1
0
mirror of https://github.com/facebookincubator/mvfst.git synced 2025-08-09 20:42:44 +03:00
Files
mvfst/quic/server/state/ServerStateMachine.cpp
Matt Joras 72e677df33 Send windowed stream limit updates
Summary:
Implement sending stream limit updates in a windowed fashion, so that as a peer exhausts its streams we will grant it additional credit. This is implemented by having the stream manager check if an update is needed on removing streams, and the api layer potentially sending an update after it initiates the check for closed streams.

This also makes some driveby changes to use `std::lower_bound` instead of `std::find` for the sorted collections in the stream manager.

Reviewed By: yangchi

Differential Revision: D16808229

fbshipit-source-id: f6e3460d43e4d165e362164be00c0cec27cf1e79
2019-09-18 11:33:03 -07:00

1177 lines
46 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*
*/
#include <quic/server/state/ServerStateMachine.h>
#include <quic/congestion_control/CongestionControllerFactory.h>
#include <quic/flowcontrol/QuicFlowController.h>
#include <quic/handshake/FizzCryptoFactory.h>
#include <quic/handshake/TransportParameters.h>
#include <quic/logging/QLoggerConstants.h>
#include <quic/state/QuicPacingFunctions.h>
#include <quic/state/QuicStreamFunctions.h>
#include <quic/state/QuicTransportStatsCallback.h>
namespace quic {
using namespace std::chrono_literals;
namespace {
using PacketDropReason = QuicTransportStatsCallback::PacketDropReason;
} // namespace
namespace {
bool maybeNATRebinding(
const folly::SocketAddress& newPeerAddress,
const folly::SocketAddress& oldPeerAddress) {
auto& newIPAddr = newPeerAddress.getIPAddress();
auto& oldIPAddr = oldPeerAddress.getIPAddress();
// Port changed
if (newIPAddr == oldIPAddr) {
return true;
}
return newIPAddr.isV4() && oldIPAddr.isV4() &&
newIPAddr.inSubnet(oldIPAddr, 24);
}
CongestionAndRttState moveCurrentCongestionAndRttState(
QuicServerConnectionState& conn) {
CongestionAndRttState state;
state.peerAddress = conn.peerAddress;
state.recordTime = Clock::now();
state.congestionController = std::move(conn.congestionController);
state.srtt = conn.lossState.srtt;
state.lrtt = conn.lossState.lrtt;
state.rttvar = conn.lossState.rttvar;
return state;
}
void resetCongestionAndRttState(QuicServerConnectionState& conn) {
CHECK(conn.congestionControllerFactory)
<< "CongestionControllerFactory is not set.";
conn.congestionController =
conn.congestionControllerFactory->makeCongestionController(
conn, conn.transportSettings.defaultCongestionController);
conn.lossState.srtt = 0us;
conn.lossState.lrtt = 0us;
conn.lossState.rttvar = 0us;
}
void recoverOrResetCongestionAndRttState(
QuicServerConnectionState& conn,
const folly::SocketAddress& peerAddress) {
auto& lastState = conn.migrationState.lastCongestionAndRtt;
if (lastState && lastState->peerAddress == peerAddress &&
(Clock::now() - lastState->recordTime <=
kTimeToRetainLastCongestionAndRttState)) {
// recover from matched non-stale state
conn.congestionController = std::move(lastState->congestionController);
conn.lossState.srtt = lastState->srtt;
conn.lossState.lrtt = lastState->lrtt;
conn.lossState.rttvar = lastState->rttvar;
conn.migrationState.lastCongestionAndRtt = folly::none;
} else {
resetCongestionAndRttState(conn);
}
}
} // namespace
void processClientInitialParams(
QuicServerConnectionState& conn,
ClientTransportParameters clientParams) {
// TODO validate that we didn't receive original connection ID, stateless
// reset token, or preferred address.
auto maxData = getIntegerParameter(
TransportParameterId::initial_max_data, clientParams.parameters);
auto maxStreamDataBidiLocal = getIntegerParameter(
TransportParameterId::initial_max_stream_data_bidi_local,
clientParams.parameters);
auto maxStreamDataBidiRemote = getIntegerParameter(
TransportParameterId::initial_max_stream_data_bidi_remote,
clientParams.parameters);
auto maxStreamDataUni = getIntegerParameter(
TransportParameterId::initial_max_stream_data_uni,
clientParams.parameters);
auto maxStreamsBidi = getIntegerParameter(
TransportParameterId::initial_max_streams_bidi, clientParams.parameters);
auto maxStreamsUni = getIntegerParameter(
TransportParameterId::initial_max_streams_uni, clientParams.parameters);
auto idleTimeout = getIntegerParameter(
TransportParameterId::idle_timeout, clientParams.parameters);
auto ackDelayExponent = getIntegerParameter(
TransportParameterId::ack_delay_exponent, clientParams.parameters);
auto packetSize = getIntegerParameter(
TransportParameterId::max_packet_size, clientParams.parameters);
auto partialReliability = getIntegerParameter(
static_cast<TransportParameterId>(kPartialReliabilityParameterId),
clientParams.parameters);
if (!packetSize || *packetSize == 0) {
packetSize = kDefaultMaxUDPPayload;
}
if (*packetSize < kMinMaxUDPPayload) {
throw QuicTransportException(
folly::to<std::string>(
"Max packet size too small. received max_packetSize = ",
*packetSize),
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
VLOG(10) << "Client advertised flow control ";
VLOG(10) << "conn=" << maxData.value_or(0);
VLOG(10) << " stream bidi local=" << maxStreamDataBidiLocal.value_or(0)
<< " ";
VLOG(10) << " stream bidi remote=" << maxStreamDataBidiRemote.value_or(0)
<< " ";
VLOG(10) << " stream uni=" << maxStreamDataUni.value_or(0) << " ";
VLOG(10) << conn;
conn.flowControlState.peerAdvertisedMaxOffset = maxData.value_or(0);
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiLocal =
maxStreamDataBidiLocal.value_or(0);
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetBidiRemote =
maxStreamDataBidiRemote.value_or(0);
conn.flowControlState.peerAdvertisedInitialMaxStreamOffsetUni =
maxStreamDataUni.value_or(0);
conn.streamManager->setMaxLocalBidirectionalStreams(
maxStreamsBidi.value_or(0));
conn.streamManager->setMaxLocalUnidirectionalStreams(
maxStreamsUni.value_or(0));
conn.peerIdleTimeout = std::chrono::milliseconds(idleTimeout.value_or(0));
conn.peerIdleTimeout = timeMin(conn.peerIdleTimeout, kMaxIdleTimeout);
if (ackDelayExponent && *ackDelayExponent > kMaxAckDelayExponent) {
throw QuicTransportException(
"ack_delay_exponent too large",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
conn.peerAckDelayExponent =
ackDelayExponent.value_or(kDefaultAckDelayExponent);
// TODO: udpSendPacketLen should also be limited by PMTU
if (conn.transportSettings.canIgnorePathMTU) {
conn.udpSendPacketLen = *packetSize;
}
if (partialReliability && *partialReliability != 0 &&
conn.transportSettings.partialReliabilityEnabled) {
conn.partialReliabilityEnabled = true;
}
VLOG(10) << "conn.partialReliabilityEnabled="
<< conn.partialReliabilityEnabled;
}
void updateHandshakeState(QuicServerConnectionState& conn) {
// Zero RTT read cipher is available after chlo is processed with the
// condition that early data attempt is accepted.
auto handshakeLayer = conn.serverHandshakeLayer;
auto zeroRttReadCipher = handshakeLayer->getZeroRttReadCipher();
auto zeroRttHeaderCipher = handshakeLayer->getZeroRttReadHeaderCipher();
// One RTT write cipher is available at Fizz layer after chlo is processed.
// However, the cipher is only exported to QUIC if early data attempt is
// accepted. Otherwise, the cipher will be available after cfin is
// processed.
auto oneRttWriteCipher = handshakeLayer->getOneRttWriteCipher();
// One RTT read cipher is available after cfin is processed.
auto oneRttReadCipher = handshakeLayer->getOneRttReadCipher();
auto oneRttWriteHeaderCipher = handshakeLayer->getOneRttWriteHeaderCipher();
auto oneRttReadHeaderCipher = handshakeLayer->getOneRttReadHeaderCipher();
if (zeroRttReadCipher) {
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(kDerivedZeroRttReadCipher);
}
QUIC_TRACE(fst_trace, conn, "derived 0-rtt read cipher");
conn.readCodec->setZeroRttReadCipher(std::move(zeroRttReadCipher));
}
if (zeroRttHeaderCipher) {
conn.readCodec->setZeroRttHeaderCipher(std::move(zeroRttHeaderCipher));
}
if (oneRttWriteHeaderCipher) {
conn.oneRttWriteHeaderCipher = std::move(oneRttWriteHeaderCipher);
}
if (oneRttReadHeaderCipher) {
conn.readCodec->setOneRttHeaderCipher(std::move(oneRttReadHeaderCipher));
}
if (oneRttWriteCipher) {
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(kDerivedOneRttWriteCipher);
}
QUIC_TRACE(fst_trace, conn, "derived 1-rtt write cipher");
CHECK(!conn.oneRttWriteCipher.get());
conn.oneRttWriteCipher = std::move(oneRttWriteCipher);
updatePacingOnKeyEstablished(conn);
// We negotiate the transport parameters whenever we have the 1-RTT write
// keys available.
auto clientParams = handshakeLayer->getClientTransportParams();
if (!clientParams) {
throw QuicTransportException(
"No client transport params",
TransportErrorCode::TRANSPORT_PARAMETER_ERROR);
}
processClientInitialParams(conn, std::move(*clientParams));
}
if (oneRttReadCipher) {
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(kDerivedOneRttReadCipher);
}
QUIC_TRACE(fst_trace, conn, "derived 1-rtt read cipher");
// Clear limit because CFIN is received at this point
conn.writableBytesLimit = folly::none;
conn.readCodec->setOneRttReadCipher(std::move(oneRttReadCipher));
}
auto handshakeWriteCipher = handshakeLayer->getHandshakeWriteCipher();
auto handshakeReadCipher = handshakeLayer->getHandshakeReadCipher();
if (handshakeWriteCipher) {
conn.handshakeWriteCipher = std::move(handshakeWriteCipher);
}
if (handshakeReadCipher) {
conn.readCodec->setHandshakeReadCipher(std::move(handshakeReadCipher));
}
auto handshakeWriteHeaderCipher =
handshakeLayer->getHandshakeWriteHeaderCipher();
auto handshakeReadHeaderCipher =
handshakeLayer->getHandshakeReadHeaderCipher();
if (handshakeWriteHeaderCipher) {
conn.handshakeWriteHeaderCipher = std::move(handshakeWriteHeaderCipher);
}
if (handshakeReadHeaderCipher) {
conn.readCodec->setHandshakeHeaderCipher(
std::move(handshakeReadHeaderCipher));
}
if (handshakeLayer->isHandshakeDone()) {
conn.readCodec->onHandshakeDone(Clock::now());
}
}
bool validateAndUpdateSourceToken(
QuicServerConnectionState& conn,
std::vector<folly::IPAddress> sourceAddresses) {
DCHECK(conn.peerAddress.isInitialized());
bool foundMatch = false;
for (int ii = sourceAddresses.size() - 1; ii >= 0; --ii) {
// TODO T33014230 subnet matching
if (conn.peerAddress.getIPAddress() == sourceAddresses[ii]) {
foundMatch = true;
// If peer address is found in the token, move the element to the end
// of vector to increase its favorability.
sourceAddresses.erase(sourceAddresses.begin() + ii);
sourceAddresses.push_back(conn.peerAddress.getIPAddress());
}
}
conn.sourceTokenMatching = foundMatch;
bool acceptZeroRtt = foundMatch;
if (!foundMatch) {
// Add peer address to token for next resumption
if (sourceAddresses.size() >= kMaxNumTokenSourceAddresses) {
sourceAddresses.erase(sourceAddresses.begin());
}
sourceAddresses.push_back(conn.peerAddress.getIPAddress());
switch (conn.transportSettings.zeroRttSourceTokenMatchingPolicy) {
case ZeroRttSourceTokenMatchingPolicy::REJECT_IF_NO_EXACT_MATCH:
acceptZeroRtt = false;
break;
case ZeroRttSourceTokenMatchingPolicy::LIMIT_IF_NO_EXACT_MATCH:
acceptZeroRtt = true;
conn.writableBytesLimit =
conn.transportSettings.limitedCwndInMss * conn.udpSendPacketLen;
break;
}
}
// Save the source token so that it can be written to client via NST later
conn.tokenSourceAddresses = std::move(sourceAddresses);
return acceptZeroRtt;
}
void updateWritableByteLimitOnRecvPacket(QuicServerConnectionState& conn) {
// When we receive a packet we increase the limit again. The reasoning this is
// that a peer can do the same by opening a new connection.
if (conn.writableBytesLimit) {
conn.writableBytesLimit = *conn.writableBytesLimit +
conn.transportSettings.limitedCwndInMss * conn.udpSendPacketLen;
}
}
void updateTransportParamsFromTicket(
QuicServerConnectionState& conn,
uint64_t idleTimeout,
uint64_t maxRecvPacketSize,
uint64_t initialMaxData,
uint64_t initialMaxStreamDataBidiLocal,
uint64_t initialMaxStreamDataBidiRemote,
uint64_t initialMaxStreamDataUni,
uint64_t initialMaxStreamsBidi,
uint64_t initialMaxStreamsUni) {
conn.transportSettings.idleTimeout = std::chrono::milliseconds(idleTimeout);
conn.transportSettings.maxRecvPacketSize = maxRecvPacketSize;
conn.transportSettings.advertisedInitialConnectionWindowSize = initialMaxData;
conn.transportSettings.advertisedInitialBidiLocalStreamWindowSize =
initialMaxStreamDataBidiLocal;
conn.transportSettings.advertisedInitialBidiRemoteStreamWindowSize =
initialMaxStreamDataBidiRemote;
conn.transportSettings.advertisedInitialUniStreamWindowSize =
initialMaxStreamDataUni;
updateFlowControlStateWithSettings(
conn.flowControlState, conn.transportSettings);
conn.transportSettings.advertisedInitialMaxStreamsBidi =
initialMaxStreamsBidi;
conn.transportSettings.advertisedInitialMaxStreamsUni = initialMaxStreamsUni;
}
void onConnectionMigration(
QuicServerConnectionState& conn,
const folly::SocketAddress& newPeerAddress) {
if (conn.migrationState.numMigrations >= kMaxNumMigrationsAllowed) {
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
0,
QuicTransportStatsCallback::toString(
PacketDropReason::PEER_ADDRESS_CHANGE));
}
QUIC_STATS(
conn.infoCallback,
onPacketDropped,
PacketDropReason::PEER_ADDRESS_CHANGE);
throw QuicTransportException(
"Too many migrations", TransportErrorCode::INVALID_MIGRATION);
}
++conn.migrationState.numMigrations;
auto& previousPeerAddresses = conn.migrationState.previousPeerAddresses;
auto it = std::find(
previousPeerAddresses.begin(),
previousPeerAddresses.end(),
newPeerAddress);
if (it == previousPeerAddresses.end()) {
// Send new path challenge
uint64_t pathData;
folly::Random::secureRandom(&pathData, sizeof(pathData));
conn.pendingEvents.pathChallenge = PathChallengeFrame(pathData);
// Limit amount of bytes that can be sent to unvalidated source
conn.writableBytesLimit =
conn.transportSettings.limitedCwndInMss * conn.udpSendPacketLen;
} else {
previousPeerAddresses.erase(it);
}
// At this point, path validation scheduled, writable bytes limit set
// However if this is NAT rebinding, keep congestion state unchanged
bool isNATRebinding = maybeNATRebinding(newPeerAddress, conn.peerAddress);
// Cancel current path validation if any
if (conn.outstandingPathValidation) {
conn.pendingEvents.schedulePathValidationTimeout = false;
conn.outstandingPathValidation = folly::none;
// Only change congestion & rtt state if not NAT rebinding
if (!isNATRebinding) {
recoverOrResetCongestionAndRttState(conn, newPeerAddress);
}
} else {
// Only add validated addresses to previousPeerAddresses
conn.migrationState.previousPeerAddresses.push_back(conn.peerAddress);
// Only change congestion & rtt state if not NAT rebinding
if (!isNATRebinding) {
// Current peer address is validated,
// remember its congestion state and rtt stats
CongestionAndRttState state = moveCurrentCongestionAndRttState(conn);
recoverOrResetCongestionAndRttState(conn, newPeerAddress);
conn.migrationState.lastCongestionAndRtt = std::move(state);
}
}
conn.peerAddress = newPeerAddress;
}
void onServerReadData(
QuicServerConnectionState& conn,
ServerEvents::ReadData& readData) {
switch (conn.state) {
case ServerState::Open:
onServerReadDataFromOpen(conn, readData);
return;
case ServerState::Closed:
onServerReadDataFromClosed(conn, readData);
return;
}
}
void onServerReadDataFromOpen(
QuicServerConnectionState& conn,
ServerEvents::ReadData& readData) {
CHECK_EQ(conn.state, ServerState::Open);
// Don't bother parsing if the data is empty.
if (!readData.networkData.data ||
readData.networkData.data->computeChainDataLength() == 0) {
return;
}
if (!conn.readCodec) {
// First packet from the peer
folly::io::Cursor cursor(readData.networkData.data.get());
auto initialByte = cursor.readBE<uint8_t>();
auto parsedLongHeader = parseLongHeaderInvariant(initialByte, cursor);
if (!parsedLongHeader) {
VLOG(4) << "Could not parse initial packet header";
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
0,
QuicTransportStatsCallback::toString(
PacketDropReason::PARSE_ERROR));
}
QUIC_STATS(
conn.infoCallback, onPacketDropped, PacketDropReason::PARSE_ERROR);
return;
}
QuicVersion version = parsedLongHeader->invariant.version;
if (version == QuicVersion::VERSION_NEGOTIATION) {
VLOG(4) << "Server droppiong VN packet";
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
0,
QuicTransportStatsCallback::toString(
PacketDropReason::INVALID_PACKET));
}
QUIC_STATS(
conn.infoCallback, onPacketDropped, PacketDropReason::INVALID_PACKET);
return;
}
const auto& clientConnectionId = parsedLongHeader->invariant.srcConnId;
const auto& initialDestinationConnectionId =
parsedLongHeader->invariant.dstConnId;
if (initialDestinationConnectionId.size() < kDefaultConnectionIdSize) {
VLOG(4) << "Initial connectionid too small";
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
0,
QuicTransportStatsCallback::toString(
PacketDropReason::INITIAL_CONNID_SMALL));
}
QUIC_STATS(
conn.infoCallback,
onPacketDropped,
PacketDropReason::INITIAL_CONNID_SMALL);
return;
}
CHECK(conn.connIdAlgo) << "ConnectionIdAlgo is not set.";
CHECK(!conn.serverConnectionId.hasValue());
// serverConnIdParams must be set by the QuicServerTransport
CHECK(conn.serverConnIdParams);
conn.serverConnectionId =
conn.connIdAlgo->encodeConnectionId(*conn.serverConnIdParams);
StatelessResetGenerator generator(
conn.transportSettings.statelessResetTokenSecret.value(),
conn.serverAddr.getFullyQualified());
StatelessResetToken token =
generator.generateToken(*conn.serverConnectionId);
QUIC_STATS(conn.infoCallback, onStatelessReset);
conn.serverHandshakeLayer->accept(
std::make_shared<ServerTransportParametersExtension>(
version,
conn.supportedVersions,
conn.transportSettings.advertisedInitialConnectionWindowSize,
conn.transportSettings.advertisedInitialBidiLocalStreamWindowSize,
conn.transportSettings.advertisedInitialBidiRemoteStreamWindowSize,
conn.transportSettings.advertisedInitialUniStreamWindowSize,
conn.transportSettings.advertisedInitialMaxStreamsBidi,
conn.transportSettings.advertisedInitialMaxStreamsUni,
conn.transportSettings.idleTimeout,
conn.transportSettings.ackDelayExponent,
conn.transportSettings.maxRecvPacketSize,
conn.transportSettings.partialReliabilityEnabled,
token));
conn.transportParametersEncoded = true;
QuicFizzFactory fizzFactory;
FizzCryptoFactory cryptoFactory(&fizzFactory);
conn.readCodec = std::make_unique<QuicReadCodec>(QuicNodeType::Server);
conn.readCodec->setInitialReadCipher(
FizzCryptoFactory(&fizzFactory)
.getClientInitialCipher(initialDestinationConnectionId, version));
conn.readCodec->setClientConnectionId(clientConnectionId);
conn.readCodec->setServerConnectionId(*conn.serverConnectionId);
if (conn.qLogger) {
conn.qLogger->scid = conn.serverConnectionId;
conn.qLogger->dcid = clientConnectionId;
}
conn.readCodec->setCodecParameters(
CodecParameters(conn.peerAckDelayExponent, version));
conn.initialWriteCipher = cryptoFactory.getServerInitialCipher(
initialDestinationConnectionId, version);
conn.readCodec->setInitialHeaderCipher(
cryptoFactory.makeClientInitialHeaderCipher(
initialDestinationConnectionId, version));
conn.initialHeaderCipher = cryptoFactory.makeServerInitialHeaderCipher(
initialDestinationConnectionId, version);
conn.peerAddress = conn.originalPeerAddress;
}
folly::IOBufQueue udpData{folly::IOBufQueue::cacheChainLength()};
udpData.append(std::move(readData.networkData.data));
for (uint16_t processedPackets = 0;
!udpData.empty() && processedPackets < kMaxNumCoalescedPackets;
processedPackets++) {
size_t dataSize = udpData.chainLength();
auto parsedPacket = conn.readCodec->parsePacket(udpData, conn.ackStates);
size_t packetSize = dataSize - udpData.chainLength();
bool parseSuccess = folly::variant_match(
parsedPacket,
[&](QuicPacket&) { return true; },
[&](folly::Optional<CipherUnavailable>& originalData) {
if (!originalData.hasValue()) {
VLOG(10) << "drop cipher unavailable, no data " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kCipherUnavailable);
}
QUIC_TRACE(packet_drop, conn, "cipher_unavailable");
return false;
}
if (!originalData->packet || originalData->packet->empty()) {
VLOG(10) << "drop because no data " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kNoData);
}
QUIC_TRACE(packet_drop, conn, "no_data");
return false;
}
if (originalData->protectionType != ProtectionType::ZeroRtt &&
originalData->protectionType != ProtectionType::KeyPhaseZero) {
VLOG(10) << "drop because unexpected protection level " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize, kUnexpectedProtectionLevel);
}
QUIC_TRACE(packet_drop, conn, "unexpected_protection_level");
return false;
}
size_t combinedSize =
(conn.pendingZeroRttData ? conn.pendingZeroRttData->size() : 0) +
(conn.pendingOneRttData ? conn.pendingOneRttData->size() : 0);
if (combinedSize >= conn.transportSettings.maxPacketsToBuffer) {
VLOG(10) << "drop because max buffered " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kMaxBuffered);
}
QUIC_TRACE(packet_drop, conn, "max_buffered");
return false;
}
auto& pendingData =
originalData->protectionType == ProtectionType::ZeroRtt
? conn.pendingZeroRttData
: conn.pendingOneRttData;
if (pendingData) {
QUIC_TRACE(
packet_buffered,
conn,
originalData->packetNum,
originalData->protectionType,
packetSize);
if (conn.qLogger) {
conn.qLogger->addPacketBuffered(
originalData->packetNum,
originalData->protectionType,
packetSize);
}
ServerEvents::ReadData pendingReadData;
pendingReadData.peer = readData.peer;
pendingReadData.networkData = NetworkData(
std::move(originalData->packet),
readData.networkData.receiveTimePoint);
pendingData->emplace_back(std::move(pendingReadData));
VLOG(10) << "Adding pending data to "
<< toString(originalData->protectionType)
<< " buffer size=" << pendingData->size() << " " << conn;
} else {
VLOG(10) << "drop because "
<< toString(originalData->protectionType)
<< " buffer no longer available " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kBufferUnavailable);
}
QUIC_TRACE(packet_drop, conn, "buffer_unavailable");
}
return false;
},
[&](const auto&) {
VLOG(10) << "drop because reset " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kReset);
}
QUIC_TRACE(packet_drop, conn, "reset");
return false;
});
if (!parseSuccess) {
// We were unable to parse the packet, drop for now.
VLOG(10) << "Not able to parse QUIC packet " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
QuicTransportStatsCallback::toString(
PacketDropReason::PARSE_ERROR));
}
QUIC_STATS(
conn.infoCallback, onPacketDropped, PacketDropReason::PARSE_ERROR);
continue;
}
auto& packet = boost::get<QuicPacket>(parsedPacket);
// Before we know what the protection level of the packet is, we should
// not throw an error.
auto regularOptional = boost::get<RegularQuicPacket>(&packet);
if (!regularOptional) {
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
QuicTransportStatsCallback::toString(
PacketDropReason::INVALID_PACKET));
}
QUIC_TRACE(packet_drop, conn, "not_regular");
VLOG(10) << "drop, not regular packet " << conn;
QUIC_STATS(
conn.infoCallback, onPacketDropped, PacketDropReason::INVALID_PACKET);
continue;
}
auto protectionLevel = folly::variant_match(
regularOptional->header,
[](auto& header) { return header.getProtectionType(); });
auto encryptionLevel = protectionTypeToEncryptionLevel(protectionLevel);
auto packetNum = folly::variant_match(
regularOptional->header,
[](const auto& h) { return h.getPacketSequenceNum(); });
auto packetNumberSpace = folly::variant_match(
regularOptional->header,
[](auto& header) { return header.getPacketNumberSpace(); });
// TODO: enforce constraints on other protection levels.
auto& regularPacket = *regularOptional;
bool isProtectedPacket = protectionLevel == ProtectionType::ZeroRtt ||
protectionLevel == ProtectionType::KeyPhaseZero ||
protectionLevel == ProtectionType::KeyPhaseOne;
if (!isProtectedPacket) {
for (auto& quicFrame : regularPacket.frames) {
auto isPadding = boost::get<PaddingFrame>(&quicFrame);
auto isAck = boost::get<ReadAckFrame>(&quicFrame);
auto isClose = boost::get<ConnectionCloseFrame>(&quicFrame);
auto isCrypto = boost::get<ReadCryptoFrame>(&quicFrame);
// TODO: add path challenge and response
if (!isPadding && !isAck && !isClose && !isCrypto) {
QUIC_STATS(
conn.infoCallback,
onPacketDropped,
PacketDropReason::PROTOCOL_VIOLATION);
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
QuicTransportStatsCallback::toString(
PacketDropReason::PROTOCOL_VIOLATION));
}
throw QuicTransportException(
"Invalid frame", TransportErrorCode::PROTOCOL_VIOLATION);
}
}
}
CHECK(conn.clientConnectionId);
if (conn.qLogger) {
conn.qLogger->addPacket(regularPacket, packetSize);
conn.qLogger->dcid = conn.clientConnectionId;
conn.qLogger->scid = conn.serverConnectionId;
}
QUIC_TRACE(packet_recvd, conn, packetNum, packetSize);
// We assume that the higher layer takes care of validating that the version
// is supported.
if (!conn.version) {
conn.version = boost::get<LongHeader>(regularPacket.header).getVersion();
}
if (conn.peerAddress != readData.peer) {
if (packetNumberSpace != PacketNumberSpace::AppData) {
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
QuicTransportStatsCallback::toString(
PacketDropReason::PEER_ADDRESS_CHANGE));
}
QUIC_STATS(
conn.infoCallback,
onPacketDropped,
PacketDropReason::PEER_ADDRESS_CHANGE);
throw QuicTransportException(
"Migration not allowed during handshake",
TransportErrorCode::INVALID_MIGRATION);
}
if (conn.transportSettings.disableMigration) {
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
QuicTransportStatsCallback::toString(
PacketDropReason::PEER_ADDRESS_CHANGE));
}
QUIC_STATS(
conn.infoCallback,
onPacketDropped,
PacketDropReason::PEER_ADDRESS_CHANGE);
throw QuicTransportException(
"Migration disabled", TransportErrorCode::INVALID_MIGRATION);
}
}
auto& ackState = getAckState(conn, packetNumberSpace);
auto outOfOrder = updateLargestReceivedPacketNum(
ackState, packetNum, readData.networkData.receiveTimePoint);
DCHECK(hasReceivedPackets(conn));
bool pktHasRetransmittableData = false;
bool pktHasCryptoData = false;
bool isNonProbingPacket = false;
// TODO: possibly drop the packet here, but rolling back state of
// what we've already processed is difficult.
for (auto& quicFrame : regularPacket.frames) {
folly::variant_match(
quicFrame,
[&](ReadAckFrame& ackFrame) {
VLOG(10) << "Server received ack frame packet=" << packetNum << " "
<< conn;
isNonProbingPacket = true;
processAckFrame(
conn,
packetNumberSpace,
ackFrame,
[&](const OutstandingPacket&,
const QuicWriteFrame& packetFrame,
const ReadAckFrame&) {
folly::variant_match(
packetFrame,
[&](const WriteStreamFrame& frame) {
VLOG(4) << "Server received ack for stream="
<< frame.streamId << " offset=" << frame.offset
<< " fin=" << frame.fin << " len=" << frame.len
<< " " << conn;
auto ackedStream =
conn.streamManager->getStream(frame.streamId);
if (ackedStream) {
invokeStreamSendStateMachine(
conn,
*ackedStream,
StreamEvents::AckStreamFrame(frame));
}
},
[&](const WriteCryptoFrame& frame) {
auto cryptoStream =
getCryptoStream(*conn.cryptoState, encryptionLevel);
processCryptoStreamAck(
*cryptoStream, frame.offset, frame.len);
},
[&](const RstStreamFrame& frame) {
VLOG(4) << "Server received ack for reset stream="
<< frame.streamId << " " << conn;
auto stream =
conn.streamManager->getStream(frame.streamId);
if (stream) {
invokeStreamSendStateMachine(
conn, *stream, StreamEvents::RstAck(frame));
}
},
[&](const WriteAckFrame& frame) {
DCHECK(!frame.ackBlocks.empty());
VLOG(4) << "Server received ack for largestAcked="
<< frame.ackBlocks.back().end << " " << conn;
commonAckVisitorForAckFrame(ackState, frame);
},
[&](const auto& /*frame*/) {
// Ignore other frames.
});
},
markPacketLoss,
readData.networkData.receiveTimePoint);
},
[&](RstStreamFrame& frame) {
VLOG(10) << "Server received reset stream=" << frame.streamId << " "
<< conn;
pktHasRetransmittableData = true;
isNonProbingPacket = true;
auto stream = conn.streamManager->getStream(frame.streamId);
if (!stream) {
return;
}
invokeStreamReceiveStateMachine(conn, *stream, frame);
},
[&](ReadCryptoFrame& cryptoFrame) {
pktHasRetransmittableData = true;
pktHasCryptoData = true;
isNonProbingPacket = true;
VLOG(10) << "Server received crypto data offset="
<< cryptoFrame.offset
<< " len=" << cryptoFrame.data->computeChainDataLength()
<< " currentReadOffset="
<< getCryptoStream(*conn.cryptoState, encryptionLevel)
->currentReadOffset
<< " " << conn;
appendDataToReadBuffer(
*getCryptoStream(*conn.cryptoState, encryptionLevel),
StreamBuffer(
std::move(cryptoFrame.data), cryptoFrame.offset, false));
},
[&](ReadStreamFrame& frame) {
VLOG(10) << "Server received stream data for stream="
<< frame.streamId << ", offset=" << frame.offset
<< " len=" << frame.data->computeChainDataLength()
<< " fin=" << frame.fin << " " << conn;
pktHasRetransmittableData = true;
isNonProbingPacket = true;
auto stream = conn.streamManager->getStream(frame.streamId);
// Ignore data from closed streams that we don't have the
// state for any more.
if (stream) {
invokeStreamReceiveStateMachine(conn, *stream, frame);
}
},
[&](MaxDataFrame& connWindowUpdate) {
VLOG(10) << "Server received max data offset="
<< connWindowUpdate.maximumData << " " << conn;
pktHasRetransmittableData = true;
isNonProbingPacket = true;
handleConnWindowUpdate(conn, connWindowUpdate, packetNum);
},
[&](MaxStreamDataFrame& streamWindowUpdate) {
VLOG(10) << "Server received max stream data stream="
<< streamWindowUpdate.streamId
<< " offset=" << streamWindowUpdate.maximumData << " "
<< conn;
if (isReceivingStream(conn.nodeType, streamWindowUpdate.streamId)) {
throw QuicTransportException(
"Received MaxStreamDataFrame for receiving stream.",
TransportErrorCode::STREAM_STATE_ERROR);
}
pktHasRetransmittableData = true;
isNonProbingPacket = true;
auto stream =
conn.streamManager->getStream(streamWindowUpdate.streamId);
if (stream) {
handleStreamWindowUpdate(
*stream, streamWindowUpdate.maximumData, packetNum);
}
},
[&](DataBlockedFrame&) {
VLOG(10) << "Server received blocked " << conn;
pktHasRetransmittableData = true;
isNonProbingPacket = true;
handleConnBlocked(conn);
},
[&](StreamDataBlockedFrame& blocked) {
VLOG(10) << "Server received blocked stream=" << blocked.streamId
<< " " << conn;
pktHasRetransmittableData = true;
isNonProbingPacket = true;
auto stream = conn.streamManager->getStream(blocked.streamId);
if (stream) {
handleStreamBlocked(*stream);
}
},
[&](StreamsBlockedFrame& blocked) {
// peer wishes to open a stream, but is unable to due to the maximum
// stream limit set by us
// TODO implement the handler
isNonProbingPacket = true;
VLOG(10) << "Server received streams blocked limit="
<< blocked.streamLimit << ", " << conn;
},
[&](ConnectionCloseFrame& connFrame) {
isNonProbingPacket = true;
auto errMsg = folly::to<std::string>(
"Server closed by peer reason=", connFrame.reasonPhrase);
VLOG(4) << errMsg << " " << conn;
// we want to deliver app callbacks with the peer supplied error,
// but send a NO_ERROR to the peer.
QUIC_TRACE(recvd_close, conn, errMsg.c_str());
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(getPeerClose(errMsg));
}
conn.peerConnectionError = std::make_pair(
QuicErrorCode(connFrame.errorCode), std::move(errMsg));
throw QuicTransportException(
"Peer closed", TransportErrorCode::NO_ERROR);
},
[&](ApplicationCloseFrame& appClose) {
isNonProbingPacket = true;
auto errMsg = folly::to<std::string>(
"Server closed by peer reason=", appClose.reasonPhrase);
VLOG(10) << errMsg << " " << conn;
// we want to deliver app callbacks with the peer supplied error,
// but send a NO_ERROR to the peer.
QUIC_TRACE(recvd_close, conn, errMsg.c_str());
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(getPeerClose(errMsg));
}
conn.peerConnectionError = std::make_pair(
QuicErrorCode(appClose.errorCode), std::move(errMsg));
throw QuicTransportException(
"Peer closed", TransportErrorCode::NO_ERROR);
},
[&](PaddingFrame&) {},
[&](QuicSimpleFrame& simpleFrame) {
pktHasRetransmittableData = true;
isNonProbingPacket |= updateSimpleFrameOnPacketReceived(
conn,
simpleFrame,
packetNum,
readData.peer != conn.peerAddress);
},
[&](auto&) {
// TODO update isNonProbingPacket
});
}
// Update writable limit before processing the handshake data. This is so
// that if we haven't decided whether or not to validate the peer, we won't
// increase the limit.
updateWritableByteLimitOnRecvPacket(conn);
if (conn.peerAddress != readData.peer) {
// TODO use new conn id, make sure the other endpoint has new conn id
if (isNonProbingPacket) {
if (packetNum == ackState.largestReceivedPacketNum) {
onConnectionMigration(conn, readData.peer);
}
} else {
// Server will need to response with PathResponse to the new address
// while not updating peerAddress to new address
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
QuicTransportStatsCallback::toString(
PacketDropReason::PEER_ADDRESS_CHANGE));
}
QUIC_STATS(
conn.infoCallback,
onPacketDropped,
PacketDropReason::PEER_ADDRESS_CHANGE);
throw QuicTransportException(
"Probing not supported yet", TransportErrorCode::INVALID_MIGRATION);
}
}
// Try reading bytes off of crypto, and performing a handshake.
auto data = readDataFromCryptoStream(
*getCryptoStream(*conn.cryptoState, encryptionLevel));
if (data) {
conn.serverHandshakeLayer->doHandshake(std::move(data), encryptionLevel);
try {
updateHandshakeState(conn);
} catch (...) {
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
QuicTransportStatsCallback::toString(
PacketDropReason::TRANSPORT_PARAMETER_ERROR));
}
QUIC_STATS(
conn.infoCallback,
onPacketDropped,
QuicTransportStatsCallback::PacketDropReason::
TRANSPORT_PARAMETER_ERROR);
throw;
}
}
updateAckSendStateOnRecvPacket(
conn,
ackState,
outOfOrder,
pktHasRetransmittableData,
pktHasCryptoData);
QUIC_STATS(conn.infoCallback, onPacketProcessed);
}
VLOG_IF(4, !udpData.empty())
<< "Leaving " << udpData.chainLength()
<< " bytes unprocessed after attempting to process "
<< kMaxNumCoalescedPackets << " packets.";
}
void onServerReadDataFromClosed(
QuicServerConnectionState& conn,
ServerEvents::ReadData& readData) {
CHECK_EQ(conn.state, ServerState::Closed);
folly::IOBufQueue udpData{folly::IOBufQueue::cacheChainLength()};
udpData.append(std::move(readData.networkData.data));
auto packetSize = udpData.empty() ? 0 : udpData.chainLength();
if (!conn.readCodec) {
// drop data. We closed before we even got the first packet. This is
// normally not possible but might as well.
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
QuicTransportStatsCallback::toString(
PacketDropReason::SERVER_STATE_CLOSED));
}
QUIC_STATS(
conn.infoCallback,
onPacketDropped,
PacketDropReason::SERVER_STATE_CLOSED);
return;
}
if (conn.peerConnectionError) {
// We already got a peer error. We can ignore any futher peer errors.
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
QuicTransportStatsCallback::toString(
PacketDropReason::SERVER_STATE_CLOSED));
}
QUIC_TRACE(packet_drop, conn, "ignoring peer close");
QUIC_STATS(
conn.infoCallback,
onPacketDropped,
PacketDropReason::SERVER_STATE_CLOSED);
return;
}
auto parsedPacket = conn.readCodec->parsePacket(udpData, conn.ackStates);
bool parseSuccess = folly::variant_match(
parsedPacket,
[&](QuicPacket&) { return true; },
[&](folly::Optional<CipherUnavailable>&) {
VLOG(10) << "drop cipher unavailable " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kCipherUnavailable);
}
QUIC_TRACE(packet_drop, conn, "cipher_unavailable");
return false;
},
[&](const auto&) {
VLOG(10) << "drop because reset " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(packetSize, kReset);
}
QUIC_TRACE(packet_drop, conn, "reset");
return false;
});
if (!parseSuccess) {
// We were unable to parse the packet, drop for now.
VLOG(10) << "Not able to parse QUIC packet " << conn;
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
QuicTransportStatsCallback::toString(PacketDropReason::PARSE_ERROR));
}
QUIC_STATS(
conn.infoCallback, onPacketDropped, PacketDropReason::PARSE_ERROR);
return;
}
auto& packet = boost::get<QuicPacket>(parsedPacket);
// Before we know what the protection level of the packet is, we should
// not throw an error.
auto regularOptional = boost::get<RegularQuicPacket>(&packet);
if (!regularOptional) {
if (conn.qLogger) {
conn.qLogger->addPacketDrop(
packetSize,
QuicTransportStatsCallback::toString(
PacketDropReason::INVALID_PACKET));
}
QUIC_TRACE(packet_drop, conn, "not_regular");
VLOG(10) << "drop, not regular packet " << conn;
QUIC_STATS(
conn.infoCallback, onPacketDropped, PacketDropReason::INVALID_PACKET);
return;
}
auto& regularPacket = *regularOptional;
auto protectionLevel = folly::variant_match(
regularPacket.header,
[](auto& header) { return header.getProtectionType(); });
auto packetNum = folly::variant_match(
regularOptional->header,
[](const auto& h) { return h.getPacketSequenceNum(); });
auto pnSpace = folly::variant_match(
regularOptional->header,
[](const auto& h) { return h.getPacketNumberSpace(); });
if (conn.qLogger) {
conn.qLogger->addPacket(regularPacket, packetSize);
}
QUIC_TRACE(packet_recvd, conn, packetNum, packetSize);
bool isProtectedPacket = protectionLevel == ProtectionType::ZeroRtt ||
protectionLevel == ProtectionType::KeyPhaseZero ||
protectionLevel == ProtectionType::KeyPhaseOne;
// Only process the close frames in the packet
for (auto& quicFrame : regularPacket.frames) {
folly::variant_match(
quicFrame,
[&](ConnectionCloseFrame& connFrame) {
auto errMsg = folly::to<std::string>(
"Server closed by peer reason=", connFrame.reasonPhrase);
VLOG(4) << errMsg << " " << conn;
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(getPeerClose(errMsg));
}
// we want to deliver app callbacks with the peer supplied error,
// but send a NO_ERROR to the peer.
QUIC_TRACE(recvd_close, conn, errMsg.c_str());
conn.peerConnectionError = std::make_pair(
QuicErrorCode(connFrame.errorCode), std::move(errMsg));
},
[&](ApplicationCloseFrame& appClose) {
if (!isProtectedPacket) {
return;
}
auto errMsg = folly::to<std::string>(
"Server closed by peer reason=", appClose.reasonPhrase);
VLOG(10) << errMsg << " " << conn;
if (conn.qLogger) {
conn.qLogger->addTransportStateUpdate(getPeerClose(errMsg));
}
// we want to deliver app callbacks with the peer supplied error,
// but send a NO_ERROR to the peer.
QUIC_TRACE(recvd_close, conn, errMsg.c_str());
conn.peerConnectionError = std::make_pair(
QuicErrorCode(appClose.errorCode), std::move(errMsg));
},
[&](auto&) { return; });
}
// We only need to set the largest received packet number in order to
// determine whether or not we need to send a new close.
auto& largestReceivedPacketNum =
getAckState(conn, pnSpace).largestReceivedPacketNum;
largestReceivedPacketNum = std::max<PacketNum>(
largestReceivedPacketNum.value_or(packetNum), packetNum);
}
void onServerClose(QuicServerConnectionState& conn) {
switch (conn.state) {
case ServerState::Open:
onServerCloseOpenState(conn);
return;
case ServerState::Closed:
return;
}
}
void onServerCloseOpenState(QuicServerConnectionState& conn) {
conn.state = ServerState::Closed;
}
} // namespace quic