizeLimit, std::move(*header), largestAcked);
builder.setCipherOverhead(aead.getCipherOverhead());
writeCryptoFrame(offset, data.clone(), builder);
return std::move(builder).buildPacket();
}
Buf packetToBuf(const RegularQuicPacketBuilder::Packet& packet) {
auto packetBuf = packet.header->clone();
if (packet.body) {
packetBuf->prependChain(packet.body->clone());
}
return packetBuf;
}
Buf packetToBufCleartext(
const RegularQuicPacketBuilder::Packet& packet,
const Aead& cleartextCipher,
const PacketNumberCipher& headerCipher,
PacketNum packetNum) {
VLOG(10) << __func__ << " packet header: "
<< folly::hexlify(packet.header->clone()->moveToFbString());
auto packetBuf = packet.header->clone();
Buf body;
if (packet.body) {
body = packet.body->clone();
}
auto headerForm = packet.packet.header.getHeaderForm();
packet.header->coalesce();
auto encryptedBody =
cleartextCipher.encrypt(std::move(body), packet.header.get(), packetNum);
encryptedBody->coalesce();
encryptPacketHeader(
headerForm,
packet.header->writableData(),
packet.header->length(),
encryptedBody->data(),
encryptedBody->length(),
headerCipher);
packetBuf->prependChain(std::move(encryptedBody));
return packetBuf;
}
uint64_t computeExpectedDelay(
std::chrono::microseconds ackDelay,
uint8_t ackDelayExponent) {
uint64_t divide = uint64_t(ackDelay.count()) >> ackDelayExponent;
return divide << ackDelayExponent;
}
ConnectionId getTestConnectionId(uint16_t hostId) {
ServerConnectionIdParams params(hostId, 0, 0);
DefaultConnectionIdAlgo connIdAlgo;
auto connId = *connIdAlgo.encodeConnectionId(params);
connId.data()[3] = 3;
connId.data()[4] = 4;
connId.data()[5] = 5;
connId.data()[6] = 6;
connId.data()[7] = 7;
return connId;
}
class TestCertificateVerifier : public fizz::CertificateVerifier {
public:
~TestCertificateVerifier() override = default;
void verify(const std::vector<std::shared_ptr<const fizz::PeerCert>>&)
const override {
return;
}
std::vector<fizz::Extension> getCertificateRequestExtensions()
const override {
return std::vector<fizz::Extension>();
}
};
std::unique_ptr<fizz::CertificateVerifier> createTestCertificateVerifier() {
return std::make_unique<TestCertificateVerifier>();
}
ProtectionType encryptionLevelToProtectionType(
fizz::EncryptionLevel encryptionLevel) {
switch (encryptionLevel) {
case fizz::EncryptionLevel::Plaintext:
return ProtectionType::Initial;
case fizz::EncryptionLevel::Handshake:
// TODO: change this in draft-14
return ProtectionType::Initial;
case fizz::EncryptionLevel::EarlyData:
return ProtectionType::ZeroRtt;
case fizz::EncryptionLevel::AppTraffic:
return ProtectionType::KeyPhaseZero;
}
folly::assume_unreachable();
}
void updateAckState(
QuicConnectionStateBase& conn,
PacketNumberSpace pnSpace,
PacketNum packetNum,
bool pkHasRetransmittableData,
bool pkHasCryptoData,
TimePoint receivedTime) {
bool outOfOrder = updateLargestReceivedPacketNum(
getAckState(conn, pnSpace), packetNum, receivedTime);
updateAckSendStateOnRecvPacket(
conn,
getAckState(conn, pnSpace),
outOfOrder,
pkHasRetransmittableData,
pkHasCryptoData);
}
std::unique_ptr<folly::IOBuf> buildRandomInputData(size_t length) {
auto buf = folly::IOBuf::create(length);
buf->append(length);
folly::Random::secureRandom(buf->writableData(), buf->length());
return buf;
}
void addAckStatesWithCurrentTimestamps(
AckState& ackState,
PacketNum start,
PacketNum end) {
ackState.acks.insert(start, end);
ackState.largestRecvdPacketTime = Clock::now();
}
OutstandingPacket makeTestingWritePacket(
PacketNum desiredPacketSeqNum,
size_t desiredSize,
uint64_t totalBytesSent,
TimePoint sentTime) {
LongHeader longHeader(
LongHeader::Types::ZeroRtt,
getTestConnectionId(1),
getTestConnectionId(),
desiredPacketSeqNum,
QuicVersion::MVFST);
RegularQuicWritePacket packet(std::move(longHeader));
return OutstandingPacket(
packet, sentTime, desiredSize, false, totalBytesSent);
}
CongestionController::AckEvent makeAck(
PacketNum seq,
uint64_t ackedSize,
TimePoint ackedTime,
TimePoint sentTime) {
CHECK(sentTime < ackedTime);
RegularQuicWritePacket packet(
ShortHeader(ProtectionType::KeyPhaseZero, getTestConnectionId(), seq));
CongestionController::AckEvent ack;
ack.ackedBytes = ackedSize;
ack.ackTime = ackedTime;
ack.largestAckedPacket = seq;
ack.ackedPackets.emplace_back(
CongestionController::AckEvent::AckPacket::Builder()
.setSentTime(sentTime)
.setEncodedSize(ackedSize)
.build());
ack.largestAckedPacketSentTime = sentTime;
return ack;
}
BufQueue bufToQueue(Buf buf) {
BufQueue queue;
buf->coalesce();
queue.append(std::move(buf));
return queue;
}
StatelessResetToken generateStatelessResetToken() {
StatelessResetSecret secret;
folly::Random::secureRandom(secret.data(), secret.size());
folly::SocketAddress address("1.2.3.4", 8080);
StatelessResetGenerator generator(secret, address.getFullyQualified());
return generator.generateToken(ConnectionId({0x14, 0x35, 0x22, 0x11}));
}
std::array<uint8_t, kStatelessResetTokenSecretLength> getRandSecret() {
std::array<uint8_t, kStatelessResetTokenSecretLength> secret;
folly::Random::secureRandom(secret.data(), secret.size());
return secret;
}
RegularQuicWritePacket createNewPacket(
PacketNum packetNum,
PacketNumberSpace pnSpace) {
switch (pnSpace) {
case PacketNumberSpace::Initial:
return RegularQuicWritePacket(LongHeader(
LongHeader::Types::Initial,
getTestConnectionId(1),
getTestConnectionId(2),
packetNum,
QuicVersion::QUIC_DRAFT));
case PacketNumberSpace::Handshake:
return RegularQuicWritePacket(LongHeader(
LongHeader::Types::Handshake,
getTestConnectionId(0),
getTestConnectionId(4),
packetNum,
QuicVersion::QUIC_DRAFT));
case PacketNumberSpace::AppData:
return RegularQuicWritePacket(ShortHeader(
ProtectionType::KeyPhaseOne, getTestConnectionId(), packetNum));
}
folly::assume_unreachable();
}
std::vector<QuicVersion> versionList(
std::initializer_list<QuicVersionType> types) {
std::vector<QuicVersion> versions;
for (auto type : types) {
versions.push_back(static_cast<QuicVersion>(type));
}
return versions;
}
RegularQuicWritePacket createRegularQuicWritePacket(
StreamId streamId,
uint64_t offset,
uint64_t len,
bool fin) {
auto regularWritePacket = createNewPacket(10, PacketNumberSpace::Initial);
WriteStreamFrame frame(streamId, offset, len, fin);
regularWritePacket.frames.emplace_back(frame);
return regularWritePacket;
}
VersionNegotiationPacket createVersionNegotiationPacket() {
auto versions = {QuicVersion::VERSION_NEGOTIATION, QuicVersion::MVFST};
auto packet = VersionNegotiationPacketBuilder(
getTestConnectionId(0), getTestConnectionId(1), versions)
.buildPacket()
.first;
return packet;
}
RegularQuicWritePacket createPacketWithAckFrames() {
RegularQuicWritePacket packet =
createNewPacket(100, PacketNumberSpace::Initial);
WriteAckFrame ackFrame;
ackFrame.ackDelay = 111us;
ackFrame.ackBlocks.emplace_back(900, 1000);
ackFrame.ackBlocks.emplace_back(500, 700);
packet.frames.emplace_back(std::move(ackFrame));
return packet;
}
RegularQuicWritePacket createPacketWithPaddingFrames() {
RegularQuicWritePacket packet =
createNewPacket(100, PacketNumberSpace::Initial);
for (int i = 0; i < 20; ++i) {
PaddingFrame paddingFrame;
packet.frames.emplace_back(paddingFrame);
}
return packet;
}
std::vector<int> getQLogEventIndices(
QLogEventType type,
const std::shared_ptr<FileQLogger>& q) {
std::vector<int> indices;
for (uint64_t i = 0; i < q->logs.size(); ++i) {
if (q->logs[i]->eventType == type) {
indices.push_back(i);
}
}
return indices;
}
bool matchError(
std::pair<QuicErrorCode, folly::Optional<folly::StringPiece>> errorCode,
LocalErrorCode error) {
return errorCode.first.type() == QuicErrorCode::Type::LocalErrorCode_E &&
*errorCode.first.asLocalErrorCode() == error;
}
bool matchError(
std::pair<QuicErrorCode, folly::Optional<folly::StringPiece>> errorCode,
TransportErrorCode error) {
return errorCode.first.type() == QuicErrorCode::Type::TransportErrorCode_E &&
*errorCode.first.asTransportErrorCode() == error;
}
bool matchError(
std::pair<QuicErrorCode, folly::Optional<folly::StringPiece>> errorCode,
ApplicationErrorCode error) {
return errorCode.first.type() ==
QuicErrorCode::Type::ApplicationErrorCode_E &&
*errorCode.first.asApplicationErrorCode() == error;
}
bool matchError(
std::pair<QuicErrorCode, std::string> errorCode,
ApplicationErrorCode error) {
return errorCode.first.type() ==
QuicErrorCode::Type::ApplicationErrorCode_E &&
*errorCode.first.asApplicationErrorCode() == error;
}
bool matchError(
std::pair<QuicErrorCode, std::string> errorCode,
TransportErrorCode error) {
return errorCode.first.type() == QuicErrorCode::Type::TransportErrorCode_E &&
*errorCode.first.asTransportErrorCode() == error;
}
CongestionController::AckEvent::AckPacket makeAckPacketFromOutstandingPacket(
OutstandingPacket outstandingPacket) {
return CongestionController::AckEvent::AckPacket::Builder()
.setSentTime(outstandingPacket.time)
.setEncodedSize(outstandingPacket.encodedSize)
.setLastAckedPacketInfo(std::move(outstandingPacket.lastAckedPacketInfo))
.setTotalBytesSentThen(outstandingPacket.totalBytesSent)
.setAppLimited(outstandingPacket.isAppLimited)
.build();
}
} // namespace test
} // namespace quic